X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=components%2Facic_procedural%2FproceduralConversion.ml;h=376313ac8f9de4577fbeae6780e57b33b6b77801;hb=24dd4569daf1d35bffaa813b8164058d8643f14d;hp=555523a621f2929f46d926f396bb66458f45c43b;hpb=3f38b6dc5e48855b7a2170de5a5ccb30aded766c;p=helm.git diff --git a/components/acic_procedural/proceduralConversion.ml b/components/acic_procedural/proceduralConversion.ml index 555523a62..376313ac8 100644 --- a/components/acic_procedural/proceduralConversion.ml +++ b/components/acic_procedural/proceduralConversion.ml @@ -29,41 +29,23 @@ module Un = CicUniv module TC = CicTypeChecker module D = Deannotate module UM = UriManager +module Rd = CicReduction +module PEH = ProofEngineHelpers +module PT = PrimitiveTactics -module T = ProceduralTypes +module DTI = DoubleTypeInference (* helpers ******************************************************************) let cic = D.deannotate_term -let get_ind_type uri tyno = - match E.get_obj Un.empty_ugraph uri with - | C.InductiveDefinition (tys, _, lpsno, _), _ -> lpsno, List.nth tys tyno - | _ -> assert false - -let get_default_eliminator context uri tyno ty = - let _, (name, _, _, _) = get_ind_type uri tyno in - let sort, _ = TC.type_of_aux' [] context ty Un.empty_ugraph in - let ext = match sort with - | C.Sort C.Prop -> "_ind" - | C.Sort C.Set -> "_rec" - | C.Sort C.CProp -> "_rec" - | C.Sort (C.Type _) -> "_rect" - | C.Meta (_,_) -> assert false - | _ -> assert false - in - let buri = UM.buri_of_uri uri in - let uri = UM.uri_of_string (buri ^ "/" ^ name ^ ext ^ ".con") in - C.Const (uri, []) - +let rec list_sub start length = function + | _ :: tl when start > 0 -> list_sub (pred start) length tl + | hd :: tl when length > 0 -> hd :: list_sub start (pred length) tl + | _ -> [] + (* proof construction *******************************************************) -let rec need_whd i = function - | C.ACast (_, t, _) -> need_whd i t - | C.AProd (_, _, _, t) when i > 0 -> need_whd (pred i) t - | _ when i > 0 -> true - | _ -> false - let lift k n = let rec lift_xns k (uri, t) = uri, lift_term k t and lift_ms k = function @@ -76,7 +58,10 @@ let lift k n = and lift_term k = function | C.ASort _ as t -> t | C.AImplicit _ as t -> t - | C.ARel (id, rid, m, b) as t -> if m < k then t else C.ARel (id, rid, m + n, b) + | C.ARel (id, rid, m, b) as t -> + if m < k then t else + if m + n > 0 then C.ARel (id, rid, m + n, b) else + assert false | C.AConst (id, uri, xnss) -> C.AConst (id, uri, List.map (lift_xns k) xnss) | C.AVar (id, uri, xnss) -> C.AVar (id, uri, List.map (lift_xns k) xnss) | C.AMutInd (id, uri, tyno, xnss) -> C.AMutInd (id, uri, tyno, List.map (lift_xns k) xnss) @@ -93,62 +78,174 @@ let lift k n = in lift_term k -let fake_annotate c = - let get_binder c m = - try match List.nth c (pred m) with - | Some (C.Name s, _) -> s - | _ -> assert false - with - | Invalid_argument _ -> assert false + let fake_annotate id c = + let get_binder c m = + try match List.nth c (pred m) with + | Some (C.Name s, _) -> s + | _ -> assert false + with + | Invalid_argument _ -> assert false + in + let mk_decl n v = Some (n, C.Decl v) in + let mk_def n v = Some (n, C.Def (v, None)) in + let mk_fix (name, _, _, bo) = mk_def (C.Name name) bo in + let mk_cofix (name, _, bo) = mk_def (C.Name name) bo in + let rec ann_xns c (uri, t) = uri, ann_term c t + and ann_ms c = function + | None -> None + | Some t -> Some (ann_term c t) + and ann_fix newc c (name, i, ty, bo) = + id, name, i, ann_term c ty, ann_term (List.rev_append newc c) bo + and ann_cofix newc c (name, ty, bo) = + id, name, ann_term c ty, ann_term (List.rev_append newc c) bo + and ann_term c = function + | C.Sort sort -> C.ASort (id, sort) + | C.Implicit ann -> C.AImplicit (id, ann) + | C.Rel m -> C.ARel (id, id, m, get_binder c m) + | C.Const (uri, xnss) -> C.AConst (id, uri, List.map (ann_xns c) xnss) + | C.Var (uri, xnss) -> C.AVar (id, uri, List.map (ann_xns c) xnss) + | C.MutInd (uri, tyno, xnss) -> C.AMutInd (id, uri, tyno, List.map (ann_xns c) xnss) + | C.MutConstruct (uri, tyno, consno, xnss) -> C.AMutConstruct (id, uri,tyno,consno, List.map (ann_xns c) xnss) + | C.Meta (i, mss) -> C.AMeta(id, i, List.map (ann_ms c) mss) + | C.Appl ts -> C.AAppl (id, List.map (ann_term c) ts) + | C.Cast (te, ty) -> C.ACast (id, ann_term c te, ann_term c ty) + | C.MutCase (sp, i, outty, t, pl) -> C.AMutCase (id, sp, i, ann_term c outty, ann_term c t, List.map (ann_term c) pl) + | C.Prod (n, s, t) -> C.AProd (id, n, ann_term c s, ann_term (mk_decl n s :: c) t) + | C.Lambda (n, s, t) -> C.ALambda (id, n, ann_term c s, ann_term (mk_decl n s :: c) t) + | C.LetIn (n, s, t) -> C.ALetIn (id, n, ann_term c s, ann_term (mk_def n s :: c) t) + | C.Fix (i, fl) -> C.AFix (id, i, List.map (ann_fix (List.rev_map mk_fix fl) c) fl) + | C.CoFix (i, fl) -> C.ACoFix (id, i, List.map (ann_cofix (List.rev_map mk_cofix fl) c) fl) + in + ann_term c + +let clear_absts m = + let rec aux k n = function + | C.AImplicit (_, None) as t -> t + | C.ALambda (id, s, v, t) when k > 0 -> + C.ALambda (id, s, v, aux (pred k) n t) + | C.ALambda (_, _, _, t) when n > 0 -> + aux 0 (pred n) (lift 1 (-1) t) + | t when n > 0 -> + Printf.eprintf "CLEAR: %u %s\n" n (CicPp.ppterm (cic t)); + assert false + | t -> t + in + aux m + +let hole id = C.AImplicit (id, Some `Hole) + +let meta id = C.AImplicit (id, None) + +let anon = C.Anonymous + +let generalize n = + let is_meta = + let map b = function + | C.AImplicit (_, None) when b -> b + | _ -> false + in + List.fold_left map true in - let mk_decl n v = Some (n, C.Decl v) in - let mk_def n v = Some (n, C.Def (v, None)) in - let mk_fix (name, _, _, bo) = mk_def (C.Name name) bo in - let mk_cofix (name, _, bo) = mk_def (C.Name name) bo in - let rec ann_xns c (uri, t) = uri, ann_term c t - and ann_ms c = function - | None -> None - | Some t -> Some (ann_term c t) - and ann_fix newc c (name, i, ty, bo) = - "", name, i, ann_term c ty, ann_term (List.rev_append newc c) bo - and ann_cofix newc c (name, ty, bo) = - "", name, ann_term c ty, ann_term (List.rev_append newc c) bo - and ann_term c = function - | C.Sort sort -> C.ASort ("", sort) - | C.Implicit ann -> C.AImplicit ("", ann) - | C.Rel m -> C.ARel ("", "", m, get_binder c m) - | C.Const (uri, xnss) -> C.AConst ("", uri, List.map (ann_xns c) xnss) - | C.Var (uri, xnss) -> C.AVar ("", uri, List.map (ann_xns c) xnss) - | C.MutInd (uri, tyno, xnss) -> C.AMutInd ("", uri, tyno, List.map (ann_xns c) xnss) - | C.MutConstruct (uri, tyno, consno, xnss) -> C.AMutConstruct ("", uri,tyno,consno, List.map (ann_xns c) xnss) - | C.Meta (i, mss) -> C.AMeta("", i, List.map (ann_ms c) mss) - | C.Appl ts -> C.AAppl ("", List.map (ann_term c) ts) - | C.Cast (te, ty) -> C.ACast ("", ann_term c te, ann_term c ty) - | C.MutCase (sp, i, outty, t, pl) -> C.AMutCase ("", sp, i, ann_term c outty, ann_term c t, List.map (ann_term c) pl) - | C.Prod (n, s, t) -> C.AProd ("", n, ann_term c s, ann_term (mk_decl n s :: c) t) - | C.Lambda (n, s, t) -> C.ALambda ("", n, ann_term c s, ann_term (mk_decl n s :: c) t) - | C.LetIn (n, s, t) -> C.ALetIn ("", n, ann_term c s, ann_term (mk_def n s :: c) t) - | C.Fix (i, fl) -> C.AFix ("", i, List.map (ann_fix (List.rev_map mk_fix fl) c) fl) - | C.CoFix (i, fl) -> C.ACoFix ("", i, List.map (ann_cofix (List.rev_map mk_cofix fl) c) fl) + let rec gen_fix len k (id, name, i, ty, bo) = + id, name, i, gen_term k ty, gen_term (k + len) bo + and gen_cofix len k (id, name, ty, bo) = + id, name, gen_term k ty, gen_term (k + len) bo + and gen_term k = function + | C.ASort (id, _) + | C.AImplicit (id, _) + | C.AConst (id, _, _) + | C.AVar (id, _, _) + | C.AMutInd (id, _, _, _) + | C.AMutConstruct (id, _, _, _, _) + | C.AMeta (id, _, _) -> meta id + | C.ARel (id, _, m, _) -> + if succ (k - n) <= m && m <= k then hole id else meta id + | C.AAppl (id, ts) -> + let ts = List.map (gen_term k) ts in + if is_meta ts then meta id else C.AAppl (id, ts) + | C.ACast (id, te, ty) -> + let te, ty = gen_term k te, gen_term k ty in + if is_meta [te; ty] then meta id else C.ACast (id, te, ty) + | C.AMutCase (id, sp, i, outty, t, pl) -> + let outty, t, pl = gen_term k outty, gen_term k t, List.map (gen_term k) pl in + if is_meta (outty :: t :: pl) then meta id else hole id (* C.AMutCase (id, sp, i, outty, t, pl) *) + | C.AProd (id, _, s, t) -> + let s, t = gen_term k s, gen_term (succ k) t in + if is_meta [s; t] then meta id else C.AProd (id, anon, s, t) + | C.ALambda (id, _, s, t) -> + let s, t = gen_term k s, gen_term (succ k) t in + if is_meta [s; t] then meta id else C.ALambda (id, anon, s, t) + | C.ALetIn (id, _, s, t) -> + let s, t = gen_term k s, gen_term (succ k) t in + if is_meta [s; t] then meta id else C.ALetIn (id, anon, s, t) + | C.AFix (id, i, fl) -> C.AFix (id, i, List.map (gen_fix (List.length fl) k) fl) + | C.ACoFix (id, i, fl) -> C.ACoFix (id, i, List.map (gen_cofix (List.length fl) k) fl) + in + gen_term 0 + +let mk_pattern psno predicate = + let body = generalize psno predicate in + clear_absts 0 psno body + +let get_clears c p xtypes = + let meta = C.Implicit None in + let rec aux c names p it et = function + | [] -> + List.rev c, List.rev names + | Some (C.Name name as n, C.Decl v) as hd :: tl -> + let hd, names, v = + if DTI.does_not_occur 1 p && DTI.does_not_occur 1 it && DTI.does_not_occur 1 et then + Some (C.Anonymous, C.Decl v), name :: names, meta + else + hd, names, v + in + let p = C.Lambda (n, v, p) in + let it = C.Prod (n, v, it) in + let et = C.Prod (n, v, et) in + aux (hd :: c) names p it et tl + | Some (C.Name name as n, C.Def (v, x)) as hd :: tl -> + let hd, names, v = + if DTI.does_not_occur 1 p && DTI.does_not_occur 1 it && DTI.does_not_occur 1 et then + Some (C.Anonymous, C.Def (v, x)), name :: names, meta + else + hd, names, v + in + let p = C.LetIn (n, v, p) in + let it = C.LetIn (n, v, it) in + let et = C.LetIn (n, v, et) in + aux (hd :: c) names p it et tl + | Some (C.Anonymous as n, C.Decl v) as hd :: tl -> + let p = C.Lambda (n, meta, p) in + let it = C.Lambda (n, meta, it) in + let et = C.Lambda (n, meta, et) in + aux (hd :: c) names p it et tl + | Some (C.Anonymous as n, C.Def (v, _)) as hd :: tl -> + let p = C.LetIn (n, meta, p) in + let it = C.LetIn (n, meta, it) in + let et = C.LetIn (n, meta, et) in + aux (hd :: c) names p it et tl + | None :: tl -> assert false in - ann_term c - -let rec add_abst n t = - if n <= 0 then t else - let t = C.ALambda ("", C.Anonymous, C.AImplicit ("", None), lift 0 1 t) in - add_abst (pred n) t - -let mk_ind context id uri tyno outty arg cases = - let lpsno, (_, _, arity, constructors) = get_ind_type uri tyno in - let inty, _ = TC.type_of_aux' [] context (cic arg) Un.empty_ugraph in - let ps = match inty with - | C.MutInd _ -> [] - | C.Appl (C.MutInd _ :: args) -> List.map (fake_annotate context) args - | _ -> assert false + match xtypes with + | Some (it, et) -> aux [] [] p it et c + | None -> c, [] + +let clear c hyp = + let rec aux c = function + | [] -> List.rev c + | Some (C.Name name, entry) :: tail when name = hyp -> + aux (Some (C.Anonymous, entry) :: c) tail + | entry :: tail -> aux (entry :: c) tail + in + aux [] c + +let elim_inferred_type context goal arg using cpattern = + let metasenv, ugraph = [], Un.empty_ugraph in + let ety, _ugraph = TC.type_of_aux' metasenv context using ugraph in + let _splits, args_no = PEH.split_with_whd (context, ety) in + let _metasenv, predicate, _arg, actual_args = PT.mk_predicate_for_elim + ~context ~metasenv ~ugraph ~goal ~arg ~using ~cpattern ~args_no in - let lps, rps = T.list_split lpsno ps in - let eliminator = get_default_eliminator context uri tyno inty in - let arg_ref = T.mk_arel 0 "" in - let body = C.AMutCase (id, uri, tyno, outty, arg_ref, cases) in - let predicate = add_abst (succ (List.length rps)) body in - None + let ty = C.Appl (predicate :: actual_args) in + let upto = List.length actual_args in + Rd.head_beta_reduce ~delta:false ~upto ty