X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=components%2Facic_procedural%2Facic2Procedural.ml;h=28fa9894795e52e629d6cfdf1d14a3064ccfebf6;hb=a2f9236b189b39bb5e7d864991cae29c9f9cb67f;hp=b1cbc74abdacec4633ff828efcb1a71999355da7;hpb=8f5b25b6091f1e240f37de5355e7a99b756e98e8;p=helm.git diff --git a/components/acic_procedural/acic2Procedural.ml b/components/acic_procedural/acic2Procedural.ml index b1cbc74ab..28fa98947 100644 --- a/components/acic_procedural/acic2Procedural.ml +++ b/components/acic_procedural/acic2Procedural.ml @@ -24,6 +24,7 @@ *) module C = Cic +module I = CicInspect module D = Deannotate module DTI = DoubleTypeInference module TC = CicTypeChecker @@ -36,6 +37,7 @@ module Ut = CicUtil module E = CicEnvironment module PER = ProofEngineReduction +module P = ProceduralPreprocess module Cl = ProceduralClassify module M = ProceduralMode module T = ProceduralTypes @@ -48,13 +50,12 @@ type status = { max_depth: int option; depth: int; context: C.context; - intros: string list; - ety: C.annterm option + intros: string list } (* helpers ******************************************************************) -let id x = x +let identity x = x let comp f g x = f (g x) @@ -86,15 +87,11 @@ let string_of_head = function | C.AMeta _ -> "meta" | C.AImplicit _ -> "implict" -let clear st = {st with intros = []; ety = None} +let clear st = {st with intros = []} let next st = {(clear st) with depth = succ st.depth} -let set_ety st ety = - if st.ety = None then {st with ety = ety} else st - -let add st entry intro ety = - let st = set_ety st ety in +let add st entry intro = {st with context = entry :: st.context; intros = intro :: st.intros} let test_depth st = @@ -114,6 +111,18 @@ let is_rewrite_left = function | C.AConst (_, uri, []) -> UM.eq uri HObj.Logic.eq_ind_URI || Obj.is_eq_ind_URI uri | _ -> false + +let is_fwd_rewrite_right hd tl = + if is_rewrite_right hd then match List.nth tl 3 with + | C.ARel _ -> true + | _ -> false + else false + +let is_fwd_rewrite_left hd tl = + if is_rewrite_left hd then match List.nth tl 3 with + | C.ARel _ -> true + | _ -> false + else false (* let get_ind_name uri tno xcno = try @@ -151,27 +160,29 @@ let unused_premise = "UNUSED" let defined_premise = "DEFINED" -let assumed_premise = "ASSUMED" - let expanded_premise = "EXPANDED" -let convert st v = +let convert st ?name v = match get_inner_types st v with + | None -> [] | Some (st, et) -> let cst, cet = cic st, cic et in if PER.alpha_equivalence cst cet then [] else - [T.Change (st, et, "")] - | None -> [] + let e = Cn.mk_pattern [] (T.mk_arel 1 "") in + match name with + | None -> [T.Change (st, et, None, e, "")] + | Some id -> [T.Change (st, et, Some (id, id), e, ""); T.ClearBody (id, "")] let eta_expand n t = + let id = Ut.id_of_annterm t in let ty = C.AImplicit ("", None) in let name i = Printf.sprintf "%s%u" expanded_premise i in - let lambda i t = C.ALambda ("", C.Name (name i), ty, t) in - let arg i n = T.mk_arel (n - i) (name i) in + let lambda i t = C.ALambda (id, C.Name (name i), ty, t) in + let arg i n = T.mk_arel (n - i) (name (n - i - 1)) in let rec aux i f a = if i >= n then f, a else aux (succ i) (comp f (lambda i)) (arg i n :: a) in - let absts, args = aux 0 id [] in + let absts, args = aux 0 identity [] in match Cn.lift 1 n t with | C.AAppl (id, ts) -> absts (C.AAppl (id, ts @ args)) | t -> absts (C.AAppl ("", t :: args)) @@ -179,7 +190,7 @@ let eta_expand n t = let appl_expand n = function | C.AAppl (id, ts) -> let before, after = T.list_split (List.length ts + n) ts in - C.AAppl ("", C.AAppl (id, before) :: after) + C.AAppl (id, C.AAppl ("", before) :: after) | _ -> assert false let get_intro name t = @@ -194,43 +205,39 @@ let mk_intros st script = try if st.intros = [] then script else let count = List.length st.intros in - let p0 = T.Whd (count, "") in - let p1 = T.Intros (Some count, List.rev st.intros, "") in - match st.ety with - | Some ety when Cn.need_whd count ety -> p0 :: p1 :: script - | _ -> p1 :: script + T.Intros (Some count, List.rev st.intros, "") :: script with Invalid_argument _ -> failwith "A2P.mk_intros" let rec mk_atomic st dtext what = - if T.is_atomic what then [], what else - let name = defined_premise in - mk_fwd_proof st dtext name what, T.mk_arel 0 name + if T.is_atomic what then + match what with + | C.ARel (_, _, _, name) -> convert st ~name what, what + | _ -> [], what + else + let name = defined_premise in + let script = convert st ~name what in + script @ mk_fwd_proof st dtext name what, T.mk_arel 0 name and mk_fwd_rewrite st dtext name tl direction = let what, where = List.nth tl 5, List.nth tl 3 in - let rewrite premise = - let script, what = mk_atomic st dtext what in - T.Rewrite (direction, what, Some (premise, name), dtext) :: script - in + let rps, predicate = [List.nth tl 4], List.nth tl 2 in + let e = Cn.mk_pattern rps predicate in match where with - | C.ARel (_, _, _, binder) -> rewrite binder - | _ -> - assert (get_inner_sort st where = `Prop); - let pred, old = List.nth tl 2, List.nth tl 1 in - let pred_name = defined_premise in - let pred_text = "extracted" in - let p1 = T.LetIn (pred_name, pred, pred_text) in - let cut_name = assumed_premise in - let cut_type = C.AAppl ("", [T.mk_arel 0 pred_name; old]) in - let cut_text = "" in - let p2 = T.Cut (cut_name, cut_type, cut_text) in - let qs = [rewrite cut_name; mk_proof (next st) where] in - [T.Branch (qs, ""); p2; p1] + | C.ARel (_, _, _, premise) -> + let script, what = mk_atomic st dtext what in + T.Rewrite (direction, what, Some (premise, name), e, dtext) :: script + | _ -> assert false and mk_fwd_proof st dtext name = function - | C.AAppl (_, hd :: tl) as v -> - if is_rewrite_right hd then mk_fwd_rewrite st dtext name tl true else - if is_rewrite_left hd then mk_fwd_rewrite st dtext name tl false else + | C.ALetIn (_, n, v, t) -> + let entry = Some (n, C.Def (cic v, None)) in + let intro = get_intro n t in + let qt = mk_fwd_proof (add st entry intro) dtext name t in + let qv = mk_fwd_proof st "" intro v in + List.append qt qv + | C.AAppl (_, hd :: tl) as v -> + if is_fwd_rewrite_right hd tl then mk_fwd_rewrite st dtext name tl true else + if is_fwd_rewrite_left hd tl then mk_fwd_rewrite st dtext name tl false else let ty, _ = TC.type_of_aux' [] st.context (cic hd) Un.empty_ugraph in begin match get_inner_types st v with | Some (ity, _) when M.bkd st.context ty -> @@ -239,62 +246,75 @@ and mk_fwd_proof st dtext name = function | _ -> let (classes, rc) as h = Cl.classify st.context ty in let text = Printf.sprintf "%u %s" (List.length classes) (Cl.to_string h) in - [T.LetIn (name, v, dtext ^ text)] + [T.LetIn (name, v, dtext ^ text)] + end + | C.AMutCase (id, uri, tyno, outty, arg, cases) as v -> + begin match Cn.mk_ind st.context id uri tyno outty arg cases with + | None -> [T.LetIn (name, v, dtext)] + | Some v -> mk_fwd_proof st dtext name v end - | v -> - [T.LetIn (name, v, dtext)] + | C.ACast (_, v, _) -> + mk_fwd_proof st dtext name v + | v -> + match get_inner_types st v with + | Some (ity, _) -> + let qs = [[T.Id ""]; mk_proof (next st) v] in + [T.Branch (qs, ""); T.Cut (name, ity, dtext)] + | _ -> + [T.LetIn (name, v, dtext)] and mk_proof st = function - | C.ALambda (_, name, v, t) as what -> + | C.ALambda (_, name, v, t) -> let entry = Some (name, C.Decl (cic v)) in let intro = get_intro name t in - let ety = match get_inner_types st what with - | Some (_, ety) -> Some ety - | None -> None - in - mk_proof (add st entry intro ety) t - | C.ALetIn (_, name, v, t) as what -> + mk_proof (add st entry intro) t + | C.ALetIn (_, name, v, t) as what -> let proceed, dtext = test_depth st in let script = if proceed then let entry = Some (name, C.Def (cic v, None)) in let intro = get_intro name t in - let q = mk_proof (next (add st entry intro None)) t in + let q = mk_proof (next (add st entry intro)) t in List.rev_append (mk_fwd_proof st dtext intro v) q else [T.Apply (what, dtext)] in mk_intros st script - | C.ARel _ as what -> + | C.ARel _ as what -> let _, dtext = test_depth st in let text = "assumption" in let script = [T.Apply (what, dtext ^ text)] in mk_intros st script - | C.AMutConstruct _ as what -> + | C.AMutConstruct _ as what -> let _, dtext = test_depth st in let script = [T.Apply (what, dtext)] in mk_intros st script - | C.AAppl (_, hd :: tl) as t -> + | C.AAppl (_, hd :: tl) as t -> let proceed, dtext = test_depth st in let script = if proceed then let ty, _ = TC.type_of_aux' [] st.context (cic hd) Un.empty_ugraph in let (classes, rc) as h = Cl.classify st.context ty in - let decurry = List.length classes - List.length tl in + let premises, _ = P.split st.context ty in + let decurry = List.length classes - List.length tl in if decurry < 0 then mk_proof (clear st) (appl_expand decurry t) else if decurry > 0 then mk_proof (clear st) (eta_expand decurry t) else - let synth = Cl.S.singleton 0 in + let synth = I.S.singleton 0 in let text = Printf.sprintf "%u %s" (List.length classes) (Cl.to_string h) in match rc with - | Some (i, j) when i > 1 && i <= List.length classes -> + | Some (i, j) when i > 1 && i <= List.length classes && M.is_eliminator premises -> let classes, tl, _, what = split2_last classes tl in let script, what = mk_atomic st dtext what in - let synth = Cl.S.add 1 synth in + let synth = I.S.add 1 synth in let qs = mk_bkd_proofs (next st) synth classes tl in if is_rewrite_right hd then - List.rev script @ convert st t @ - [T.Rewrite (false, what, None, dtext); T.Branch (qs, "")] + let rps, predicate = [List.nth tl 4], List.nth tl 2 in + let e = Cn.mk_pattern rps predicate in + List.rev script @ convert st t @ + [T.Rewrite (false, what, None, e, dtext); T.Branch (qs, "")] else if is_rewrite_left hd then - List.rev script @ convert st t @ - [T.Rewrite (true, what, None, dtext); T.Branch (qs, "")] + let rps, predicate = [List.nth tl 4], List.nth tl 2 in + let e = Cn.mk_pattern rps predicate in + List.rev script @ convert st t @ + [T.Rewrite (true, what, None, e, dtext); T.Branch (qs, "")] else let using = Some hd in List.rev script @ convert st t @ @@ -308,7 +328,17 @@ and mk_proof st = function [T.Apply (t, dtext)] in mk_intros st script - | t -> + | C.AMutCase (id, uri, tyno, outty, arg, cases) -> + begin match Cn.mk_ind st.context id uri tyno outty arg cases with + | _ (* None *) -> + let text = Printf.sprintf "%s" "UNEXPANDED: mutcase" in + let script = [T.Note text] in + mk_intros st script +(* | Some t -> mk_proof st t *) + end + | C.ACast (_, t, _) -> + mk_proof st t + | t -> let text = Printf.sprintf "%s: %s" "UNEXPANDED" (string_of_head t) in let script = [T.Note text] in mk_intros st script @@ -317,8 +347,8 @@ and mk_bkd_proofs st synth classes ts = try let _, dtext = test_depth st in let aux inv v = - if Cl.overlaps synth inv then None else - if Cl.S.is_empty inv then Some (mk_proof st v) else + if I.overlaps synth inv then None else + if I.S.is_empty inv then Some (mk_proof st v) else Some [T.Apply (v, dtext ^ "dependent")] in T.list_map2_filter aux classes ts @@ -332,7 +362,7 @@ let is_theorem pars = let mk_obj st = function | C.AConstant (_, _, s, Some v, t, [], pars) when is_theorem pars -> - let ast = mk_proof (set_ety st (Some t)) v in + let ast = mk_proof st v in let count = T.count_steps 0 ast in let text = Printf.sprintf "tactics: %u" count in T.Theorem (s, t, text) :: ast @ [T.Qed ""] @@ -349,8 +379,7 @@ let acic2procedural ~ids_to_inner_sorts ~ids_to_inner_types ?depth prefix aobj = max_depth = depth; depth = 0; context = []; - intros = []; - ety = None + intros = [] } in HLog.debug "Level 2 transformation"; let steps = mk_obj st aobj in