X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;ds=sidebyside;f=matita%2Fmatita%2Fcontribs%2Flambdadelta%2Fbasic_2%2Fetc%2Fcpys%2Fcpys.etc;h=7da756f978ea3f7827363cc7bc865e2b8d08dfc7;hb=c7b50fec51b9a25d5bc536f44e54179fd53efb44;hp=a0603f13e3c76e3f3ae4496d6c9ce4e5bb6e1abd;hpb=e76eade57c0454a58b0d58e5484efe9af417847e;p=helm.git diff --git a/matita/matita/contribs/lambdadelta/basic_2/etc/cpys/cpys.etc b/matita/matita/contribs/lambdadelta/basic_2/etc/cpys/cpys.etc index a0603f13e..7da756f97 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/etc/cpys/cpys.etc +++ b/matita/matita/contribs/lambdadelta/basic_2/etc/cpys/cpys.etc @@ -12,189 +12,155 @@ (* *) (**************************************************************************) -include "basic_2/notation/relations/extpsubststar_4.ma". -include "basic_2/grammar/genv.ma". -include "basic_2/grammar/cl_shift.ma". -include "basic_2/relocation/ldrop_append.ma". -include "basic_2/relocation/lsuby.ma". +include "basic_2/notation/relations/psubststar_6.ma". +include "basic_2/substitution/cpy.ma". (* CONTEXT-SENSITIVE EXTENDED MULTIPLE SUBSTITUTION FOR TERMS ***************) -(* avtivate genv *) -inductive cpys: relation4 genv lenv term term ≝ -| cpys_atom : ∀I,G,L. cpys G L (⓪{I}) (⓪{I}) -| cpys_delta: ∀I,G,L,K,V,V2,W2,i. - ⇩[0, i] L ≡ K.ⓑ{I}V → cpys G K V V2 → - ⇧[0, i + 1] V2 ≡ W2 → cpys G L (#i) W2 -| cpys_bind : ∀a,I,G,L,V1,V2,T1,T2. - cpys G L V1 V2 → cpys G (L.ⓑ{I}V1) T1 T2 → - cpys G L (ⓑ{a,I}V1.T1) (ⓑ{a,I}V2.T2) -| cpys_flat : ∀I,G,L,V1,V2,T1,T2. - cpys G L V1 V2 → cpys G L T1 T2 → - cpys G L (ⓕ{I}V1.T1) (ⓕ{I}V2.T2) -. - -interpretation - "context-sensitive extended multiple substitution (term)" - 'ExtPSubstStar G L T1 T2 = (cpys G L T1 T2). +definition cpys: ynat → ynat → relation4 genv lenv term term ≝ + λl,m,G. LTC … (cpy l m G). -(* Basic properties *********************************************************) +interpretation "context-sensitive extended multiple substritution (term)" + 'PSubstStar G L T1 l m T2 = (cpys l m G L T1 T2). -lemma lsuby_cpys_trans: ∀G. lsub_trans … (cpys G) lsuby. -#G #L1 #T1 #T2 #H elim H -G -L1 -T1 -T2 -[ // -| #I #G #L1 #K1 #V1 #V2 #W2 #i #HLK1 #_ #HVW2 #IHV12 #L2 #HL12 - elim (lsuby_fwd_ldrop2_pair … HL12 … HLK1) -HL12 -HLK1 * - /3 width=7 by cpys_delta/ -| /4 width=1 by lsuby_pair, cpys_bind/ -| /3 width=1 by cpys_flat/ -] +(* Basic eliminators ********************************************************) + +lemma cpys_ind: ∀G,L,T1,l,m. ∀R:predicate term. R T1 → + (∀T,T2. ⦃G, L⦄ ⊢ T1 ▶*[l, m] T → ⦃G, L⦄ ⊢ T ▶[l, m] T2 → R T → R T2) → + ∀T2. ⦃G, L⦄ ⊢ T1 ▶*[l, m] T2 → R T2. +#G #L #T1 #l #m #R #HT1 #IHT1 #T2 #HT12 +@(TC_star_ind … HT1 IHT1 … HT12) // qed-. -(* Note: this is "∀L. reflexive … (cpys L)" *) -lemma cpys_refl: ∀G,T,L. ⦃G, L⦄ ⊢ T ▶*× T. -#G #T elim T -T // * /2 width=1 by cpys_bind, cpys_flat/ -qed. +lemma cpys_ind_dx: ∀G,L,T2,l,m. ∀R:predicate term. R T2 → + (∀T1,T. ⦃G, L⦄ ⊢ T1 ▶[l, m] T → ⦃G, L⦄ ⊢ T ▶*[l, m] T2 → R T → R T1) → + ∀T1. ⦃G, L⦄ ⊢ T1 ▶*[l, m] T2 → R T1. +#G #L #T2 #l #m #R #HT2 #IHT2 #T1 #HT12 +@(TC_star_ind_dx … HT2 IHT2 … HT12) // +qed-. -lemma cpys_pair_sn: ∀I,G,L,V1,V2. ⦃G, L⦄ ⊢ V1 ▶*× V2 → - ∀T. ⦃G, L⦄ ⊢ ②{I}V1.T ▶*× ②{I}V2.T. -* /2 width=1 by cpys_bind, cpys_flat/ -qed. +(* Basic properties *********************************************************) -lemma cpys_bind_ext: ∀G,L,V1,V2. ⦃G, L⦄ ⊢ V1 ▶*× V2 → - ∀J,T1,T2. ⦃G, L.ⓑ{J}V1⦄ ⊢ T1 ▶*× T2 → - ∀a,I. ⦃G, L⦄ ⊢ ⓑ{a,I}V1.T1 ▶*× ⓑ{a,I}V2.T2. -/4 width=4 by lsuby_cpys_trans, cpys_bind, lsuby_pair/ qed. - -lemma cpys_delift: ∀I,G,K,V,T1,L,d. ⇩[0, d] L ≡ (K.ⓑ{I}V) → - ∃∃T2,T. ⦃G, L⦄ ⊢ T1 ▶*× T2 & ⇧[d, 1] T ≡ T2. -#I #G #K #V #T1 elim T1 -T1 -[ * /2 width=4 by cpys_atom, lift_sort, lift_gref, ex2_2_intro/ - #i #L #d elim (lt_or_eq_or_gt i d) #Hid [1,3: /3 width=4 by cpys_atom, lift_lref_ge_minus, lift_lref_lt, ex2_2_intro/ ] - destruct - elim (lift_total V 0 (i+1)) #W #HVW - elim (lift_split … HVW i i) /3 width=7 by cpys_delta, ex2_2_intro/ -| * [ #a ] #I #W1 #U1 #IHW1 #IHU1 #L #d #HLK - elim (IHW1 … HLK) -IHW1 #W2 #W #HW12 #HW2 - [ elim (IHU1 (L. ⓑ{I}W1) (d+1)) -IHU1 /3 width=9 by cpys_bind, ldrop_ldrop, lift_bind, ex2_2_intro/ - | elim (IHU1 … HLK) -IHU1 -HLK /3 width=8 by cpys_flat, lift_flat, ex2_2_intro/ - ] -] +lemma cpy_cpys: ∀G,L,T1,T2,l,m. ⦃G, L⦄ ⊢ T1 ▶[l, m] T2 → ⦃G, L⦄ ⊢ T1 ▶*[l, m] T2. +/2 width=1 by inj/ qed. + +lemma cpys_strap1: ∀G,L,T1,T,T2,l,m. + ⦃G, L⦄ ⊢ T1 ▶*[l, m] T → ⦃G, L⦄ ⊢ T ▶[l, m] T2 → ⦃G, L⦄ ⊢ T1 ▶*[l, m] T2. +normalize /2 width=3 by step/ qed-. + +lemma cpys_strap2: ∀G,L,T1,T,T2,l,m. + ⦃G, L⦄ ⊢ T1 ▶[l, m] T → ⦃G, L⦄ ⊢ T ▶*[l, m] T2 → ⦃G, L⦄ ⊢ T1 ▶*[l, m] T2. +normalize /2 width=3 by TC_strap/ qed-. + +lemma lsuby_cpys_trans: ∀G,l,m. lsub_trans … (cpys l m G) (lsuby l m). +/3 width=5 by lsuby_cpy_trans, LTC_lsub_trans/ qed-. -lemma cpys_append: ∀G. l_appendable_sn … (cpys G). -#G #K #T1 #T2 #H elim H -G -K -T1 -T2 -/2 width=3 by cpys_bind, cpys_flat/ -#I #G #K #K0 #V1 #V2 #W2 #i #HK0 #_ #HVW2 #IHV12 #L -lapply (ldrop_fwd_length_lt2 … HK0) #H -@(cpys_delta … I … (L@@K0) V1 … HVW2) // -@(ldrop_O1_append_sn_le … HK0) /2 width=2 by lt_to_le/ (**) (* /3/ does not work *) +lemma cpys_refl: ∀G,L,l,m. reflexive … (cpys l m G L). +/2 width=1 by cpy_cpys/ qed. + +lemma cpys_bind: ∀G,L,V1,V2,l,m. ⦃G, L⦄ ⊢ V1 ▶*[l, m] V2 → + ∀I,T1,T2. ⦃G, L.ⓑ{I}V1⦄ ⊢ T1 ▶*[⫯l, m] T2 → + ∀a. ⦃G, L⦄ ⊢ ⓑ{a,I}V1.T1 ▶*[l, m] ⓑ{a,I}V2.T2. +#G #L #V1 #V2 #l #m #HV12 @(cpys_ind … HV12) -V2 +[ #I #T1 #T2 #HT12 @(cpys_ind … HT12) -T2 /3 width=5 by cpys_strap1, cpy_bind/ +| /3 width=5 by cpys_strap1, cpy_bind/ +] qed. -(* Basic inversion lemmas ***************************************************) +lemma cpys_flat: ∀G,L,V1,V2,l,m. ⦃G, L⦄ ⊢ V1 ▶*[l, m] V2 → + ∀T1,T2. ⦃G, L⦄ ⊢ T1 ▶*[l, m] T2 → + ∀I. ⦃G, L⦄ ⊢ ⓕ{I}V1.T1 ▶*[l, m] ⓕ{I}V2.T2. +#G #L #V1 #V2 #l #m #HV12 @(cpys_ind … HV12) -V2 +[ #T1 #T2 #HT12 @(cpys_ind … HT12) -T2 /3 width=5 by cpys_strap1, cpy_flat/ +| /3 width=5 by cpys_strap1, cpy_flat/ +qed. -fact cpys_inv_atom1_aux: ∀G,L,T1,T2. ⦃G, L⦄ ⊢ T1 ▶*× T2 → ∀J. T1 = ⓪{J} → - T2 = ⓪{J} ∨ - ∃∃I,K,V,V2,i. ⇩[O, i] L ≡ K.ⓑ{I}V & ⦃G, K⦄ ⊢ V ▶*× V2 & - ⇧[O, i + 1] V2 ≡ T2 & J = LRef i. -#G #L #T1 #T2 * -L -T1 -T2 -[ #I #G #L #J #H destruct /2 width=1 by or_introl/ -| #I #G #L #K #V #V2 #T2 #i #HLK #HV2 #HVT2 #J #H destruct /3 width=9 by ex4_5_intro, or_intror/ -| #a #I #G #L #V1 #V2 #T1 #T2 #_ #_ #J #H destruct -| #I #G #L #V1 #V2 #T1 #T2 #_ #_ #J #H destruct -] +lemma cpys_weak: ∀G,L,T1,T2,l1,m1. ⦃G, L⦄ ⊢ T1 ▶*[l1, m1] T2 → + ∀l2,m2. l2 ≤ l1 → l1 + m1 ≤ l2 + m2 → + ⦃G, L⦄ ⊢ T1 ▶*[l2, m2] T2. +#G #L #T1 #T2 #l1 #m1 #H #l1 #l2 #Hl21 #Hlm12 @(cpys_ind … H) -T2 +/3 width=7 by cpys_strap1, cpy_weak/ qed-. -lemma cpys_inv_atom1: ∀J,G,L,T2. ⦃G, L⦄ ⊢ ⓪{J} ▶*× T2 → - T2 = ⓪{J} ∨ - ∃∃I,K,V,V2,i. ⇩[O, i] L ≡ K.ⓑ{I}V & ⦃G, K⦄ ⊢ V ▶*× V2 & - ⇧[O, i + 1] V2 ≡ T2 & J = LRef i. -/2 width=3 by cpys_inv_atom1_aux/ qed-. - -lemma cpys_inv_sort1: ∀G,L,T2,k. ⦃G, L⦄ ⊢ ⋆k ▶*× T2 → T2 = ⋆k. -#G #L #T2 #k #H elim (cpys_inv_atom1 … H) -H // * -#I #K #V #V2 #i #_ #_ #_ #H destruct +lemma cpys_weak_top: ∀G,L,T1,T2,l,m. + ⦃G, L⦄ ⊢ T1 ▶*[l, m] T2 → ⦃G, L⦄ ⊢ T1 ▶*[l, |L| - l] T2. +#G #L #T1 #T2 #l #m #H @(cpys_ind … H) -T2 +/3 width=4 by cpys_strap1, cpy_weak_top/ qed-. -lemma cpys_inv_lref1: ∀G,L,T2,i. ⦃G, L⦄ ⊢ #i ▶*× T2 → - T2 = #i ∨ - ∃∃I,K,V,V2. ⇩[O, i] L ≡ K. ⓑ{I}V & ⦃G, K⦄ ⊢ V ▶*× V2 & - ⇧[O, i + 1] V2 ≡ T2. -#G #L #T2 #i #H elim (cpys_inv_atom1 … H) -H /2 width=1 by or_introl/ * -#I #K #V #V2 #j #HLK #HV2 #HVT2 #H destruct /3 width=7 by ex3_4_intro, or_intror/ +lemma cpys_weak_full: ∀G,L,T1,T2,l,m. + ⦃G, L⦄ ⊢ T1 ▶*[l, m] T2 → ⦃G, L⦄ ⊢ T1 ▶*[0, |L|] T2. +#G #L #T1 #T2 #l #m #H @(cpys_ind … H) -T2 +/3 width=5 by cpys_strap1, cpy_weak_full/ qed-. -lemma cpys_inv_lref1_ge: ∀G,L,T2,i. ⦃G, L⦄ ⊢ #i ▶*× T2 → |L| ≤ i → T2 = #i. -#G #L #T2 #i #H elim (cpys_inv_lref1 … H) -H // * -#I #K #V1 #V2 #HLK #_ #_ #HL -V2 lapply (ldrop_fwd_length_lt2 … HLK) -K -I -V1 -#H elim (lt_refl_false i) /2 width=3 by lt_to_le_to_lt/ +(* Basic forward lemmas *****************************************************) + +lemma cpys_fwd_up: ∀G,L,U1,U2,lt,mt. ⦃G, L⦄ ⊢ U1 ▶*[lt, mt] U2 → + ∀T1,l,m. ⬆[l, m] T1 ≡ U1 → + l ≤ lt → l + m ≤ lt + mt → + ∃∃T2. ⦃G, L⦄ ⊢ U1 ▶*[l+m, lt+mt-(l+m)] U2 & ⬆[l, m] T2 ≡ U2. +#G #L #U1 #U2 #lt #mt #H #T1 #l #m #HTU1 #Hllt #Hlmlmt @(cpys_ind … H) -U2 +[ /2 width=3 by ex2_intro/ +| -HTU1 #U #U2 #_ #HU2 * #T #HU1 #HTU + elim (cpy_fwd_up … HU2 … HTU) -HU2 -HTU /3 width=3 by cpys_strap1, ex2_intro/ +] qed-. -lemma cpys_inv_gref1: ∀G,L,T2,p. ⦃G, L⦄ ⊢ §p ▶*× T2 → T2 = §p. -#G #L #T2 #p #H elim (cpys_inv_atom1 … H) -H // * -#I #K #V #V2 #i #_ #_ #_ #H destruct +lemma cpys_fwd_tw: ∀G,L,T1,T2,l,m. ⦃G, L⦄ ⊢ T1 ▶*[l, m] T2 → ♯{T1} ≤ ♯{T2}. +#G #L #T1 #T2 #l #m #H @(cpys_ind … H) -T2 // +#T #T2 #_ #HT2 #IHT1 lapply (cpy_fwd_tw … HT2) -HT2 +/2 width=3 by transitive_le/ qed-. -fact cpys_inv_bind1_aux: ∀G,L,U1,U2. ⦃G, L⦄ ⊢ U1 ▶*× U2 → - ∀a,J,V1,T1. U1 = ⓑ{a,J}V1.T1 → - ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ▶*× V2 & ⦃G, L.ⓑ{J}V1⦄ ⊢ T1 ▶*× T2 & - U2 = ⓑ{a,J}V2.T2. -#G #L #U1 #U2 * -L -U1 -U2 -[ #I #G #L #b #J #W #U1 #H destruct -| #I #G #L #K #V #V2 #W2 #i #_ #_ #_ #b #J #W #U1 #H destruct -| #a #I #G #L #V1 #V2 #T1 #T2 #HV12 #HT12 #b #J #W #U1 #H destruct /2 width=5 by ex3_2_intro/ -| #I #G #L #V1 #V2 #T1 #T2 #_ #_ #b #J #W #U1 #H destruct -] +(* Basic inversion lemmas ***************************************************) + +(* Note: this can be derived from cpys_inv_atom1 *) +lemma cpys_inv_sort1: ∀G,L,T2,k,l,m. ⦃G, L⦄ ⊢ ⋆k ▶*[l, m] T2 → T2 = ⋆k. +#G #L #T2 #k #l #m #H @(cpys_ind … H) -T2 // +#T #T2 #_ #HT2 #IHT1 destruct +>(cpy_inv_sort1 … HT2) -HT2 // qed-. -lemma cpys_inv_bind1: ∀a,I,G,L,V1,T1,U2. ⦃G, L⦄ ⊢ ⓑ{a,I}V1.T1 ▶*× U2 → - ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ▶*× V2 & ⦃G, L.ⓑ{I}V1⦄ ⊢ T1 ▶*× T2 & - U2 = ⓑ{a,I}V2.T2. -/2 width=3 by cpys_inv_bind1_aux/ qed-. - -lemma cpys_inv_bind1_ext: ∀a,I,G,L,V1,T1,U2. ⦃G, L⦄ ⊢ ⓑ{a,I}V1.T1 ▶*× U2 → ∀J. - ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ▶*× V2 & ⦃G, L.ⓑ{J}V1⦄ ⊢ T1 ▶*× T2 & - U2 = ⓑ{a,I}V2.T2. -#a #I #G #L #V1 #T1 #U2 #H #J elim (cpys_inv_bind1 … H) -H -#V2 #T2 #HV12 #HT12 #H destruct -/4 width=5 by lsuby_cpys_trans, lsuby_pair, ex3_2_intro/ +(* Note: this can be derived from cpys_inv_atom1 *) +lemma cpys_inv_gref1: ∀G,L,T2,p,l,m. ⦃G, L⦄ ⊢ §p ▶*[l, m] T2 → T2 = §p. +#G #L #T2 #p #l #m #H @(cpys_ind … H) -T2 // +#T #T2 #_ #HT2 #IHT1 destruct +>(cpy_inv_gref1 … HT2) -HT2 // qed-. -fact cpys_inv_flat1_aux: ∀G,L,U,U2. ⦃G, L⦄ ⊢ U ▶*× U2 → - ∀J,V1,U1. U = ⓕ{J}V1.U1 → - ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ▶*× V2 & ⦃G, L⦄ ⊢ U1 ▶*× T2 & - U2 = ⓕ{J}V2.T2. -#G #L #U #U2 * -L -U -U2 -[ #I #G #L #J #W #U1 #H destruct -| #I #G #L #K #V #V2 #W2 #i #_ #_ #_ #J #W #U1 #H destruct -| #a #I #G #L #V1 #V2 #T1 #T2 #_ #_ #J #W #U1 #H destruct -| #I #G #L #V1 #V2 #T1 #T2 #HV12 #HT12 #J #W #U1 #H destruct /2 width=5 by ex3_2_intro/ +lemma cpys_inv_bind1: ∀a,I,G,L,V1,T1,U2,l,m. ⦃G, L⦄ ⊢ ⓑ{a,I}V1.T1 ▶*[l, m] U2 → + ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ▶*[l, m] V2 & + ⦃G, L.ⓑ{I}V1⦄ ⊢ T1 ▶*[⫯l, m] T2 & + U2 = ⓑ{a,I}V2.T2. +#a #I #G #L #V1 #T1 #U2 #l #m #H @(cpys_ind … H) -U2 +[ /2 width=5 by ex3_2_intro/ +| #U #U2 #_ #HU2 * #V #T #HV1 #HT1 #H destruct + elim (cpy_inv_bind1 … HU2) -HU2 #V2 #T2 #HV2 #HT2 #H + lapply (lsuby_cpy_trans … HT2 (L.ⓑ{I}V1) ?) -HT2 + /3 width=5 by cpys_strap1, lsuby_succ, ex3_2_intro/ ] qed-. -lemma cpys_inv_flat1: ∀I,G,L,V1,U1,U2. ⦃G, L⦄ ⊢ ⓕ{I}V1.U1 ▶*× U2 → - ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ▶*× V2 & ⦃G, L⦄ ⊢ U1 ▶*× T2 & +lemma cpys_inv_flat1: ∀I,G,L,V1,T1,U2,l,m. ⦃G, L⦄ ⊢ ⓕ{I}V1.T1 ▶*[l, m] U2 → + ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ▶*[l, m] V2 & ⦃G, L⦄ ⊢ T1 ▶*[l, m] T2 & U2 = ⓕ{I}V2.T2. -/2 width=3 by cpys_inv_flat1_aux/ qed-. - -(* Basic forward lemmas *****************************************************) +#I #G #L #V1 #T1 #U2 #l #m #H @(cpys_ind … H) -U2 +[ /2 width=5 by ex3_2_intro/ +| #U #U2 #_ #HU2 * #V #T #HV1 #HT1 #H destruct + elim (cpy_inv_flat1 … HU2) -HU2 + /3 width=5 by cpys_strap1, ex3_2_intro/ +] +qed-. -lemma cpys_fwd_bind1: ∀a,I,G,L,V1,T1,T. ⦃G, L⦄ ⊢ ⓑ{a,I}V1.T1 ▶*× T → ∀b,J. - ∃∃V2,T2. ⦃G, L⦄ ⊢ ⓑ{b,J}V1.T1 ▶*× ⓑ{b,J}V2.T2 & - T = ⓑ{a,I}V2.T2. -#a #I #G #L #V1 #T1 #T #H #b #J elim (cpys_inv_bind1_ext … H J) -H -#V2 #T2 #HV12 #HT12 #H destruct /3 width=4 by cpys_bind, ex2_2_intro/ +lemma cpys_inv_refl_O2: ∀G,L,T1,T2,l. ⦃G, L⦄ ⊢ T1 ▶*[l, 0] T2 → T1 = T2. +#G #L #T1 #T2 #l #H @(cpys_ind … H) -T2 // +#T #T2 #_ #HT2 #IHT1 <(cpy_inv_refl_O2 … HT2) -HT2 // qed-. -lemma cpys_fwd_shift1: ∀G,L1,L,T1,T. ⦃G, L⦄ ⊢ L1 @@ T1 ▶*× T → - ∃∃L2,T2. |L1| = |L2| & T = L2 @@ T2. -#G #L1 @(lenv_ind_dx … L1) -L1 normalize -[ #L #T1 #T #HT1 @(ex2_2_intro … (⋆)) // (**) (* explicit constructor *) -| #I #L1 #V1 #IH #L #T1 #X >shift_append_assoc normalize - #H elim (cpys_inv_bind1 … H) -H - #V0 #T0 #_ #HT10 #H destruct - elim (IH … HT10) -IH -HT10 #L2 #T2 #HL12 #H destruct - >append_length >HL12 -HL12 - @(ex2_2_intro … (⋆.ⓑ{I}V0@@L2) T2) [ >append_length ] /2 width=3 by trans_eq/ (**) (* explicit constructor *) -] +lemma cpys_inv_lift1_eq: ∀G,L,U1,U2,l,m. + ⦃G, L⦄ ⊢ U1 ▶*[l, yinj m] U2 → ∀T1. ⬆[l, m] T1 ≡ U1 → U1 = U2. +#G #L #U1 #U2 #l #m #H #T1 #HTU1 @(cpys_ind … H) -U2 +/2 width=7 by cpy_inv_lift1_eq/ qed-.