X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;ds=sidebyside;f=matita%2Fmatita%2Fcontribs%2Flambdadelta%2Fbasic_2%2Frelocation%2Fldrop.ma;h=94c6b0f733c2a3037932f8fdfd2c3acc6de847a7;hb=82fe07c3accb68ca4f7a1870a046128fe980dced;hp=6d91d0aa0af38f4d4bf16ba424fc05bb613edb90;hpb=f16bbb93ecb40fa40f736e0b1158e1c7676a640a;p=helm.git diff --git a/matita/matita/contribs/lambdadelta/basic_2/relocation/ldrop.ma b/matita/matita/contribs/lambdadelta/basic_2/relocation/ldrop.ma index 6d91d0aa0..94c6b0f73 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/relocation/ldrop.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/relocation/ldrop.ma @@ -12,15 +12,17 @@ (* *) (**************************************************************************) -include "basic_2/grammar/cl_weight.ma". +include "ground_2/lstar.ma". +include "basic_2/notation/relations/rdrop_4.ma". +include "basic_2/grammar/lenv_length.ma". +include "basic_2/grammar/lenv_weight.ma". include "basic_2/relocation/lift.ma". -include "basic_2/relocation/lsubr.ma". (* LOCAL ENVIRONMENT SLICING ************************************************) (* Basic_1: includes: drop_skip_bind *) -inductive ldrop: nat → nat → relation lenv ≝ -| ldrop_atom : ∀d,e. ldrop d e (⋆) (⋆) +inductive ldrop: relation4 nat nat lenv lenv ≝ +| ldrop_atom : ∀d. ldrop d 0 (⋆) (⋆) | ldrop_pair : ∀L,I,V. ldrop 0 0 (L. ⓑ{I} V) (L. ⓑ{I} V) | ldrop_ldrop: ∀L1,L2,I,V,e. ldrop 0 e L1 L2 → ldrop 0 (e + 1) (L1. ⓑ{I} V) L2 | ldrop_skip : ∀L1,L2,I,V1,V2,d,e. @@ -30,76 +32,63 @@ inductive ldrop: nat → nat → relation lenv ≝ interpretation "local slicing" 'RDrop d e L1 L2 = (ldrop d e L1 L2). -definition l_liftable: (lenv → relation term) → Prop ≝ +definition l_liftable: predicate (lenv → relation term) ≝ λR. ∀K,T1,T2. R K T1 T2 → ∀L,d,e. ⇩[d, e] L ≡ K → ∀U1. ⇧[d, e] T1 ≡ U1 → ∀U2. ⇧[d, e] T2 ≡ U2 → R L U1 U2. -definition l_deliftable_sn: (lenv → relation term) → Prop ≝ +definition l_deliftable_sn: predicate (lenv → relation term) ≝ λR. ∀L,U1,U2. R L U1 U2 → ∀K,d,e. ⇩[d, e] L ≡ K → ∀T1. ⇧[d, e] T1 ≡ U1 → ∃∃T2. ⇧[d, e] T2 ≡ U2 & R K T1 T2. -definition dropable_sn: relation lenv → Prop ≝ +definition dropable_sn: predicate (relation lenv) ≝ λR. ∀L1,K1,d,e. ⇩[d, e] L1 ≡ K1 → ∀L2. R L1 L2 → ∃∃K2. R K1 K2 & ⇩[d, e] L2 ≡ K2. -definition dedropable_sn: relation lenv → Prop ≝ +definition dedropable_sn: predicate (relation lenv) ≝ λR. ∀L1,K1,d,e. ⇩[d, e] L1 ≡ K1 → ∀K2. R K1 K2 → ∃∃L2. R L1 L2 & ⇩[d, e] L2 ≡ K2. -definition dropable_dx: relation lenv → Prop ≝ +definition dropable_dx: predicate (relation lenv) ≝ λR. ∀L1,L2. R L1 L2 → ∀K2,e. ⇩[0, e] L2 ≡ K2 → ∃∃K1. ⇩[0, e] L1 ≡ K1 & R K1 K2. (* Basic inversion lemmas ***************************************************) -fact ldrop_inv_refl_aux: ∀d,e,L1,L2. ⇩[d, e] L1 ≡ L2 → d = 0 → e = 0 → L1 = L2. -#d #e #L1 #L2 * -d -e -L1 -L2 -[ // -| // -| #L1 #L2 #I #V #e #_ #_ >commutative_plus normalize #H destruct -| #L1 #L2 #I #V1 #V2 #d #e #_ #_ >commutative_plus normalize #H destruct -] -qed. - -(* Basic_1: was: drop_gen_refl *) -lemma ldrop_inv_refl: ∀L1,L2. ⇩[0, 0] L1 ≡ L2 → L1 = L2. -/2 width=5/ qed-. - fact ldrop_inv_atom1_aux: ∀d,e,L1,L2. ⇩[d, e] L1 ≡ L2 → L1 = ⋆ → - L2 = ⋆. + L2 = ⋆ ∧ e = 0. #d #e #L1 #L2 * -d -e -L1 -L2 -[ // +[ /2 width=1/ | #L #I #V #H destruct | #L1 #L2 #I #V #e #_ #H destruct | #L1 #L2 #I #V1 #V2 #d #e #_ #_ #H destruct ] -qed. +qed-. (* Basic_1: was: drop_gen_sort *) -lemma ldrop_inv_atom1: ∀d,e,L2. ⇩[d, e] ⋆ ≡ L2 → L2 = ⋆. -/2 width=5/ qed-. +lemma ldrop_inv_atom1: ∀d,e,L2. ⇩[d, e] ⋆ ≡ L2 → L2 = ⋆ ∧ e = 0. +/2 width=4 by ldrop_inv_atom1_aux/ qed-. -fact ldrop_inv_O1_aux: ∀d,e,L1,L2. ⇩[d, e] L1 ≡ L2 → d = 0 → - ∀K,I,V. L1 = K. ⓑ{I} V → - (e = 0 ∧ L2 = K. ⓑ{I} V) ∨ - (0 < e ∧ ⇩[d, e - 1] K ≡ L2). +fact ldrop_inv_O1_pair1_aux: ∀d,e,L1,L2. ⇩[d, e] L1 ≡ L2 → d = 0 → + ∀K,I,V. L1 = K. ⓑ{I} V → + (e = 0 ∧ L2 = K. ⓑ{I} V) ∨ + (0 < e ∧ ⇩[d, e - 1] K ≡ L2). #d #e #L1 #L2 * -d -e -L1 -L2 -[ #d #e #_ #K #I #V #H destruct +[ #d #_ #K #I #V #H destruct | #L #I #V #_ #K #J #W #HX destruct /3 width=1/ | #L1 #L2 #I #V #e #HL12 #_ #K #J #W #H destruct /3 width=1/ | #L1 #L2 #I #V1 #V2 #d #e #_ #_ >commutative_plus normalize #H destruct ] -qed. +qed-. -lemma ldrop_inv_O1: ∀e,K,I,V,L2. ⇩[0, e] K. ⓑ{I} V ≡ L2 → - (e = 0 ∧ L2 = K. ⓑ{I} V) ∨ - (0 < e ∧ ⇩[0, e - 1] K ≡ L2). -/2 width=3/ qed-. +lemma ldrop_inv_O1_pair1: ∀e,K,I,V,L2. ⇩[0, e] K. ⓑ{I} V ≡ L2 → + (e = 0 ∧ L2 = K. ⓑ{I} V) ∨ + (0 < e ∧ ⇩[0, e - 1] K ≡ L2). +/2 width=3 by ldrop_inv_O1_pair1_aux/ qed-. lemma ldrop_inv_pair1: ∀K,I,V,L2. ⇩[0, 0] K. ⓑ{I} V ≡ L2 → L2 = K. ⓑ{I} V. #K #I #V #L2 #H -elim (ldrop_inv_O1 … H) -H * // #H destruct +elim (ldrop_inv_O1_pair1 … H) -H * // #H destruct elim (lt_refl_false … H) qed-. @@ -107,7 +96,7 @@ qed-. lemma ldrop_inv_ldrop1: ∀e,K,I,V,L2. ⇩[0, e] K. ⓑ{I} V ≡ L2 → 0 < e → ⇩[0, e - 1] K ≡ L2. #e #K #I #V #L2 #H #He -elim (ldrop_inv_O1 … H) -H * // #H destruct +elim (ldrop_inv_O1_pair1 … H) -H * // #H destruct elim (lt_refl_false … He) qed-. @@ -117,27 +106,27 @@ fact ldrop_inv_skip1_aux: ∀d,e,L1,L2. ⇩[d, e] L1 ≡ L2 → 0 < d → ⇧[d - 1, e] V2 ≡ V1 & L2 = K2. ⓑ{I} V2. #d #e #L1 #L2 * -d -e -L1 -L2 -[ #d #e #_ #I #K #V #H destruct +[ #d #_ #I #K #V #H destruct | #L #I #V #H elim (lt_refl_false … H) | #L1 #L2 #I #V #e #_ #H elim (lt_refl_false … H) | #X #L2 #Y #Z #V2 #d #e #HL12 #HV12 #_ #I #L1 #V1 #H destruct /2 width=5/ ] -qed. +qed-. (* Basic_1: was: drop_gen_skip_l *) lemma ldrop_inv_skip1: ∀d,e,I,K1,V1,L2. ⇩[d, e] K1. ⓑ{I} V1 ≡ L2 → 0 < d → ∃∃K2,V2. ⇩[d - 1, e] K1 ≡ K2 & ⇧[d - 1, e] V2 ≡ V1 & L2 = K2. ⓑ{I} V2. -/2 width=3/ qed-. +/2 width=3 by ldrop_inv_skip1_aux/ qed-. lemma ldrop_inv_O1_pair2: ∀I,K,V,e,L1. ⇩[0, e] L1 ≡ K. ⓑ{I} V → (e = 0 ∧ L1 = K. ⓑ{I} V) ∨ ∃∃I1,K1,V1. ⇩[0, e - 1] K1 ≡ K. ⓑ{I} V & L1 = K1.ⓑ{I1}V1 & 0 < e. #I #K #V #e * -[ #H lapply (ldrop_inv_atom1 … H) -H #H destruct +[ #H elim (ldrop_inv_atom1 … H) -H #H destruct | #L1 #I1 #V1 #H - elim (ldrop_inv_O1 … H) -H * + elim (ldrop_inv_O1_pair1 … H) -H * [ #H1 #H2 destruct /3 width=1/ | /3 width=5/ ] @@ -150,24 +139,25 @@ fact ldrop_inv_skip2_aux: ∀d,e,L1,L2. ⇩[d, e] L1 ≡ L2 → 0 < d → ⇧[d - 1, e] V2 ≡ V1 & L1 = K1. ⓑ{I} V1. #d #e #L1 #L2 * -d -e -L1 -L2 -[ #d #e #_ #I #K #V #H destruct +[ #d #_ #I #K #V #H destruct | #L #I #V #H elim (lt_refl_false … H) | #L1 #L2 #I #V #e #_ #H elim (lt_refl_false … H) | #L1 #X #Y #V1 #Z #d #e #HL12 #HV12 #_ #I #L2 #V2 #H destruct /2 width=5/ ] -qed. +qed-. (* Basic_1: was: drop_gen_skip_r *) lemma ldrop_inv_skip2: ∀d,e,I,L1,K2,V2. ⇩[d, e] L1 ≡ K2. ⓑ{I} V2 → 0 < d → ∃∃K1,V1. ⇩[d - 1, e] K1 ≡ K2 & ⇧[d - 1, e] V2 ≡ V1 & L1 = K1. ⓑ{I} V1. -/2 width=3/ qed-. +/2 width=3 by ldrop_inv_skip2_aux/ qed-. (* Basic properties *********************************************************) (* Basic_1: was by definition: drop_refl *) -lemma ldrop_refl: ∀L. ⇩[0, 0] L ≡ L. +lemma ldrop_refl: ∀L,d. ⇩[d, 0] L ≡ L. #L elim L -L // +#L #I #V #IHL #d @(nat_ind_plus … d) -d // /2 width=1/ qed. lemma ldrop_ldrop_lt: ∀L1,L2,I,V,e. @@ -181,50 +171,39 @@ lemma ldrop_skip_lt: ∀L1,L2,I,V1,V2,d,e. #L1 #L2 #I #V1 #V2 #d #e #HL12 #HV21 #Hd >(plus_minus_m_m d 1) // /2 width=1/ qed. -lemma ldrop_O1_le: ∀i,L. i ≤ |L| → ∃K. ⇩[0, i] L ≡ K. -#i @(nat_ind_plus … i) -i /2 width=2/ -#i #IHi * +lemma ldrop_O1_le: ∀e,L. e ≤ |L| → ∃K. ⇩[0, e] L ≡ K. +#e @(nat_ind_plus … e) -e /2 width=2/ +#e #IHe * [ #H lapply (le_n_O_to_eq … H) -H >commutative_plus normalize #H destruct | #L #I #V normalize #H - elim (IHi L ?) -IHi /2 width=1/ -H /3 width=2/ + elim (IHe L) -IHe /2 width=1/ -H /3 width=2/ ] qed. -lemma ldrop_O1_lt: ∀L,i. i < |L| → ∃∃I,K,V. ⇩[0, i] L ≡ K.ⓑ{I}V. +lemma ldrop_O1_lt: ∀L,e. e < |L| → ∃∃I,K,V. ⇩[0, e] L ≡ K.ⓑ{I}V. #L elim L -L -[ #i #H elim (lt_zero_false … H) -| #L #I #V #IHL #i @(nat_ind_plus … i) -i /2 width=4/ - #i #_ normalize #H - elim (IHL i ? ) -IHL /2 width=1/ -H /3 width=4/ +[ #e #H elim (lt_zero_false … H) +| #L #I #V #IHL #e @(nat_ind_plus … e) -e /2 width=4/ + #e #_ normalize #H + elim (IHL e) -IHL /2 width=1/ -H /3 width=4/ ] qed. -lemma ldrop_lsubr_ldrop2_abbr: ∀L1,L2,d,e. L1 ⊑ [d, e] L2 → - ∀K2,V,i. ⇩[0, i] L2 ≡ K2. ⓓV → - d ≤ i → i < d + e → - ∃∃K1. K1 ⊑ [0, d + e - i - 1] K2 & - ⇩[0, i] L1 ≡ K1. ⓓV. -#L1 #L2 #d #e #H elim H -L1 -L2 -d -e -[ #d #e #K1 #V #i #H - lapply (ldrop_inv_atom1 … H) -H #H destruct -| #L1 #L2 #K1 #V #i #_ #_ #H - elim (lt_zero_false … H) -| #L1 #L2 #V #e #HL12 #IHL12 #K1 #W #i #H #_ #Hie - elim (ldrop_inv_O1 … H) -H * #Hi #HLK1 - [ -IHL12 -Hie destruct - minus_minus_comm >arith_b1 // /4 width=3/ - ] -| #L1 #L2 #I #V1 #V2 #e #_ #IHL12 #K1 #W #i #H #_ #Hie - elim (ldrop_inv_O1 … H) -H * #Hi #HLK1 - [ -IHL12 -Hie -Hi destruct - | elim (IHL12 … HLK1 ? ?) -IHL12 -HLK1 // /2 width=1/ -Hie >minus_minus_comm >arith_b1 // /3 width=3/ - ] -| #L1 #L2 #I1 #I2 #V1 #V2 #d #e #_ #IHL12 #K1 #V #i #H #Hdi >plus_plus_comm_23 #Hide - elim (le_inv_plus_l … Hdi) #Hdim #Hi - lapply (ldrop_inv_ldrop1 … H ?) -H // #HLK1 - elim (IHL12 … HLK1 ? ?) -IHL12 -HLK1 // /2 width=1/ -Hdi -Hide >minus_minus_comm >arith_b1 // /3 width=3/ +lemma l_liftable_LTC: ∀R. l_liftable R → l_liftable (LTC … R). +#R #HR #K #T1 #T2 #H elim H -T2 +[ /3 width=9/ +| #T #T2 #_ #HT2 #IHT1 #L #d #e #HLK #U1 #HTU1 #U2 #HTU2 + elim (lift_total T d e) /4 width=11 by step/ (**) (* auto too slow without trace *) +] +qed. + +lemma l_deliftable_sn_LTC: ∀R. l_deliftable_sn R → l_deliftable_sn (LTC … R). +#R #HR #L #U1 #U2 #H elim H -U2 +[ #U2 #HU12 #K #d #e #HLK #T1 #HTU1 + elim (HR … HU12 … HLK … HTU1) -HR -L -U1 /3 width=3/ +| #U #U2 #_ #HU2 #IHU1 #K #d #e #HLK #T1 #HTU1 + elim (IHU1 … HLK … HTU1) -IHU1 -U1 #T #HTU #HT1 + elim (HR … HU2 … HLK … HTU) -HR -L -U /3 width=5/ ] qed. @@ -256,25 +235,61 @@ lemma dropable_dx_TC: ∀R. dropable_dx R → dropable_dx (TC … R). ] qed. +lemma l_deliftable_sn_llstar: ∀R. l_deliftable_sn R → + ∀l. l_deliftable_sn (llstar … R l). +#R #HR #l #L #U1 #U2 #H @(lstar_ind_r … l U2 H) -l -U2 +[ /2 width=3/ +| #l #U #U2 #_ #HU2 #IHU1 #K #d #e #HLK #T1 #HTU1 + elim (IHU1 … HLK … HTU1) -IHU1 -U1 #T #HTU #HT1 + elim (HR … HU2 … HLK … HTU) -HR -L -U /3 width=5/ +] +qed. + (* Basic forvard lemmas *****************************************************) (* Basic_1: was: drop_S *) lemma ldrop_fwd_ldrop2: ∀L1,I2,K2,V2,e. ⇩[O, e] L1 ≡ K2. ⓑ{I2} V2 → ⇩[O, e + 1] L1 ≡ K2. #L1 elim L1 -L1 -[ #I2 #K2 #V2 #e #H lapply (ldrop_inv_atom1 … H) -H #H destruct +[ #I2 #K2 #V2 #e #H lapply (ldrop_inv_atom1 … H) -H * #H destruct | #K1 #I1 #V1 #IHL1 #I2 #K2 #V2 #e #H - elim (ldrop_inv_O1 … H) -H * #He #H + elim (ldrop_inv_O1_pair1 … H) -H * #He #H [ -IHL1 destruct /2 width=1/ | @ldrop_ldrop >(plus_minus_m_m e 1) // /2 width=3/ ] ] qed-. -lemma ldrop_fwd_length: ∀L1,L2,d,e. ⇩[d, e] L1 ≡ L2 → |L2| ≤ |L1|. +lemma ldrop_fwd_length: ∀L1,L2,d,e. ⇩[d, e] L1 ≡ L2 → |L1| = |L2| + e. #L1 #L2 #d #e #H elim H -L1 -L2 -d -e // normalize /2 width=1/ qed-. +lemma ldrop_fwd_length_minus2: ∀L1,L2,d,e. ⇩[d, e] L1 ≡ L2 → |L2| = |L1| - e. +#L1 #L2 #d #e #H lapply (ldrop_fwd_length … H) -H /2 width=1/ +qed-. + +lemma ldrop_fwd_length_minus4: ∀L1,L2,d,e. ⇩[d, e] L1 ≡ L2 → e = |L1| - |L2|. +#L1 #L2 #d #e #H lapply (ldrop_fwd_length … H) -H // +qed-. + +lemma ldrop_fwd_length_le2: ∀L1,L2,d,e. ⇩[d, e] L1 ≡ L2 → e ≤ |L1|. +#L1 #L2 #d #e #H lapply (ldrop_fwd_length … H) -H // +qed-. + +lemma ldrop_fwd_length_le4: ∀L1,L2,d,e. ⇩[d, e] L1 ≡ L2 → |L2| ≤ |L1|. +#L1 #L2 #d #e #H lapply (ldrop_fwd_length … H) -H // +qed-. + +lemma ldrop_fwd_length_lt2: ∀L1,I2,K2,V2,d,e. + ⇩[d, e] L1 ≡ K2. ⓑ{I2} V2 → e < |L1|. +#L1 #I2 #K2 #V2 #d #e #H +lapply (ldrop_fwd_length … H) normalize in ⊢ (%→?); -I2 -V2 // +qed-. + +lemma ldrop_fwd_length_lt4: ∀L1,L2,d,e. ⇩[d, e] L1 ≡ L2 → 0 < e → |L2| < |L1|. +#L1 #L2 #d #e #H lapply (ldrop_fwd_length … H) -H /2 width=1/ +qed-. + lemma ldrop_fwd_lw: ∀L1,L2,d,e. ⇩[d, e] L1 ≡ L2 → ♯{L2} ≤ ♯{L1}. #L1 #L2 #d #e #H elim H -L1 -L2 -d -e // normalize [ /2 width=3/ @@ -283,37 +298,40 @@ lemma ldrop_fwd_lw: ∀L1,L2,d,e. ⇩[d, e] L1 ≡ L2 → ♯{L2} ≤ ♯{L1}. ] qed-. -lemma ldrop_pair2_fwd_fw: ∀I,L,K,V,d,e. ⇩[d, e] L ≡ K. ⓑ{I} V → - ∀T. ♯{K, V} < ♯{L, T}. -#I #L #K #V #d #e #H #T -lapply (ldrop_fwd_lw … H) -H #H -@(le_to_lt_to_lt … H) -H /3 width=1/ +lemma ldrop_fwd_lw_lt: ∀L1,L2,d,e. ⇩[d, e] L1 ≡ L2 → 0 < e → ♯{L2} < ♯{L1}. +#L1 #L2 #d #e #H elim H -L1 -L2 -d -e // +[ #L #I #V #H elim (lt_refl_false … H) +| #L1 #L2 #I #V #e #HL12 #_ #_ + lapply (ldrop_fwd_lw … HL12) -HL12 #HL12 + @(le_to_lt_to_lt … HL12) -HL12 // +| #L1 #L2 #I #V1 #V2 #d #e #_ #HV21 #IHL12 #H normalize in ⊢ (?%%); -I + >(lift_fwd_tw … HV21) -V2 /3 by lt_minus_to_plus/ (**) (* auto too slow without trace *) +] qed-. -lemma ldrop_fwd_ldrop2_length: ∀L1,I2,K2,V2,e. - ⇩[0, e] L1 ≡ K2. ⓑ{I2} V2 → e < |L1|. -#L1 elim L1 -L1 -[ #I2 #K2 #V2 #e #H lapply (ldrop_inv_atom1 … H) -H #H destruct -| #K1 #I1 #V1 #IHL1 #I2 #K2 #V2 #e #H - elim (ldrop_inv_O1 … H) -H * #He #H - [ -IHL1 destruct // - | lapply (IHL1 … H) -IHL1 -H #HeK1 whd in ⊢ (? ? %); /2 width=1/ - ] +(* Advanced inversion lemmas ************************************************) + +fact ldrop_inv_O2_aux: ∀d,e,L1,L2. ⇩[d, e] L1 ≡ L2 → e = 0 → L1 = L2. +#d #e #L1 #L2 #H elim H -d -e -L1 -L2 +[ // +| // +| #L1 #L2 #I #V #e #_ #_ >commutative_plus normalize #H destruct +| #L1 #L2 #I #V1 #V2 #d #e #_ #HV21 #IHL12 #H + >(IHL12 H) -L1 >(lift_inv_O2_aux … HV21 … H) -V2 -d -e // ] qed-. -lemma ldrop_fwd_O1_length: ∀L1,L2,e. ⇩[0, e] L1 ≡ L2 → |L2| = |L1| - e. -#L1 elim L1 -L1 -[ #L2 #e #H >(ldrop_inv_atom1 … H) -H // -| #K1 #I1 #V1 #IHL1 #L2 #e #H - elim (ldrop_inv_O1 … H) -H * #He #H - [ -IHL1 destruct // - | lapply (IHL1 … H) -IHL1 -H #H >H -H normalize - >minus_le_minus_minus_comm // - ] -] +(* Basic_1: was: drop_gen_refl *) +lemma ldrop_inv_O2: ∀L1,L2,d. ⇩[d, 0] L1 ≡ L2 → L1 = L2. +/2 width=4 by ldrop_inv_O2_aux/ qed-. + +lemma ldrop_inv_length_eq: ∀L1,L2,d,e. ⇩[d, e] L1 ≡ L2 → |L1| = |L2| → e = 0. +#L1 #L2 #d #e #H #HL12 lapply (ldrop_fwd_length_minus4 … H) // qed-. +lemma ldrop_inv_refl: ∀L,d,e. ⇩[d, e] L ≡ L → e = 0. +/2 width=5 by ldrop_inv_length_eq/ qed-. + (* Basic_1: removed theorems 50: drop_ctail drop_skip_flat cimp_flat_sx cimp_flat_dx cimp_bind cimp_getl_conf