X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;ds=sidebyside;f=matita%2Fmatita%2Fcontribs%2Flambda_delta%2Fbasic_2%2Fgrammar%2Flenv_px.ma;fp=matita%2Fmatita%2Fcontribs%2Flambda_delta%2Fbasic_2%2Fgrammar%2Flenv_px.ma;h=1b0c88e021c03d71a5c83bc0d0b321f44745d3e8;hb=f79d97a42a84f94d37ad9589fcce46149ee23d12;hp=fd3034456fe3a51fafb6bbd3c08b0c414c90de82;hpb=99c8b28b92ec2c44774f664f9c9ec1a458593e1d;p=helm.git diff --git a/matita/matita/contribs/lambda_delta/basic_2/grammar/lenv_px.ma b/matita/matita/contribs/lambda_delta/basic_2/grammar/lenv_px.ma index fd3034456..1b0c88e02 100644 --- a/matita/matita/contribs/lambda_delta/basic_2/grammar/lenv_px.ma +++ b/matita/matita/contribs/lambda_delta/basic_2/grammar/lenv_px.ma @@ -18,59 +18,53 @@ include "basic_2/grammar/lenv_length.ma". inductive lpx (R:relation term): relation lenv ≝ | lpx_stom: lpx R (⋆) (⋆) -| lpx_pair: ∀K1,K2,I,V1,V2. +| lpx_pair: ∀I,K1,K2,V1,V2. lpx R K1 K2 → R V1 V2 → lpx R (K1. ⓑ{I} V1) (K2. ⓑ{I} V2) . -(* Basic properties *********************************************************) - -lemma lpx_refl: ∀R. reflexive ? R → reflexive … (lpx R). -#R #HR #L elim L -L // /2 width=1/ -qed. - (* Basic inversion lemmas ***************************************************) fact lpx_inv_atom1_aux: ∀R,L1,L2. lpx R L1 L2 → L1 = ⋆ → L2 = ⋆. #R #L1 #L2 * -L1 -L2 [ // -| #K1 #K2 #I #V1 #V2 #_ #_ #H destruct +| #I #K1 #K2 #V1 #V2 #_ #_ #H destruct ] qed-. lemma lpx_inv_atom1: ∀R,L2. lpx R (⋆) L2 → L2 = ⋆. /2 width=4 by lpx_inv_atom1_aux/ qed-. -fact lpx_inv_pair1_aux: ∀R,L1,L2. lpx R L1 L2 → ∀K1,I,V1. L1 = K1. ⓑ{I} V1 → +fact lpx_inv_pair1_aux: ∀R,L1,L2. lpx R L1 L2 → ∀I,K1,V1. L1 = K1. ⓑ{I} V1 → ∃∃K2,V2. lpx R K1 K2 & R V1 V2 & L2 = K2. ⓑ{I} V2. #R #L1 #L2 * -L1 -L2 -[ #K1 #I #V1 #H destruct -| #K1 #K2 #I #V1 #V2 #HK12 #HV12 #L #J #W #H destruct /2 width=5/ +[ #J #K1 #V1 #H destruct +| #I #K1 #K2 #V1 #V2 #HK12 #HV12 #J #L #W #H destruct /2 width=5/ ] qed-. -lemma lpx_inv_pair1: ∀R,K1,I,V1,L2. lpx R (K1. ⓑ{I} V1) L2 → +lemma lpx_inv_pair1: ∀R,I,K1,V1,L2. lpx R (K1. ⓑ{I} V1) L2 → ∃∃K2,V2. lpx R K1 K2 & R V1 V2 & L2 = K2. ⓑ{I} V2. /2 width=3 by lpx_inv_pair1_aux/ qed-. fact lpx_inv_atom2_aux: ∀R,L1,L2. lpx R L1 L2 → L2 = ⋆ → L1 = ⋆. #R #L1 #L2 * -L1 -L2 [ // -| #K1 #K2 #I #V1 #V2 #_ #_ #H destruct +| #I #K1 #K2 #V1 #V2 #_ #_ #H destruct ] qed-. lemma lpx_inv_atom2: ∀R,L1. lpx R L1 (⋆) → L1 = ⋆. /2 width=4 by lpx_inv_atom2_aux/ qed-. -fact lpx_inv_pair2_aux: ∀R,L1,L2. lpx R L1 L2 → ∀K2,I,V2. L2 = K2. ⓑ{I} V2 → +fact lpx_inv_pair2_aux: ∀R,L1,L2. lpx R L1 L2 → ∀I,K2,V2. L2 = K2. ⓑ{I} V2 → ∃∃K1,V1. lpx R K1 K2 & R V1 V2 & L1 = K1. ⓑ{I} V1. #R #L1 #L2 * -L1 -L2 -[ #K2 #I #V2 #H destruct -| #K1 #K2 #I #V1 #V2 #HK12 #HV12 #K #J #W #H destruct /2 width=5/ +[ #J #K2 #V2 #H destruct +| #I #K1 #K2 #V1 #V2 #HK12 #HV12 #J #K #W #H destruct /2 width=5/ ] qed-. -lemma lpx_inv_pair2: ∀R,L1,K2,I,V2. lpx R L1 (K2. ⓑ{I} V2) → +lemma lpx_inv_pair2: ∀R,I,L1,K2,V2. lpx R L1 (K2. ⓑ{I} V2) → ∃∃K1,V1. lpx R K1 K2 & R V1 V2 & L1 = K1. ⓑ{I} V1. /2 width=3 by lpx_inv_pair2_aux/ qed-. @@ -79,3 +73,59 @@ lemma lpx_inv_pair2: ∀R,L1,K2,I,V2. lpx R L1 (K2. ⓑ{I} V2) → lemma lpx_fwd_length: ∀R,L1,L2. lpx R L1 L2 → |L1| = |L2|. #R #L1 #L2 #H elim H -L1 -L2 normalize // qed-. + +(* Basic properties *********************************************************) + +lemma lpx_refl: ∀R. reflexive ? R → reflexive … (lpx R). +#R #HR #L elim L -L // /2 width=1/ +qed. + +lemma lpx_trans: ∀R. Transitive ? R → Transitive … (lpx R). +#R #HR #L1 #L #H elim H -L // +#I #K1 #K #V1 #V #_ #HV1 #IHK1 #X #H +elim (lpx_inv_pair1 … H) -H #K2 #V2 #HK2 #HV2 #H destruct /3 width=3/ +qed. + +lemma lpx_conf: ∀R. Confluent ? R → Confluent … (lpx R). +#R #HR #L0 #L1 #H elim H -L1 +[ #X #H >(lpx_inv_atom1 … H) -X /2 width=3/ +| #I #K0 #K1 #V0 #V1 #_ #HV01 #IHK01 #X #H + elim (lpx_inv_pair1 … H) -H #K2 #V2 #HK02 #HV02 #H destruct + elim (IHK01 … HK02) -K0 #K #HK1 #HK2 + elim (HR … HV01 … HV02) -HR -V0 /3 width=5/ +] +qed. + +lemma lpx_TC_inj: ∀R,L1,L2. lpx R L1 L2 → lpx (TC … R) L1 L2. +#R #L1 #L2 #H elim H -L1 -L2 // /3 width=1/ +qed. + +lemma lpx_TC_step: ∀R,L1,L. lpx (TC … R) L1 L → + ∀L2. lpx R L L2 → lpx (TC … R) L1 L2. +#R #L1 #L #H elim H -L /2 width=1/ +#I #K1 #K #V1 #V #_ #HV1 #IHK1 #X #H +elim (lpx_inv_pair1 … H) -H #K2 #V2 #HK2 #HV2 #H destruct /3 width=3/ +qed. + +lemma TC_lpx_pair_dx: ∀R. reflexive ? R → + ∀I,K,V1,V2. TC … R V1 V2 → + TC … (lpx R) (K.ⓑ{I}V1) (K.ⓑ{I}V2). +#R #HR #I #K #V1 #V2 #H elim H -V2 +/4 width=5 by lpx_refl, lpx_pair, inj, step/ (**) (* too slow without trace *) +qed. + +lemma TC_lpx_pair_sn: ∀R. reflexive ? R → + ∀I,V,K1,K2. TC … (lpx R) K1 K2 → + TC … (lpx R) (K1.ⓑ{I}V) (K2.ⓑ{I}V). +#R #HR #I #V #K1 #K2 #H elim H -K2 +/4 width=5 by lpx_refl, lpx_pair, inj, step/ (**) (* too slow without trace *) +qed. + +lemma lpx_TC: ∀R,L1,L2. TC … (lpx R) L1 L2 → lpx (TC … R) L1 L2. +#R #L1 #L2 #H elim H -L2 /2 width=1/ /2 width=3/ +qed. + +lemma lpx_inv_TC: ∀R. reflexive ? R → + ∀L1,L2. lpx (TC … R) L1 L2 → TC … (lpx R) L1 L2. +#R #HR #L1 #L2 #H elim H -L1 -L2 /2 width=1/ /3 width=3/ +qed.