X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;ds=sidebyside;f=helm%2Fsoftware%2Fmatita%2Fnlibrary%2Fsets%2Fsets.ma;h=c66b51e2dbb6a98efa6bf7249e8817aaf6b529b0;hb=fd52068e75c3ea1e67b2066ac9f7e2a862148a18;hp=c21751c2148d6b9679218b2ac34f7e90da071d52;hpb=a8f4987a72bd7aa170eba664316a3832d6818570;p=helm.git diff --git a/helm/software/matita/nlibrary/sets/sets.ma b/helm/software/matita/nlibrary/sets/sets.ma index c21751c21..c66b51e2d 100644 --- a/helm/software/matita/nlibrary/sets/sets.ma +++ b/helm/software/matita/nlibrary/sets/sets.ma @@ -41,22 +41,19 @@ ndefinition big_intersection ≝ λA,B.λT:Ω^A.λf:A → Ω^B.{ x | ∀i. i ∈ ndefinition full_set: ∀A. Ω^A ≝ λA.{ x | True }. nlemma subseteq_refl: ∀A.∀S: Ω^A. S ⊆ S. - #A; #S; #x; #H; nassumption. -nqed. +//.nqed. nlemma subseteq_trans: ∀A.∀S,T,U: Ω^A. S ⊆ T → T ⊆ U → S ⊆ U. - #A; #S; #T; #U; #H1; #H2; #x; #P; napply H2; napply H1; nassumption. -nqed. +/3/.nqed. include "properties/relations1.ma". ndefinition seteq: ∀A. equivalence_relation1 (Ω^A). #A; @ [ napply (λS,S'. S ⊆ S' ∧ S' ⊆ S) - | #S; @; napply subseteq_refl - | #S; #S'; *; #H1; #H2; @; nassumption - | #S; #T; #U; *; #H1; #H2; *; #H3; #H4; @; napply subseteq_trans; - ##[##2,5: nassumption |##1,4: ##skip |##*: nassumption]##] + | /2/ + | #S; #S'; *; /2/ + | #S; #T; #U; *; #H1; #H2; *; /3/] nqed. include "sets/setoids1.ma". @@ -65,7 +62,7 @@ include "sets/setoids1.ma". ncoercion full_set : ∀A:Type[0]. Ω^A ≝ full_set on A: Type[0] to (Ω^?). ndefinition powerclass_setoid: Type[0] → setoid1. - #A; @[ napply (Ω^A)| napply seteq ] + #A; @(Ω^A);//. nqed. include "hints_declaration.ma". @@ -77,121 +74,160 @@ unification hint 0 ≔ A ⊢ carr1 (mk_setoid1 (Ω^A) (eq1 (powerclass_setoid A) include "logic/cprop.ma". -nrecord qpowerclass (A: setoid) : Type[1] ≝ - { pc:> Ω^A; (* qui pc viene dichiarato con un target preciso... +nrecord ext_powerclass (A: setoid) : Type[1] ≝ + { ext_carr:> Ω^A; (* qui pc viene dichiarato con un target preciso... forse lo si vorrebbe dichiarato con un target più lasco ma la sintassi :> non lo supporta *) - mem_ok': ∀x,x':A. x=x' → (x ∈ pc) = (x' ∈ pc) + ext_prop: ∀x,x':A. x=x' → (x ∈ ext_carr) = (x' ∈ ext_carr) }. + +notation > "𝛀 ^ term 90 A" non associative with precedence 70 +for @{ 'ext_powerclass $A }. + +notation "Ω term 90 A \atop ≈" non associative with precedence 70 +for @{ 'ext_powerclass $A }. -ndefinition Full_set: ∀A. qpowerclass A. +interpretation "extensional powerclass" 'ext_powerclass a = (ext_powerclass a). + +ndefinition Full_set: ∀A. 𝛀^A. #A; @[ napply A | #x; #x'; #H; napply refl1] nqed. -ncoercion Full_set: ∀A. qpowerclass A ≝ Full_set on A: setoid to qpowerclass ?. +ncoercion Full_set: ∀A. ext_powerclass A ≝ Full_set on A: setoid to ext_powerclass ?. -ndefinition qseteq: ∀A. equivalence_relation1 (qpowerclass A). - #A; @ - [ napply (λS,S'. S = S') - | #S; napply (refl1 ? (seteq A)) - | #S; #S'; napply (sym1 ? (seteq A)) - | #S; #T; #U; napply (trans1 ? (seteq A))] +ndefinition ext_seteq: ∀A. equivalence_relation1 (𝛀^A). + #A; @ [ napply (λS,S'. S = S') ] /2/. nqed. -ndefinition qpowerclass_setoid: setoid → setoid1. - #A; @ - [ napply (qpowerclass A) - | napply (qseteq A) ] +ndefinition ext_powerclass_setoid: setoid → setoid1. + #A; @ (ext_seteq A). nqed. -unification hint 0 ≔ A ⊢ - carr1 (mk_setoid1 (qpowerclass A) (eq1 (qpowerclass_setoid A))) -≡ qpowerclass A. +unification hint 0 ≔ A; + R ≟ (mk_setoid1 (𝛀^A) (eq1 (ext_powerclass_setoid A))) + (* ----------------------------------------------------- *) ⊢ + carr1 R ≡ ext_powerclass A. -ncoercion pc' : ∀A.∀x:qpowerclass_setoid A. Ω^A ≝ pc -on _x : (carr1 (qpowerclass_setoid ?)) to (Ω^?). +(* +interpretation "prop21 mem" 'prop2 l r = (prop21 (setoid1_of_setoid ?) (ext_powerclass_setoid ?) ? ? ???? l r). +*) + +(* +ncoercion ext_carr' : ∀A.∀x:ext_powerclass_setoid A. Ω^A ≝ ext_carr +on _x : (carr1 (ext_powerclass_setoid ?)) to (Ω^?). +*) -nlemma mem_ok: ∀A. binary_morphism1 (setoid1_of_setoid A) (qpowerclass_setoid A) CPROP. - #A; @ - [ napply (λx,S. x ∈ S) - | #a; #a'; #b; #b'; #Ha; *; #Hb1; #Hb2; @; #H; - ##[ napply Hb1; napply (. (mem_ok' …)); ##[##3: napply H| napply Ha^-1;##] - ##| napply Hb2; napply (. (mem_ok' …)); ##[##3: napply H| napply Ha;##] - ##] - ##] +nlemma mem_ext_powerclass_setoid_is_morph: + ∀A. unary_morphism1 (setoid1_of_setoid A) (unary_morphism1_setoid1 (ext_powerclass_setoid A) CPROP). + #A; napply (mk_binary_morphism1 … (λx:setoid1_of_setoid A.λS: 𝛀^A. x ∈ S)); + #a; #a'; #b; #b'; #Ha; *; #Hb1; #Hb2; @; #H + [ napply (. (ext_prop … Ha^-1)) | napply (. (ext_prop … Ha)) ] /2/. nqed. unification hint 0 ≔ A:setoid, x, S; - SS ≟ (pc ? S), - TT ≟ (mk_binary_morphism1 ??? - (λx:setoid1_of_setoid ?.λS:qpowerclass_setoid ?. x ∈ S) - (prop21 ??? (mem_ok A))) - + SS ≟ (ext_carr ? S), + TT ≟ (mk_unary_morphism1 … + (λx:setoid1_of_setoid ?. + mk_unary_morphism1 … + (λS:ext_powerclass_setoid ?. x ∈ S) + (prop11 … (mem_ext_powerclass_setoid_is_morph A x))) + (prop11 … (mem_ext_powerclass_setoid_is_morph A))), + XX ≟ (ext_powerclass_setoid A) (*-------------------------------------*) ⊢ - fun21 ? ? ? TT x S - ≡ mem A SS x. - -nlemma subseteq_ok: ∀A. binary_morphism1 (qpowerclass_setoid A) (qpowerclass_setoid A) CPROP. - #A; @ - [ napply (λS,S'. S ⊆ S') - | #a; #a'; #b; #b'; *; #Ha1; #Ha2; *; #Hb1; #Hb2; @; #H - [ napply (subseteq_trans … a) - [ nassumption | napply (subseteq_trans … b); nassumption ] - ##| napply (subseteq_trans … a') - [ nassumption | napply (subseteq_trans … b'); nassumption ] ##] + fun11 (setoid1_of_setoid A) + (unary_morphism1_setoid1 XX CPROP) TT x S + ≡ mem A SS x. + +nlemma subseteq_is_morph: ∀A. unary_morphism1 (ext_powerclass_setoid A) + (unary_morphism1_setoid1 (ext_powerclass_setoid A) CPROP). + #A; napply (mk_binary_morphism1 … (λS,S':𝛀^A. S ⊆ S')); + #a; #a'; #b; #b'; *; #H1; #H2; *; /4/. nqed. unification hint 0 ≔ A,a,a' (*-----------------------------------------------------------------*) ⊢ eq_rel ? (eq A) a a' ≡ eq_rel1 ? (eq1 (setoid1_of_setoid A)) a a'. -nlemma intersect_ok: ∀A. qpowerclass A → qpowerclass A → qpowerclass A. +nlemma intersect_is_ext: ∀A. 𝛀^A → 𝛀^A → 𝛀^A. #A; #S; #S'; @ (S ∩ S'); - #a; #a'; #Ha; @; *; #H1; #H2; @ + #a; #a'; #Ha; @; *; #H1; #H2; @ [##1,2: napply (. Ha^-1‡#); nassumption; ##|##3,4: napply (. Ha‡#); nassumption] nqed. alias symbol "hint_decl" = "hint_decl_Type1". -unification hint 1 ≔ - A : setoid, B,C : qpowerclass A ⊢ - pc A (mk_qpowerclass ? (B ∩ C) (mem_ok' ? (intersect_ok ? B C))) - ≡ intersect ? (pc ? B) (pc ? C). - -nlemma intersect_ok': ∀A. binary_morphism1 (powerclass_setoid A) (powerclass_setoid A) (powerclass_setoid A). - #A; @ (λS,S'. S ∩ S'); - #a; #a'; #b; #b'; *; #Ha1; #Ha2; *; #Hb1; #Hb2; @; #x; nnormalize; *; #Ka; #Kb; @ - [ napply Ha1; nassumption - | napply Hb1; nassumption - | napply Ha2; nassumption - | napply Hb2; nassumption] +unification hint 0 ≔ + A : setoid, B,C : ext_powerclass A; + R ≟ (mk_ext_powerclass ? (B ∩ C) (ext_prop ? (intersect_is_ext ? B C))) + + (* ------------------------------------------*) ⊢ + ext_carr A R ≡ intersect ? (ext_carr ? B) (ext_carr ? C). + +nlemma intersect_is_morph: + ∀A. unary_morphism1 (powerclass_setoid A) (unary_morphism1_setoid1 (powerclass_setoid A) (powerclass_setoid A)). + #A; napply (mk_binary_morphism1 … (λS,S'. S ∩ S')); + #a; #a'; #b; #b'; *; #Ha1; #Ha2; *; #Hb1; #Hb2; @; #x; nnormalize; *;/3/. nqed. alias symbol "hint_decl" = "hint_decl_Type1". unification hint 0 ≔ - A : Type[0], B,C : powerclass A ⊢ - fun21 … - (mk_binary_morphism1 … + A : Type[0], B,C : Ω^A; + R ≟ (mk_binary_morphism1 … (λS,S'.S ∩ S') - (prop21 … (intersect_ok' A))) B C - ≡ intersect ? B C. - -ndefinition prop21_mem : - ∀A,C.∀f:binary_morphism1 (setoid1_of_setoid A) (qpowerclass_setoid A) C. - ∀a,a':setoid1_of_setoid A. - ∀b,b':qpowerclass_setoid A.a = a' → b = b' → f a b = f a' b'. -#A; #C; #f; #a; #a'; #b; #b'; #H1; #H2; napply prop21; nassumption; + (prop21 … (intersect_is_morph A))) + ⊢ + fun21 (powerclass_setoid A) (powerclass_setoid A) (powerclass_setoid A) R B C + ≡ intersect ? B C. + +interpretation "prop21 ext" 'prop2 l r = (prop21 (ext_powerclass_setoid ?) (ext_powerclass_setoid ?) ? ? ???? l r). + +nlemma intersect_is_ext_morph: + ∀A. binary_morphism1 (ext_powerclass_setoid A) (ext_powerclass_setoid A) (ext_powerclass_setoid A). + #A; @ (intersect_is_ext …); nlapply (prop21 … (intersect_is_morph A)); +#H; #a; #a'; #b; #b'; #H1; #H2; napply H; nassumption; nqed. + +unification hint 1 ≔ + A:setoid, B,C : 𝛀^A; + R ≟ (mk_binary_morphism1 (ext_powerclass_setoid A) (ext_powerclass_setoid A) (ext_powerclass_setoid A) + (λS,S':carr1 (ext_powerclass_setoid A). + mk_ext_powerclass A (S∩S') (ext_prop A (intersect_is_ext ? S S'))) + (prop21 … (intersect_is_ext_morph A))) , + BB ≟ (ext_carr ? B), + CC ≟ (ext_carr ? C) + (* ------------------------------------------------------*) ⊢ + ext_carr A + (fun21 + (ext_powerclass_setoid A) + (ext_powerclass_setoid A) + (ext_powerclass_setoid A) R B C) ≡ + intersect (carr A) BB CC. + +(* +alias symbol "hint_decl" = "hint_decl_Type2". +unification hint 0 ≔ + A : setoid, B,C : 𝛀^A ; + CC ≟ (ext_carr ? C), + BB ≟ (ext_carr ? B), + C1 ≟ (carr1 (powerclass_setoid (carr A))), + C2 ≟ (carr1 (ext_powerclass_setoid A)) + ⊢ + eq_rel1 C1 (eq1 (powerclass_setoid (carr A))) BB CC ≡ + eq_rel1 C2 (eq1 (ext_powerclass_setoid A)) B C. + +unification hint 0 ≔ + A, B : CPROP ⊢ iff A B ≡ eq_rel1 ? (eq1 CPROP) A B. -interpretation "prop21 mem" 'prop2 l r = (prop21_mem ??????? l r). - - -nlemma test: ∀U.∀A,B:qpowerclass U. A ∩ B = A → +nlemma test: ∀U.∀A,B:𝛀^U. A ∩ B = A → ∀x,y. x=y → x ∈ A → y ∈ A ∩ B. - #U; #A; #B; #H; #x; #y; #K; #K2; napply (. K^-1‡(H^-1‡#)); nassumption; + #U; #A; #B; #H; #x; #y; #K; #K2; + alias symbol "prop2" = "prop21 mem". + alias symbol "invert" = "setoid1 symmetry". + napply (. K^-1‡H); + nassumption; nqed. -(* -nlemma intersect_ok: ∀A. binary_morphism1 (qpowerclass_setoid A) (qpowerclass_setoid A) (qpowerclass_setoid A). + +nlemma intersect_ok: ∀A. binary_morphism1 (ext_powerclass_setoid A) (ext_powerclass_setoid A) (ext_powerclass_setoid A). #A; @ [ #S; #S'; @ [ napply (S ∩ S') @@ -201,14 +237,16 @@ nlemma intersect_ok: ∀A. binary_morphism1 (qpowerclass_setoid A) (qpowerclass_ ##|##3,4: napply (. Ha‡#); nassumption]##] ##| #a; #a'; #b; #b'; #Ha; #Hb; nwhd; @; #x; nwhd in ⊢ (% → %); #H [ alias symbol "invert" = "setoid1 symmetry". - napply (. ((#‡Ha^-1)‡(#‡Hb^-1))); nassumption + alias symbol "refl" = "refl". +alias symbol "prop2" = "prop21". +napply (. ((#‡Ha^-1)‡(#‡Hb^-1))); nassumption | napply (. ((#‡Ha)‡(#‡Hb))); nassumption ]##] nqed. (* unfold if intersect, exposing fun21 *) alias symbol "hint_decl" = "hint_decl_Type1". unification hint 0 ≔ - A : setoid, B,C : qpowerclass A ⊢ + A : setoid, B,C : ext_powerclass A ⊢ pc A (fun21 … (mk_binary_morphism1 … (λS,S':qpowerclass_setoid A.mk_qpowerclass ? (S ∩ S') (mem_ok' ? (intersect_ok ? S S'))) @@ -245,45 +283,40 @@ nqed. ndefinition eqrel_of_morphism: ∀A,B. unary_morphism A B → compatible_equivalence_relation A. #A; #B; #f; @ - [ @ - [ napply (λx,y. f x = f y) - | #x; napply refl | #x; #y; napply sym | #x; #y; #z; napply trans] + [ @ [ napply (λx,y. f x = f y) ] /2/; ##| #x; #x'; #H; nwhd; alias symbol "prop1" = "prop1". -napply (.= (†H)); napply refl ] +napply (.= (†H)); // ] nqed. ndefinition canonical_proj: ∀A,R. unary_morphism A (quotient A R). #A; #R; @ - [ napply (λx.x) | #a; #a'; #H; napply (compatibility … R … H) ] + [ napply (λx.x) | #a; #a'; #H; napply (compatibility … R … H) ] nqed. ndefinition quotiented_mor: ∀A,B.∀f:unary_morphism A B. unary_morphism (quotient … (eqrel_of_morphism … f)) B. - #A; #B; #f; @ - [ napply f | #a; #a'; #H; nassumption] + #A; #B; #f; @ [ napply f ] //. nqed. nlemma first_omomorphism_theorem_functions1: ∀A,B.∀f: unary_morphism A B. ∀x. f x = quotiented_mor … (canonical_proj … (eqrel_of_morphism … f) x). - #A; #B; #f; #x; napply refl; -nqed. +//. nqed. +alias symbol "eq" = "setoid eq". ndefinition surjective ≝ - λA,B.λS: qpowerclass A.λT: qpowerclass B.λf:unary_morphism A B. + λA,B.λS: ext_powerclass A.λT: ext_powerclass B.λf:unary_morphism A B. ∀y. y ∈ T → ∃x. x ∈ S ∧ f x = y. ndefinition injective ≝ - λA,B.λS: qpowerclass A.λf:unary_morphism A B. + λA,B.λS: ext_powerclass A.λf:unary_morphism A B. ∀x,x'. x ∈ S → x' ∈ S → f x = f x' → x = x'. nlemma first_omomorphism_theorem_functions2: ∀A,B.∀f: unary_morphism A B. surjective … (Full_set ?) (Full_set ?) (canonical_proj ? (eqrel_of_morphism … f)). - #A; #B; #f; nwhd; #y; #Hy; @ y; @ I ; napply refl; - (* bug, prova @ I refl *) -nqed. +/3/. nqed. nlemma first_omomorphism_theorem_functions3: ∀A,B.∀f: unary_morphism A B. @@ -291,13 +324,24 @@ nlemma first_omomorphism_theorem_functions3: #A; #B; #f; nwhd; #x; #x'; #Hx; #Hx'; #K; nassumption. nqed. -nrecord isomorphism (A, B : setoid) (S: qpowerclass A) (T: qpowerclass B) : Type[0] ≝ +nrecord isomorphism (A, B : setoid) (S: ext_powerclass A) (T: ext_powerclass B) : Type[0] ≝ { iso_f:> unary_morphism A B; f_closed: ∀x. x ∈ S → iso_f x ∈ T; f_sur: surjective … S T iso_f; f_inj: injective … S iso_f }. +nlemma subseteq_intersection_l: ∀A.∀U,V,W:Ω^A.U ⊆ W ∨ V ⊆ W → U ∩ V ⊆ W. +#A; #U; #V; #W; *; #H; #x; *; /2/. +nqed. + +nlemma subseteq_union_l: ∀A.∀U,V,W:Ω^A.U ⊆ W → V ⊆ W → U ∪ V ⊆ W. +#A; #U; #V; #W; #H; #H1; #x; *; /2/. +nqed. + +nlemma subseteq_intersection_r: ∀A.∀U,V,W:Ω^A.W ⊆ U → W ⊆ V → W ⊆ U ∩ V. +/3/. nqed. + (* nrecord isomorphism (A, B : setoid) (S: qpowerclass A) (T: qpowerclass B) : CProp[0] ≝ { iso_f:> unary_morphism A B;