X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;ds=sidebyside;f=matita%2Fdama%2Fordered_sets.ma;h=9cd9f58a93e0db8b538b2ca3e17b430bed66def2;hb=1776f357e1a69fa1133956660b65d7bafdfe5c25;hp=bf76fa1de414809178683c5f6222ed1941940049;hpb=51decb89951a32719241043e9fd0c9dba1ad9f4f;p=helm.git diff --git a/matita/dama/ordered_sets.ma b/matita/dama/ordered_sets.ma index bf76fa1de..9cd9f58a9 100644 --- a/matita/dama/ordered_sets.ma +++ b/matita/dama/ordered_sets.ma @@ -14,691 +14,212 @@ set "baseuri" "cic:/matita/ordered_sets/". -include "higher_order_defs/relations.ma". -include "nat/plus.ma". -include "constructive_connectives.ma". - -record pre_ordered_set (C:Type) : Type ≝ - { le_:C→C→Prop }. - -definition carrier_of_pre_ordered_set ≝ λC:Type.λO:pre_ordered_set C.C. - -coercion cic:/matita/ordered_sets/carrier_of_pre_ordered_set.con. - -definition os_le: ∀C.∀O:pre_ordered_set C.O → O → Prop ≝ le_. - -interpretation "Ordered Sets le" 'leq a b = - (cic:/matita/ordered_sets/os_le.con _ _ a b). - -definition cotransitive ≝ - λC:Type.λle:C→C→Prop.∀x,y,z:C. le x y → le x z ∨ le z y. - -definition antisimmetric ≝ - λC:Type.λle:C→C→Prop.∀x,y:C. le x y → le y x → x=y. - -record is_order_relation (C) (O:pre_ordered_set C) : Type ≝ - { or_reflexive: reflexive ? (os_le ? O); - or_transitive: transitive ? (os_le ? O); - or_antisimmetric: antisimmetric ? (os_le ? O) - }. +include "excedence.ma". + +record is_porder_relation (C:Type) (le:C→C→Prop) (eq:C→C→Prop) : Type ≝ { + por_reflexive: reflexive ? le; + por_transitive: transitive ? le; + por_antisimmetric: antisymmetric ? le eq +}. + +record pordered_set: Type ≝ { + pos_carr:> excedence; + pos_order_relation_properties:> is_porder_relation ? (le pos_carr) (eq pos_carr) +}. + +lemma pordered_set_of_excedence: excedence → pordered_set. +intros (E); apply (mk_pordered_set E); apply (mk_is_porder_relation); +[apply le_reflexive|apply le_transitive|apply le_antisymmetric] +qed. -record ordered_set (C:Type): Type ≝ - { os_pre_ordered_set:> pre_ordered_set C; - os_order_relation_properties:> is_order_relation ? os_pre_ordered_set - }. +alias id "transitive" = "cic:/matita/higher_order_defs/relations/transitive.con". +alias id "cotransitive" = "cic:/matita/higher_order_defs/relations/cotransitive.con". +alias id "antisymmetric" = "cic:/matita/higher_order_defs/relations/antisymmetric.con". theorem antisimmetric_to_cotransitive_to_transitive: - ∀C.∀le:relation C. antisimmetric ? le → cotransitive ? le → - transitive ? le. - intros; - unfold transitive; - intros; - elim (c ? ? z H1); - [ assumption - | rewrite < (H ? ? H2 t); - assumption - ]. + ∀C:Type.∀le:C→C→Prop. antisymmetric ? le → cotransitive ? le → transitive ? le. +intros (T f Af cT); unfold transitive; intros (x y z fxy fyz); +lapply (cT ? ? fxy z) as H; cases H; [assumption] cases (Af ? ? fyz H1); qed. -definition is_increasing ≝ λC.λO:ordered_set C.λa:nat→O.∀n:nat.a n ≤ a (S n). -definition is_decreasing ≝ λC.λO:ordered_set C.λa:nat→O.∀n:nat.a (S n) ≤ a n. +definition is_increasing ≝ λO:pordered_set.λa:nat→O.∀n:nat.a n ≤ a (S n). +definition is_decreasing ≝ λO:pordered_set.λa:nat→O.∀n:nat.a (S n) ≤ a n. -definition is_upper_bound ≝ λC.λO:ordered_set C.λa:nat→O.λu:O.∀n:nat.a n ≤ u. -definition is_lower_bound ≝ λC.λO:ordered_set C.λa:nat→O.λu:O.∀n:nat.u ≤ a n. +definition is_upper_bound ≝ λO:pordered_set.λa:nat→O.λu:O.∀n:nat.a n ≤ u. +definition is_lower_bound ≝ λO:pordered_set.λa:nat→O.λu:O.∀n:nat.u ≤ a n. -record is_sup (C:Type) (O:ordered_set C) (a:nat→O) (u:O) : Prop ≝ - { sup_upper_bound: is_upper_bound ? O a u; - sup_least_upper_bound: ∀v:O. is_upper_bound ? O a v → u≤v +record is_sup (O:pordered_set) (a:nat→O) (u:O) : Prop ≝ + { sup_upper_bound: is_upper_bound O a u; + sup_least_upper_bound: ∀v:O. is_upper_bound O a v → u≤v }. -record is_inf (C:Type) (O:ordered_set C) (a:nat→O) (u:O) : Prop ≝ - { inf_lower_bound: is_lower_bound ? O a u; - inf_greatest_lower_bound: ∀v:O. is_lower_bound ? O a v → v≤u +record is_inf (O:pordered_set) (a:nat→O) (u:O) : Prop ≝ + { inf_lower_bound: is_lower_bound O a u; + inf_greatest_lower_bound: ∀v:O. is_lower_bound O a v → v≤u }. -record is_bounded_below (C:Type) (O:ordered_set C) (a:nat→O) : Type ≝ +record is_bounded_below (O:pordered_set) (a:nat→O) : Type ≝ { ib_lower_bound: O; - ib_lower_bound_is_lower_bound: is_lower_bound ? ? a ib_lower_bound + ib_lower_bound_is_lower_bound: is_lower_bound ? a ib_lower_bound }. -record is_bounded_above (C:Type) (O:ordered_set C) (a:nat→O) : Type ≝ +record is_bounded_above (O:pordered_set) (a:nat→O) : Type ≝ { ib_upper_bound: O; - ib_upper_bound_is_upper_bound: is_upper_bound ? ? a ib_upper_bound + ib_upper_bound_is_upper_bound: is_upper_bound ? a ib_upper_bound }. -record is_bounded (C:Type) (O:ordered_set C) (a:nat→O) : Type ≝ - { ib_bounded_below:> is_bounded_below ? ? a; - ib_bounded_above:> is_bounded_above ? ? a +record is_bounded (O:pordered_set) (a:nat→O) : Type ≝ + { ib_bounded_below:> is_bounded_below ? a; + ib_bounded_above:> is_bounded_above ? a }. -record bounded_below_sequence (C:Type) (O:ordered_set C) : Type ≝ +record bounded_below_sequence (O:pordered_set) : Type ≝ { bbs_seq:1> nat→O; - bbs_is_bounded_below:> is_bounded_below ? ? bbs_seq + bbs_is_bounded_below:> is_bounded_below ? bbs_seq }. -record bounded_above_sequence (C:Type) (O:ordered_set C) : Type ≝ +record bounded_above_sequence (O:pordered_set) : Type ≝ { bas_seq:1> nat→O; - bas_is_bounded_above:> is_bounded_above ? ? bas_seq + bas_is_bounded_above:> is_bounded_above ? bas_seq }. -record bounded_sequence (C:Type) (O:ordered_set C) : Type ≝ +record bounded_sequence (O:pordered_set) : Type ≝ { bs_seq:1> nat → O; - bs_is_bounded_below: is_bounded_below ? ? bs_seq; - bs_is_bounded_above: is_bounded_above ? ? bs_seq + bs_is_bounded_below: is_bounded_below ? bs_seq; + bs_is_bounded_above: is_bounded_above ? bs_seq }. definition bounded_below_sequence_of_bounded_sequence ≝ - λC.λO:ordered_set C.λb:bounded_sequence ? O. - mk_bounded_below_sequence ? ? b (bs_is_bounded_below ? ? b). + λO:pordered_set.λb:bounded_sequence O. + mk_bounded_below_sequence ? b (bs_is_bounded_below ? b). coercion cic:/matita/ordered_sets/bounded_below_sequence_of_bounded_sequence.con. definition bounded_above_sequence_of_bounded_sequence ≝ - λC.λO:ordered_set C.λb:bounded_sequence ? O. - mk_bounded_above_sequence ? ? b (bs_is_bounded_above ? ? b). + λO:pordered_set.λb:bounded_sequence O. + mk_bounded_above_sequence ? b (bs_is_bounded_above ? b). coercion cic:/matita/ordered_sets/bounded_above_sequence_of_bounded_sequence.con. definition lower_bound ≝ - λC.λO:ordered_set C.λb:bounded_below_sequence ? O. - ib_lower_bound ? ? b (bbs_is_bounded_below ? ? b). + λO:pordered_set.λb:bounded_below_sequence O. + ib_lower_bound ? b (bbs_is_bounded_below ? b). lemma lower_bound_is_lower_bound: - ∀C.∀O:ordered_set C.∀b:bounded_below_sequence ? O. - is_lower_bound ? ? b (lower_bound ? ? b). - intros; - unfold lower_bound; - apply ib_lower_bound_is_lower_bound. + ∀O:pordered_set.∀b:bounded_below_sequence O. + is_lower_bound ? b (lower_bound ? b). +intros; unfold lower_bound; apply ib_lower_bound_is_lower_bound. qed. definition upper_bound ≝ - λC.λO:ordered_set C.λb:bounded_above_sequence ? O. - ib_upper_bound ? ? b (bas_is_bounded_above ? ? b). + λO:pordered_set.λb:bounded_above_sequence O. + ib_upper_bound ? b (bas_is_bounded_above ? b). lemma upper_bound_is_upper_bound: - ∀C.∀O:ordered_set C.∀b:bounded_above_sequence ? O. - is_upper_bound ? ? b (upper_bound ? ? b). - intros; - unfold upper_bound; - apply ib_upper_bound_is_upper_bound. -qed. - -record is_dedekind_sigma_complete (C:Type) (O:ordered_set C) : Type ≝ - { dsc_inf: ∀a:nat→O.∀m:O. is_lower_bound ? ? a m → ex ? (λs:O.is_inf ? O a s); - dsc_inf_proof_irrelevant: - ∀a:nat→O.∀m,m':O.∀p:is_lower_bound ? ? a m.∀p':is_lower_bound ? ? a m'. - (match dsc_inf a m p with [ ex_intro s _ ⇒ s ]) = - (match dsc_inf a m' p' with [ ex_intro s' _ ⇒ s' ]); - dsc_sup: ∀a:nat→O.∀m:O. is_upper_bound ? ? a m → ex ? (λs:O.is_sup ? O a s); - dsc_sup_proof_irrelevant: - ∀a:nat→O.∀m,m':O.∀p:is_upper_bound ? ? a m.∀p':is_upper_bound ? ? a m'. - (match dsc_sup a m p with [ ex_intro s _ ⇒ s ]) = - (match dsc_sup a m' p' with [ ex_intro s' _ ⇒ s' ]) - }. - -record dedekind_sigma_complete_ordered_set (C:Type) : Type ≝ - { dscos_ordered_set:> ordered_set C; - dscos_dedekind_sigma_complete_properties:> - is_dedekind_sigma_complete ? dscos_ordered_set - }. - -definition inf: - ∀C:Type.∀O:dedekind_sigma_complete_ordered_set C. - bounded_below_sequence ? O → O. - intros; - elim - (dsc_inf ? O (dscos_dedekind_sigma_complete_properties ? O) b); - [ apply a - | apply (lower_bound ? ? b) - | apply lower_bound_is_lower_bound - ] -qed. - -lemma inf_is_inf: - ∀C:Type.∀O:dedekind_sigma_complete_ordered_set C. - ∀a:bounded_below_sequence ? O. - is_inf ? ? a (inf ? ? a). - intros; - unfold inf; - simplify; - elim (dsc_inf C O (dscos_dedekind_sigma_complete_properties C O) a -(lower_bound C O a) (lower_bound_is_lower_bound C O a)); - simplify; - assumption. -qed. - -lemma inf_proof_irrelevant: - ∀C:Type.∀O:dedekind_sigma_complete_ordered_set C. - ∀a,a':bounded_below_sequence ? O. - bbs_seq ? ? a = bbs_seq ? ? a' → - inf ? ? a = inf ? ? a'. - intros 4; - elim a 0; - elim a'; - simplify in H; - generalize in match i1; - clear i1; - rewrite > H; - intro; - simplify; - rewrite < (dsc_inf_proof_irrelevant C O O f (ib_lower_bound ? ? f i2) - (ib_lower_bound ? ? f i) (ib_lower_bound_is_lower_bound ? ? f i2) - (ib_lower_bound_is_lower_bound ? ? f i)); - reflexivity. -qed. - -definition sup: - ∀C:Type.∀O:dedekind_sigma_complete_ordered_set C. - bounded_above_sequence ? O → O. - intros; - elim - (dsc_sup ? O (dscos_dedekind_sigma_complete_properties ? O) b); - [ apply a - | apply (upper_bound ? ? b) - | apply upper_bound_is_upper_bound - ]. -qed. - -lemma sup_is_sup: - ∀C:Type.∀O:dedekind_sigma_complete_ordered_set C. - ∀a:bounded_above_sequence ? O. - is_sup ? ? a (sup ? ? a). - intros; - unfold sup; - simplify; - elim (dsc_sup C O (dscos_dedekind_sigma_complete_properties C O) a -(upper_bound C O a) (upper_bound_is_upper_bound C O a)); - simplify; - assumption. -qed. - -lemma sup_proof_irrelevant: - ∀C:Type.∀O:dedekind_sigma_complete_ordered_set C. - ∀a,a':bounded_above_sequence ? O. - bas_seq ? ? a = bas_seq ? ? a' → - sup ? ? a = sup ? ? a'. - intros 4; - elim a 0; - elim a'; - simplify in H; - generalize in match i1; - clear i1; - rewrite > H; - intro; - simplify; - rewrite < (dsc_sup_proof_irrelevant C O O f (ib_upper_bound ? ? f i2) - (ib_upper_bound ? ? f i) (ib_upper_bound_is_upper_bound ? ? f i2) - (ib_upper_bound_is_upper_bound ? ? f i)); - reflexivity. + ∀O:pordered_set.∀b:bounded_above_sequence O. + is_upper_bound ? b (upper_bound ? b). +intros; unfold upper_bound; apply ib_upper_bound_is_upper_bound. qed. -axiom daemon: False. - -theorem inf_le_sup: - ∀C:Type.∀O:dedekind_sigma_complete_ordered_set C. - ∀a:bounded_sequence ? O. inf ? ? a ≤ sup ? ? a. - intros (C O'); - apply (or_transitive ? ? O' ? (a O)); - [ elim daemon (*apply (inf_lower_bound ? ? ? ? (inf_is_inf ? ? a))*) - | elim daemon (*apply (sup_upper_bound ? ? ? ? (sup_is_sup ? ? a))*) - ]. +lemma Or_symmetric: symmetric ? Or. +unfold; intros (x y H); cases H; [right|left] assumption; qed. -lemma inf_respects_le: - ∀C:Type.∀O:dedekind_sigma_complete_ordered_set C. - ∀a:bounded_below_sequence ? O.∀m:O. - is_upper_bound ? ? a m → inf ? ? a ≤ m. - intros (C O'); - apply (or_transitive ? ? O' ? (sup ? ? (mk_bounded_sequence ? ? a ? ?))); - [ apply (bbs_is_bounded_below ? ? a) - | apply (mk_is_bounded_above ? ? ? m H) - | apply inf_le_sup - | apply - (sup_least_upper_bound ? ? ? ? - (sup_is_sup ? ? (mk_bounded_sequence C O' a a - (mk_is_bounded_above C O' a m H)))); - assumption - ]. +definition reverse_excedence: excedence → excedence. +intros (E); apply (mk_excedence E); [apply (λx,y.exc_relation E y x)] +cases E (T f cRf cTf); simplify; +[1: unfold Not; intros (x H); apply (cRf x); assumption +|2: intros (x y z); apply Or_symmetric; apply cTf; assumption;] qed. -definition is_sequentially_monotone ≝ - λC.λO:ordered_set C.λf:O→O. - ∀a:nat→O.∀p:is_increasing ? ? a. - is_increasing ? ? (λi.f (a i)). - -record is_order_continuous (C) - (O:dedekind_sigma_complete_ordered_set C) (f:O→O) : Prop -≝ - { ioc_is_sequentially_monotone: is_sequentially_monotone ? ? f; - ioc_is_upper_bound_f_sup: - ∀a:bounded_above_sequence ? O. - is_upper_bound ? ? (λi.f (a i)) (f (sup ? ? a)); - ioc_respects_sup: - ∀a:bounded_above_sequence ? O. - is_increasing ? ? a → - f (sup ? ? a) = - sup ? ? (mk_bounded_above_sequence ? ? (λi.f (a i)) - (mk_is_bounded_above ? ? ? (f (sup ? ? a)) - (ioc_is_upper_bound_f_sup a))); - ioc_is_lower_bound_f_inf: - ∀a:bounded_below_sequence ? O. - is_lower_bound ? ? (λi.f (a i)) (f (inf ? ? a)); - ioc_respects_inf: - ∀a:bounded_below_sequence ? O. - is_decreasing ? ? a → - f (inf ? ? a) = - inf ? ? (mk_bounded_below_sequence ? ? (λi.f (a i)) - (mk_is_bounded_below ? ? ? (f (inf ? ? a)) - (ioc_is_lower_bound_f_inf a))) - }. - -theorem tail_inf_increasing: - ∀C.∀O:dedekind_sigma_complete_ordered_set C. - ∀a:bounded_below_sequence ? O. - let y ≝ λi.mk_bounded_below_sequence ? ? (λj.a (i+j)) ? in - let x ≝ λi.inf ? ? (y i) in - is_increasing ? ? x. - [ apply (mk_is_bounded_below ? ? ? (ib_lower_bound ? ? a a)); - simplify; - intro; - apply (ib_lower_bound_is_lower_bound ? ? a a) - | intros; - unfold is_increasing; - intro; - unfold x in ⊢ (? ? ? ? %); - apply (inf_greatest_lower_bound ? ? ? ? (inf_is_inf ? ? (y (S n)))); - change with (is_lower_bound ? ? (y (S n)) (inf ? ? (y n))); - unfold is_lower_bound; - intro; - generalize in match (inf_lower_bound ? ? ? ? (inf_is_inf ? ? (y n)) (S n1)); - (*CSC: coercion per FunClass inserita a mano*) - suppose (inf ? ? (y n) ≤ bbs_seq ? ? (y n) (S n1)) (H); - cut (bbs_seq ? ? (y n) (S n1) = bbs_seq ? ? (y (S n)) n1); - [ rewrite < Hcut; - assumption - | unfold y; - simplify; - auto paramodulation library - ] - ]. -qed. +(* -definition is_liminf: - ∀C:Type.∀O:dedekind_sigma_complete_ordered_set C. - bounded_below_sequence ? O → O → Prop. - intros; - apply - (is_sup ? ? (λi.inf ? ? (mk_bounded_below_sequence ? ? (λj.b (i+j)) ?)) t); - apply (mk_is_bounded_below ? ? ? (ib_lower_bound ? ? b b)); - simplify; - intros; - apply (ib_lower_bound_is_lower_bound ? ? b b). -qed. - -definition liminf: - ∀C:Type.∀O:dedekind_sigma_complete_ordered_set C. - bounded_sequence ? O → O. - intros; - apply - (sup ? ? - (mk_bounded_above_sequence ? ? - (λi.inf ? ? - (mk_bounded_below_sequence ? ? - (λj.b (i+j)) ?)) ?)); - [ apply (mk_is_bounded_below ? ? ? (ib_lower_bound ? ? b b)); - simplify; - intros; - apply (ib_lower_bound_is_lower_bound ? ? b b) - | apply (mk_is_bounded_above ? ? ? (ib_upper_bound ? ? b b)); - unfold is_upper_bound; - intro; - change with - (inf C O - (mk_bounded_below_sequence C O (\lambda j:nat.b (n+j)) - (mk_is_bounded_below C O (\lambda j:nat.b (n+j)) (ib_lower_bound C O b b) - (\lambda j:nat.ib_lower_bound_is_lower_bound C O b b (n+j)))) -\leq ib_upper_bound C O b b); - apply (inf_respects_le ? O); - simplify; - intro; - apply (ib_upper_bound_is_upper_bound ? ? b b) - ]. -qed. - -definition reverse_ordered_set: ∀C.ordered_set C → ordered_set C. - intros; - apply mk_ordered_set; - [ apply mk_pre_ordered_set; - apply (λx,y:o.y ≤ x) - | apply mk_is_order_relation; - [ simplify; - intros; - apply (or_reflexive ? ? o) - | simplify; - intros; - apply (or_transitive ? ? o); - [2: apply H1 - | skip - | assumption - ] - | simplify; - intros; - apply (or_antisimmetric ? ? o); - assumption - ] - ]. -qed. +definition reverse_pordered_set: pordered_set → pordered_set. +intros (p); apply (mk_pordered_set (reverse_excedence p)); +generalize in match (reverse_excedence p); intros (E); cases E (T f cRf cTf); +simplify; apply mk_is_porder_relation; unfold; intros; +[apply le_reflexive|apply (le_transitive ???? H H1);|apply (le_antisymmetric ??? H H1)] +qed. -interpretation "Ordered set ge" 'geq a b = - (cic:/matita/ordered_sets/os_le.con _ - (cic:/matita/ordered_sets/os_pre_ordered_set.con _ - (cic:/matita/ordered_sets/reverse_ordered_set.con _ _)) a b). - lemma is_lower_bound_reverse_is_upper_bound: - ∀C.∀O:ordered_set C.∀a:nat→O.∀l:O. - is_lower_bound ? O a l → is_upper_bound ? (reverse_ordered_set ? O) a l. - intros; - unfold; - intro; - unfold; - unfold reverse_ordered_set; - simplify; - apply H. + ∀O:pordered_set.∀a:nat→O.∀l:O. + is_lower_bound O a l → is_upper_bound (reverse_pordered_set O) a l. +intros (O a l H); unfold; intros (n); unfold reverse_pordered_set; +unfold reverse_excedence; simplify; fold unfold le (le ? l (a n)); apply H; qed. lemma is_upper_bound_reverse_is_lower_bound: - ∀C.∀O:ordered_set C.∀a:nat→O.∀l:O. - is_upper_bound ? O a l → is_lower_bound ? (reverse_ordered_set ? O) a l. - intros; - unfold; - intro; - unfold; - unfold reverse_ordered_set; - simplify; - apply H. + ∀O:pordered_set.∀a:nat→O.∀l:O. + is_upper_bound O a l → is_lower_bound (reverse_pordered_set O) a l. +intros (O a l H); unfold; intros (n); unfold reverse_pordered_set; +unfold reverse_excedence; simplify; fold unfold le (le ? (a n) l); apply H; qed. lemma reverse_is_lower_bound_is_upper_bound: - ∀C.∀O:ordered_set C.∀a:nat→O.∀l:O. - is_lower_bound ? (reverse_ordered_set ? O) a l → is_upper_bound ? O a l. - intros; - unfold in H; - unfold reverse_ordered_set in H; - apply H. + ∀O:pordered_set.∀a:nat→O.∀l:O. + is_lower_bound (reverse_pordered_set O) a l → is_upper_bound O a l. +intros (O a l H); unfold; intros (n); unfold reverse_pordered_set in H; +unfold reverse_excedence in H; simplify in H; apply H; qed. lemma reverse_is_upper_bound_is_lower_bound: - ∀C.∀O:ordered_set C.∀a:nat→O.∀l:O. - is_upper_bound ? (reverse_ordered_set ? O) a l → is_lower_bound ? O a l. - intros; - unfold in H; - unfold reverse_ordered_set in H; - apply H. + ∀O:pordered_set.∀a:nat→O.∀l:O. + is_upper_bound (reverse_pordered_set O) a l → is_lower_bound O a l. +intros (O a l H); unfold; intros (n); unfold reverse_pordered_set in H; +unfold reverse_excedence in H; simplify in H; apply H; qed. - lemma is_inf_to_reverse_is_sup: - ∀C.∀O:ordered_set C.∀a:bounded_below_sequence ? O.∀l:O. - is_inf ? O a l → is_sup ? (reverse_ordered_set ? O) a l. - intros; - apply (mk_is_sup C (reverse_ordered_set ? ?)); - [ apply is_lower_bound_reverse_is_upper_bound; - apply inf_lower_bound; - assumption - | intros; - change in v with (Type_OF_ordered_set ? O); - change with (v ≤ l); - apply (inf_greatest_lower_bound ? ? ? ? H); - apply reverse_is_upper_bound_is_lower_bound; - assumption - ]. + ∀O:pordered_set.∀a:bounded_below_sequence O.∀l:O. + is_inf O a l → is_sup (reverse_pordered_set O) a l. +intros (O a l H); apply (mk_is_sup (reverse_pordered_set O)); +[1: apply is_lower_bound_reverse_is_upper_bound; apply inf_lower_bound; assumption +|2: unfold reverse_pordered_set; simplify; unfold reverse_excedence; simplify; + intros (m H1); apply (inf_greatest_lower_bound ? ? ? H); apply H1;] qed. - + lemma is_sup_to_reverse_is_inf: - ∀C.∀O:ordered_set C.∀a:bounded_above_sequence ? O.∀l:O. - is_sup ? O a l → is_inf ? (reverse_ordered_set ? O) a l. - intros; - apply (mk_is_inf C (reverse_ordered_set ? ?)); - [ apply is_upper_bound_reverse_is_lower_bound; - apply sup_upper_bound; - assumption - | intros; - change in v with (Type_OF_ordered_set ? O); - change with (l ≤ v); - apply (sup_least_upper_bound ? ? ? ? H); - apply reverse_is_lower_bound_is_upper_bound; - assumption - ]. + ∀O:pordered_set.∀a:bounded_above_sequence O.∀l:O. + is_sup O a l → is_inf (reverse_pordered_set O) a l. +intros (O a l H); apply (mk_is_inf (reverse_pordered_set O)); +[1: apply is_upper_bound_reverse_is_lower_bound; apply sup_upper_bound; assumption +|2: unfold reverse_pordered_set; simplify; unfold reverse_excedence; simplify; + intros (m H1); apply (sup_least_upper_bound ? ? ? H); apply H1;] qed. lemma reverse_is_sup_to_is_inf: - ∀C.∀O:ordered_set C.∀a:bounded_above_sequence ? O.∀l:O. - is_sup ? (reverse_ordered_set ? O) a l → is_inf ? O a l. - intros; - apply mk_is_inf; - [ apply reverse_is_upper_bound_is_lower_bound; - change in l with (Type_OF_ordered_set ? (reverse_ordered_set ? O)); - apply sup_upper_bound; - assumption - | intros; - change in l with (Type_OF_ordered_set ? (reverse_ordered_set ? O)); - change in v with (Type_OF_ordered_set ? (reverse_ordered_set ? O)); - change with (os_le ? (reverse_ordered_set ? O) l v); - apply (sup_least_upper_bound ? ? ? ? H); - change in v with (Type_OF_ordered_set ? O); - apply is_lower_bound_reverse_is_upper_bound; - assumption - ]. + ∀O:pordered_set.∀a:bounded_above_sequence O.∀l:O. + is_sup (reverse_pordered_set O) a l → is_inf O a l. +intros (O a l H); apply mk_is_inf; +[1: apply reverse_is_upper_bound_is_lower_bound; + apply (sup_upper_bound (reverse_pordered_set O)); assumption +|2: intros (v H1); apply (sup_least_upper_bound (reverse_pordered_set O) a l H v); + apply is_lower_bound_reverse_is_upper_bound; assumption;] qed. lemma reverse_is_inf_to_is_sup: - ∀C.∀O:ordered_set C.∀a:bounded_above_sequence ? O.∀l:O. - is_inf ? (reverse_ordered_set ? O) a l → is_sup ? O a l. - intros; - apply mk_is_sup; - [ apply reverse_is_lower_bound_is_upper_bound; - change in l with (Type_OF_ordered_set ? (reverse_ordered_set ? O)); - apply (inf_lower_bound ? ? ? ? H) - | intros; - change in l with (Type_OF_ordered_set ? (reverse_ordered_set ? O)); - change in v with (Type_OF_ordered_set ? (reverse_ordered_set ? O)); - change with (os_le ? (reverse_ordered_set ? O) v l); - apply (inf_greatest_lower_bound ? ? ? ? H); - change in v with (Type_OF_ordered_set ? O); - apply is_upper_bound_reverse_is_lower_bound; - assumption - ]. -qed. - - -definition reverse_dedekind_sigma_complete_ordered_set: - ∀C. - dedekind_sigma_complete_ordered_set C → dedekind_sigma_complete_ordered_set C. - intros; - apply mk_dedekind_sigma_complete_ordered_set; - [ apply (reverse_ordered_set ? d) - | elim daemon - (*apply mk_is_dedekind_sigma_complete; - [ intros; - elim (dsc_sup ? ? d a m) 0; - [ generalize in match H; clear H; - generalize in match m; clear m; - elim d; - simplify in a1; - simplify; - change in a1 with (Type_OF_ordered_set ? (reverse_ordered_set ? o)); - apply (ex_intro ? ? a1); - simplify in H1; - change in m with (Type_OF_ordered_set ? o); - apply (is_sup_to_reverse_is_inf ? ? ? ? H1) - | generalize in match H; clear H; - generalize in match m; clear m; - elim d; - simplify; - change in t with (Type_OF_ordered_set ? o); - simplify in t; - apply reverse_is_lower_bound_is_upper_bound; - assumption - ] - | apply is_sup_reverse_is_inf; - | apply m - | - ]*) - ]. -qed. - -definition reverse_bounded_sequence: - ∀C.∀O:dedekind_sigma_complete_ordered_set C. - bounded_sequence ? O → - bounded_sequence ? (reverse_dedekind_sigma_complete_ordered_set ? O). - intros; - apply mk_bounded_sequence; - [ apply bs_seq; - unfold reverse_dedekind_sigma_complete_ordered_set; - simplify; - elim daemon - | elim daemon - | elim daemon - ]. -qed. - -definition limsup ≝ - λC:Type.λO:dedekind_sigma_complete_ordered_set C. - λa:bounded_sequence ? O. - liminf ? (reverse_dedekind_sigma_complete_ordered_set ? O) - (reverse_bounded_sequence ? O a). - -notation "hvbox(〈a〉)" - non associative with precedence 45 -for @{ 'hide_everything_but $a }. - -interpretation "mk_bounded_above_sequence" 'hide_everything_but a -= (cic:/matita/ordered_sets/bounded_above_sequence.ind#xpointer(1/1/1) _ _ a _). - -interpretation "mk_bounded_below_sequence" 'hide_everything_but a -= (cic:/matita/ordered_sets/bounded_below_sequence.ind#xpointer(1/1/1) _ _ a _). - -theorem eq_f_sup_sup_f: - ∀C.∀O':dedekind_sigma_complete_ordered_set C. - ∀f:O'→O'. ∀H:is_order_continuous ? ? f. - ∀a:bounded_above_sequence ? O'. - ∀p:is_increasing ? ? a. - f (sup ? ? a) = sup ? ? (mk_bounded_above_sequence ? ? (λi.f (a i)) ?). - [ apply (mk_is_bounded_above ? ? ? (f (sup ? ? a))); - apply ioc_is_upper_bound_f_sup; - assumption - | intros; - apply ioc_respects_sup; - assumption - ]. -qed. - -theorem eq_f_sup_sup_f': - ∀C.∀O':dedekind_sigma_complete_ordered_set C. - ∀f:O'→O'. ∀H:is_order_continuous ? ? f. - ∀a:bounded_above_sequence ? O'. - ∀p:is_increasing ? ? a. - ∀p':is_bounded_above ? ? (λi.f (a i)). - f (sup ? ? a) = sup ? ? (mk_bounded_above_sequence ? ? (λi.f (a i)) p'). - intros; - rewrite > (eq_f_sup_sup_f ? ? f H a H1); - apply sup_proof_irrelevant; - reflexivity. -qed. - -theorem eq_f_liminf_sup_f_inf: - ∀C.∀O':dedekind_sigma_complete_ordered_set C. - ∀f:O'→O'. ∀H:is_order_continuous ? ? f. - ∀a:bounded_sequence ? O'. - let p1 := ? in - f (liminf ? ? a) = - sup ? ? - (mk_bounded_above_sequence ? ? - (λi.f (inf ? ? - (mk_bounded_below_sequence ? ? - (λj.a (i+j)) - ?))) - p1). - [ apply (mk_is_bounded_below ? ? ? (ib_lower_bound ? ? a a)); - simplify; - intro; - apply (ib_lower_bound_is_lower_bound ? ? a a) - | apply (mk_is_bounded_above ? ? ? (f (sup ? ? a))); - unfold is_upper_bound; - intro; - apply (or_transitive ? ? O' ? (f (a n))); - [ generalize in match (ioc_is_lower_bound_f_inf ? ? ? H); - intro H1; - simplify in H1; - rewrite > (plus_n_O n) in ⊢ (? ? ? ? (? (? ? ? ? %))); - apply (H1 (mk_bounded_below_sequence C O' (\lambda j:nat.a (n+j)) -(mk_is_bounded_below C O' (\lambda j:nat.a (n+j)) (ib_lower_bound C O' a a) - (\lambda j:nat.ib_lower_bound_is_lower_bound C O' a a (n+j)))) O); - | elim daemon (*apply (ioc_is_upper_bound_f_sup ? ? ? H)*) - ] - | intros; - unfold liminf; - clearbody p1; - generalize in match (\lambda n:nat -.inf_respects_le C O' - (mk_bounded_below_sequence C O' (\lambda j:nat.a (plus n j)) - (mk_is_bounded_below C O' (\lambda j:nat.a (plus n j)) - (ib_lower_bound C O' a a) - (\lambda j:nat.ib_lower_bound_is_lower_bound C O' a a (plus n j)))) - (ib_upper_bound C O' a a) - (\lambda n1:nat.ib_upper_bound_is_upper_bound C O' a a (plus n n1))); - intro p2; - apply (eq_f_sup_sup_f' ? ? f H (mk_bounded_above_sequence C O' -(\lambda i:nat - .inf C O' - (mk_bounded_below_sequence C O' (\lambda j:nat.a (plus i j)) - (mk_is_bounded_below C O' (\lambda j:nat.a (plus i j)) - (ib_lower_bound C O' a a) - (\lambda n:nat.ib_lower_bound_is_lower_bound C O' a a (plus i n))))) -(mk_is_bounded_above C O' - (\lambda i:nat - .inf C O' - (mk_bounded_below_sequence C O' (\lambda j:nat.a (plus i j)) - (mk_is_bounded_below C O' (\lambda j:nat.a (plus i j)) - (ib_lower_bound C O' a a) - (\lambda n:nat.ib_lower_bound_is_lower_bound C O' a a (plus i n))))) - (ib_upper_bound C O' a a) p2))); - unfold bas_seq; - change with - (is_increasing ? ? (\lambda i:nat -.inf C O' - (mk_bounded_below_sequence C O' (\lambda j:nat.a (plus i j)) - (mk_is_bounded_below C O' (\lambda j:nat.a (plus i j)) - (ib_lower_bound C O' a a) - (\lambda n:nat.ib_lower_bound_is_lower_bound C O' a a (plus i n)))))); - apply tail_inf_increasing - ]. -qed. - - + ∀O:pordered_set.∀a:bounded_above_sequence O.∀l:O. + is_inf (reverse_pordered_set O) a l → is_sup O a l. +intros (O a l H); apply mk_is_sup; +[1: apply reverse_is_lower_bound_is_upper_bound; + apply (inf_lower_bound (reverse_pordered_set O)); assumption +|2: intros (v H1); apply (inf_greatest_lower_bound (reverse_pordered_set O) a l H v); + apply is_upper_bound_reverse_is_lower_bound; assumption;] +qed. + +(* +record cotransitively_ordered_set: Type := + { cos_ordered_set :> ordered_set; + cos_cotransitive: cotransitive ? (os_le cos_ordered_set) + }. +*) +*) -definition lt ≝ λC.λO:ordered_set C.λa,b:O.a ≤ b ∧ a ≠ b. +definition total_order_property : ∀E:excedence. Type ≝ + λE:excedence. ∀a,b:E. a ≰ b → a < b. -interpretation "Ordered set lt" 'lt a b = - (cic:/matita/ordered_sets/lt.con _ _ a b). \ No newline at end of file +record tordered_set : Type ≝ { + tos_poset:> pordered_set; + tos_totality: total_order_property tos_poset +}.