X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;ds=sidebyside;f=matita%2Ftests%2Fcoercions_propagation.ma;h=63c48e66b9d42267b3d3455cc855565b80527095;hb=refs%2Ftags%2F0.4.95%407852;hp=af5f2435ca52b76525321bdb6ae881a2966cd239;hpb=033ef07477e15b36c2865f91c0ccf139a66e6fd7;p=helm.git diff --git a/matita/tests/coercions_propagation.ma b/matita/tests/coercions_propagation.ma index af5f2435c..63c48e66b 100644 --- a/matita/tests/coercions_propagation.ma +++ b/matita/tests/coercions_propagation.ma @@ -16,7 +16,6 @@ set "baseuri" "cic:/matita/test/coercions_propagation/". include "logic/connectives.ma". include "nat/orders.ma". -alias num (instance 0) = "natural number". inductive sigma (A:Type) (P:A → Prop) : Type ≝ sigma_intro: ∀a:A. P a → sigma A P. @@ -33,7 +32,6 @@ definition eject ≝ λP.λc: ∃n:nat.P n. match c with [ sigma_intro w _ ⇒ w coercion cic:/matita/test/coercions_propagation/eject.con. alias num (instance 0) = "natural number". - theorem test: ∃n. 0 ≤ n. apply (S O : ∃n. 0 ≤ n). autobatch. @@ -50,11 +48,10 @@ qed. theorem test4: (∃n. 1 ≤ n) → ∃n. 0 < n. apply ((λn:nat.n) : (∃n. 1 ≤ n) → ∃n. 0 < n); - cases name_con; + cases s; assumption. qed. -(* guarded troppo debole theorem test5: nat → ∃n. 1 ≤ n. apply ( let rec aux n : nat ≝ @@ -65,95 +62,77 @@ apply ( in aux : nat → ∃n. 1 ≤ n); -cases name_con; -simplify; - [ autobatch - | cases (aux n); - simplify; - apply lt_O_S - ] +[ cases (aux n1); simplify; ] autobatch; qed. -*) -(* -theorem test5: nat → ∃n. 1 ≤ n. +inductive NN (A:Type) : nat -> Type ≝ + | NO : NN A O + | NS : ∀n:nat. NN A n → NN A (S n). + +definition injectN ≝ λA,k.λP.λa:NN A k.λp:P a. sigma_intro ? P ? p. + +coercion cic:/matita/test/coercions_propagation/injectN.con 0 1. + +definition ejectN ≝ λA,k.λP.λc: ∃n:NN A k.P n. match c with [ sigma_intro w _ ⇒ w]. + +coercion cic:/matita/test/coercions_propagation/ejectN.con. + +definition PN := + λA,k.λx:NN A k. 1 <= k. + +theorem test51_byhand: ∀A,k. NN A k → ∃n:NN A (S k). PN ? ? n. +intros 1; apply ( - let rec aux (n : nat) : ∃n. 1 ≤ n ≝ - match n with - [ O => (S O : ∃n. 1 ≤ n) - | S m => (S (aux m) : ∃n. 1 ≤ n) -(* - inject ? (S (eject ? (aux m))) ? *) + let rec aux (w : nat) (n : NN A w) on n : ∃p:NN A (S w).PN ? ? p ≝ + match n in NN return λx.λm:NN A x.∃p:NN A (S x).PN ? ? p with + [ NO ⇒ injectN ? ? ? (NS A ? (NO A)) ? + | NS x m ⇒ injectN ? ? ? (NS A (S x) (ejectN ? ? ? (aux ? m))) ? ] in aux - : nat → ∃n. 1 ≤ n); - [ autobatch - | elim (aux m); - simplify; - autobatch - ] +: ∀n:nat. NN A n → ∃m:NN A (S n). PN ? ? m); +[2: cases (aux x m); simplify; autobatch ] unfold PN; autobatch; qed. -Re1: nat => nat |- body[Rel1] : nat => nat -Re1: nat => X |- body[Rel1] : nat => nat : nat => X -Re1: Y => X |- body[Rel1] : nat => nat : Y => X +theorem f : nat -> nat -> ∃n:nat.O <= n. +apply (λx,y:nat.y : nat -> nat -> ∃n:nat. O <= n). +apply le_O_n; +qed. -nat => nat -nat => X +axiom F : nat -> nat -> nat. -theorem test5: (∃n. 2 ≤ n) → ∃n. 1 ≤ n. -apply ( - λk: ∃n. 2 ≤ n. - let rec aux n : eject ? n = eject ? k → ∃n. 1 ≤ n ≝ - match eject ? n return λx:nat. x = eject ? k → ∃n. 1 ≤ n with - [ O ⇒ λH: 0 = eject ? k. - sigma_intro ? ? 0 ? - | S m ⇒ λH: S m = eject ? k. - sigma_intro ? ? (S m) ? +theorem f1 : nat -> nat -> ∃n:nat.O <= n. +apply (F : nat -> nat -> ∃n:nat. O <= n). +apply le_O_n; +qed. + +theorem test51: ∀A,k. NN A k → ∃n:NN A (S k). PN ? ? n. +intros 1; +letin xxx ≝ ( + let rec aux (w : nat) (n : NN A w) on n : NN A (S w) ≝ + match n in NN return λx.λm:NN A x.NN A (S x) with + [ NO ⇒ NS A ? (NO A) + | NS x m ⇒ NS A (S x) (aux ? m) ] in - aux k (refl_eq ? (eject ? k))); - - -intro; -cases s; clear s; -generalize in match H; clear H; -elim a; - [ apply (sigma_intro ? ? 0); - | apply (sigma_intro ? ? (S n)); - ]. + aux +: ∀n:nat. NN A n → ∃m:NN A (S n). PN ? ? m); [3: apply xxx]; +unfold PN in aux ⊢ %; [cases (aux n2 n3)] autobatch; +qed. -apply ( - λk. - let rec aux n : ∃n. 1 ≤ n ≝ - inject ? - (match n with - [ O ⇒ O - | S m ⇒ S (eject ? (aux m)) - ]) ? - in aux (eject ? k)). - - +(* guarded troppo debole *) +theorem test522: nat → ∃n. 1 ≤ n. apply ( let rec aux n : nat ≝ match n with - [ O ⇒ O + [ O ⇒ 1 | S m ⇒ S (aux m) ] in aux -: (∃n. 2 ≤ n) → ∃n. 1 ≤ n); - +: nat → ∃n. 1 ≤ n); +[ cases (aux n1); simplify; + autobatch +| autobatch]. qed. -(* -theorem test5: nat → ∃n. 0 ≤ n. - apply (λn:nat.?); - apply - (match n return λ_.∃n.0 ≤ n with [O ⇒ (0 : ∃n.0 ≤ n) | S n' ⇒ ex_intro ? ? n' ?] - : ∃n. 0 ≤ n); - autobatch. -qed. -*) -*) \ No newline at end of file