X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=components%2Facic_procedural%2FproceduralClassify.ml;h=4c0014d2e320e4e214aa511f66f1694ee9b6ac59;hb=24dd4569daf1d35bffaa813b8164058d8643f14d;hp=4cfd47e5abcac8309337f7f808b87c37f750bd50;hpb=8f5b25b6091f1e240f37de5355e7a99b756e98e8;p=helm.git diff --git a/components/acic_procedural/proceduralClassify.ml b/components/acic_procedural/proceduralClassify.ml index 4cfd47e5a..4c0014d2e 100644 --- a/components/acic_procedural/proceduralClassify.ml +++ b/components/acic_procedural/proceduralClassify.ml @@ -23,127 +23,91 @@ * http://cs.unibo.it/helm/. *) -module C = Cic -module R = CicReduction -module D = Deannotate -module Int = struct - type t = int - let compare = compare -end -module S = Set.Make (Int) +module UM = UriManager +module C = Cic +module D = Deannotate +module I = CicInspect +module PEH = ProofEngineHelpers -type conclusion = (int * int) option +module H = ProceduralHelpers + +type dependence = I.S.t * bool + +type conclusion = (int * int * UM.uri * int) option (* debugging ****************************************************************) -let string_of_entry inverse = - if S.mem 0 inverse then "C" else - if S.is_empty inverse then "I" else "P" +let string_of_entry (inverse, b) = + if I.S.mem 0 inverse then begin if b then "CF" else "C" end else + if I.S.is_empty inverse then "I" else "P" let to_string (classes, rc) = let linearize = String.concat " " (List.map string_of_entry classes) in match rc with - | None -> linearize - | Some (i, j) -> Printf.sprintf "%s %u %u" linearize i j + | None -> linearize + | Some (i, j, _, _) -> Printf.sprintf "%s %u %u" linearize i j let out_table b = let map i (_, inverse) = let map i tl = Printf.sprintf "%2u" i :: tl in - let iset = String.concat " " (S.fold map inverse []) in + let iset = String.concat " " (I.S.fold map inverse []) in Printf.eprintf "%2u|%s\n" i iset in Array.iteri map b; prerr_newline () - -(****************************************************************************) -let id x = x +(* classification ***********************************************************) -let rec list_fold_left g map = function - | [] -> g - | hd :: tl -> map (list_fold_left g map tl) hd - -let get_rels h t = - let rec aux d g = function - | C.Sort _ - | C.Implicit _ -> g - | C.Rel i -> - if i < d then g else fun a -> g (S.add (i - d + h + 1) a) - | C.Appl ss -> list_fold_left g (aux d) ss - | C.Const (_, ss) - | C.MutInd (_, _, ss) - | C.MutConstruct (_, _, _, ss) - | C.Var (_, ss) -> - let map g (_, t) = aux d g t in - list_fold_left g map ss - | C.Meta (_, ss) -> - let map g = function - | None -> g - | Some t -> aux d g t - in - list_fold_left g map ss - | C.Cast (t1, t2) -> aux d (aux d g t2) t1 - | C.LetIn (_, t1, t2) - | C.Lambda (_, t1, t2) - | C.Prod (_, t1, t2) -> aux d (aux (succ d) g t2) t1 - | C.MutCase (_, _, t1, t2, ss) -> - aux d (aux d (list_fold_left g (aux d) ss) t2) t1 - | C.Fix (_, ss) -> - let k = List.length ss in - let map g (_, _, t1, t2) = aux d (aux (d + k) g t2) t1 in - list_fold_left g map ss - | C.CoFix (_, ss) -> - let k = List.length ss in - let map g (_, t1, t2) = aux d (aux (d + k) g t2) t1 in - list_fold_left g map ss +let classify_conclusion vs = + let rec get_argsno = function + | c, C.Appl (t :: vs) -> + let hd, argsno = get_argsno (c, t) in + hd, argsno + List.length vs + | _, t -> t, 0 in - let g a = a in - aux 1 g t S.empty - -let split c t = - let add s v c = Some (s, C.Decl v) :: c in - let rec aux whd a n c = function - | C.Prod (s, v, t) -> aux false (v :: a) (succ n) (add s v c) t - | v when whd -> v :: a, n - | v -> aux true a n c (R.whd ~delta:true c v) - in - aux false [] 0 c t - -let classify_conclusion = function - | C.Rel i -> Some (i, 0) - | C.Appl (C.Rel i :: tl) -> Some (i, List.length tl) - | _ -> None - + let inside i = i > 1 && i <= List.length vs in + match vs with + | v0 :: v1 :: _ -> + let hd0, a0 = get_argsno v0 in + let hd1, a1 = get_argsno v1 in + begin match hd0, hd1 with + | C.Rel i, C.MutInd (u, n, _) when inside i -> Some (i, a0, u, n) + | _ -> None + end + | _ -> None + let classify c t = try - let vs, h = split c t in - let rc = classify_conclusion (List.hd vs) in - let map (b, h) v = (get_rels h v, S.empty) :: b, succ h in + let vs, h = PEH.split_with_normalize (c, t) in + let rc = classify_conclusion vs in + let map (b, h) (c, v) = + let _, argsno = PEH.split_with_whd (c, v) in + let isf = argsno > 0 || H.is_sort v in + let iu = H.is_unsafe h (List.hd vs) in + (I.get_rels_from_premise h v, I.S.empty, isf && iu) :: b, succ h + in let l, h = List.fold_left map ([], 0) vs in let b = Array.of_list (List.rev l) in let mk_closure b h = - let map j = if j < h then S.union (fst b.(j)) else id in + let map j = if j < h then I.S.union (H.fst3 b.(j)) else H.identity in for i = pred h downto 0 do - let direct, unused = b.(i) in - b.(i) <- S.fold map direct direct, unused + let direct, unused, fa = b.(i) in + b.(i) <- I.S.fold map direct direct, unused, fa done; b in let b = mk_closure b h in let rec mk_inverse i direct = - if S.is_empty direct then () else - let j = S.choose direct in + if I.S.is_empty direct then () else + let j = I.S.choose direct in if j < h then - let unused, inverse = b.(j) in - b.(j) <- unused, S.add i inverse + let unused, inverse, fa = b.(j) in + b.(j) <- unused, I.S.add i inverse, fa else (); - mk_inverse i (S.remove j direct) + mk_inverse i (I.S.remove j direct) in - let map i (direct, _) = mk_inverse i direct in + let map i (direct, _, _) = mk_inverse i direct in Array.iteri map b; (* out_table b; *) - List.rev_map snd (List.tl (Array.to_list b)), rc + let extract (x, y, z) = y, z in + List.rev_map extract (List.tl (Array.to_list b)), rc with Invalid_argument _ -> failwith "Classify.classify" - -let overlaps s1 s2 = - let predicate x = S.mem x s1 in - S.exists predicate s2