X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=components%2Fcontent_pres%2Facic2Procedural.ml;h=adfe4b05cdf8d647f26e68359332737e4c0097fc;hb=46bde81a59b45bedd6d859450decfc2263d92d7e;hp=9b8dbf06383143c7759c9b7f06bb1c95df6ec83a;hpb=fd08bfeab5fc4c01a1716b9c3fe95ed8439c5190;p=helm.git diff --git a/components/content_pres/acic2Procedural.ml b/components/content_pres/acic2Procedural.ml index 9b8dbf063..adfe4b05c 100644 --- a/components/content_pres/acic2Procedural.ml +++ b/components/content_pres/acic2Procedural.ml @@ -24,37 +24,45 @@ *) module C = Cic -module L = CicClassify -module P = ProceduralTypes module D = Deannotate module DTI = DoubleTypeInference module TC = CicTypeChecker -module U = CicUniv +module Un = CicUniv module UM = UriManager module Obj = LibraryObjects module HObj = HelmLibraryObjects module A = Cic2acic -module T = CicUtil +module Ut = CicUtil +module E = CicEnvironment + +module Cl = CicClassify +module T = ProceduralTypes +module Cn = ProceduralConversion type status = { - sorts : (C.id, Cic2acic.sort_kind) Hashtbl.t; + sorts : (C.id, A.sort_kind) Hashtbl.t; types : (C.id, A.anntypes) Hashtbl.t; prefix: string; max_depth: int option; depth: int; - entries: C.context; - intros: string list + context: C.context; + intros: string list; + ety: C.annterm option } (* helpers ******************************************************************) +let id x = x + +let comp f g x = f (g x) + let cic = D.deannotate_term let split2_last l1 l2 = try let n = pred (List.length l1) in - let before1, after1 = P.list_split n l1 in - let before2, after2 = P.list_split n l2 in + let before1, after1 = T.list_split n l1 in + let before2, after2 = T.list_split n l2 in before1, before2, List.hd after1, List.hd after2 with Invalid_argument _ -> failwith "A2P.split2_last" @@ -76,31 +84,94 @@ let string_of_head = function | C.AMeta _ -> "meta" | C.AImplicit _ -> "implict" -let next st = {st with depth = succ st.depth; intros = []} +let clear st = {st with intros = []; ety = None} + +let next st = {(clear st) with depth = succ st.depth} + +let set_ety st ety = + if st.ety = None then {st with ety = ety} else st -let add st entry intro = - {st with entries = entry :: st.entries; intros = intro :: st.intros} +let add st entry intro ety = + let st = set_ety st ety in + {st with context = entry :: st.context; intros = intro :: st.intros} let test_depth st = try let msg = Printf.sprintf "Depth %u: " st.depth in match st.max_depth with | None -> true, "" - | Some d -> - if st.depth < d then true, msg else false, "DEPTH EXCEDED" + | Some d -> if st.depth < d then true, msg else false, "DEPTH EXCEDED: " with Invalid_argument _ -> failwith "A2P.test_depth" -let get_itype st v = +let is_rewrite_right = function + | C.AConst (_, uri, []) -> + UM.eq uri HObj.Logic.eq_ind_r_URI || Obj.is_eq_ind_r_URI uri + | _ -> false + +let is_rewrite_left = function + | C.AConst (_, uri, []) -> + UM.eq uri HObj.Logic.eq_ind_URI || Obj.is_eq_ind_URI uri + | _ -> false +(* +let get_ind_name uri tno xcno = +try + let ts = match E.get_obj Un.empty_ugraph uri with + | C.InductiveDefinition (ts, _, _,_), _ -> ts + | _ -> assert false + in + let tname, cs = match List.nth ts tno with + | (name, _, _, cs) -> name, cs + in + match xcno with + | None -> tname + | Some cno -> fst (List.nth cs (pred cno)) +with Invalid_argument _ -> failwith "A2P.get_ind_name" +*) +let get_inner_types st v = try - let id = T.id_of_annterm v in - try Some ((Hashtbl.find st.types id).A.annsynthesized) + let id = Ut.id_of_annterm v in + try match Hashtbl.find st.types id with + | {A.annsynthesized = st; A.annexpected = Some et} -> Some (st, et) + | {A.annsynthesized = st; A.annexpected = None} -> Some (st, st) with Not_found -> None -with Invalid_argument _ -> failwith "A2P.get_itype" +with Invalid_argument _ -> failwith "A2P.get_inner_types" + +let get_inner_sort st v = +try + let id = Ut.id_of_annterm v in + try Hashtbl.find st.sorts id + with Not_found -> `Type (CicUniv.fresh()) +with Invalid_argument _ -> failwith "A2P.get_sort" (* proof construction *******************************************************) let unused_premise = "UNUSED" +let defined_premise = "DEFINED" + +let assumed_premise = "ASSUMED" + +let expanded_premise = "EXPANDED" + +let eta_expand n t = + let ty = C.AImplicit ("", None) in + let name i = Printf.sprintf "%s%u" expanded_premise i in + let lambda i t = C.ALambda ("", C.Name (name i), ty, t) in + let arg i n = T.mk_arel (n - i) (name i) in + let rec aux i f a = + if i >= n then f, a else aux (succ i) (comp f (lambda i)) (arg i n :: a) + in + let absts, args = aux 0 id [] in + match Cn.lift 1 n t with + | C.AAppl (id, ts) -> absts (C.AAppl (id, ts @ args)) + | t -> absts (C.AAppl ("", t :: args)) + +let appl_expand n = function + | C.AAppl (id, ts) -> + let before, after = T.list_split (List.length ts + n) ts in + C.AAppl ("", C.AAppl (id, before) :: after) + | _ -> assert false + let get_intro name t = try match name with @@ -113,114 +184,134 @@ let mk_intros st script = try if st.intros = [] then script else let count = List.length st.intros in - P.Intros (Some count, List.rev st.intros, "") :: script + let p0 = T.Whd (count, "") in + let p1 = T.Intros (Some count, List.rev st.intros, "") in + match st.ety with + | Some ety when Cn.need_whd count ety -> p0 :: p1 :: script + | _ -> p1 :: script with Invalid_argument _ -> failwith "A2P.mk_intros" -let is_rewrite_right = function - | C.AConst (_, uri, []) -> - UM.eq uri HObj.Logic.eq_ind_r_URI || Obj.is_eq_ind_r_URI uri - | _ -> false - -let is_rewrite_left = function - | C.AConst (_, uri, []) -> - UM.eq uri HObj.Logic.eq_ind_URI || Obj.is_eq_ind_URI uri - | _ -> false +let rec mk_atomic st dtext what = + if T.is_atomic what then [], what else + let name = defined_premise in + mk_fwd_proof st dtext name what, T.mk_arel 0 name -let mk_premise = function - | C.ARel (_, _, _, binder) -> binder - | C.AVar (_, uri, _) - | C.AConst (_, uri, _) -> UM.name_of_uri uri - | C.ASort (_, sort) -> assert false - | C.AMutInd (_, uri, tno, _) -> assert false - | C.AMutConstruct (_, uri, tno, cno, _) -> assert false - | _ -> assert false +and mk_fwd_rewrite st dtext name tl direction = + let what, where = List.nth tl 5, List.nth tl 3 in + let rewrite premise = + let script, what = mk_atomic st dtext what in + T.Rewrite (direction, what, Some (premise, name), dtext) :: script + in + match where with + | C.ARel (_, _, _, binder) -> rewrite binder + | _ -> + assert (get_inner_sort st where = `Prop); + let pred, old = List.nth tl 2, List.nth tl 1 in + let pred_name = defined_premise in + let pred_text = "extracted" in + let p1 = T.LetIn (pred_name, pred, pred_text) in + let cut_name = assumed_premise in + let cut_type = C.AAppl ("", [T.mk_arel 0 pred_name; old]) in + let cut_text = "" in + let p2 = T.Cut (cut_name, cut_type, cut_text) in + let qs = [rewrite cut_name; mk_proof (next st) where] in + [T.Branch (qs, ""); p2; p1] -let rec mk_fwd_proof st dtext name = function +and mk_fwd_proof st dtext name = function | C.AAppl (_, hd :: tl) as v -> - if is_rewrite_right hd then - let what, where = List.nth tl 5, List.nth tl 3 in - let premise = mk_premise where in - [P.Rewrite (true, what, Some (premise, name), dtext)] - else if is_rewrite_left hd then - let what, where = List.nth tl 5, List.nth tl 3 in - let premise = mk_premise where in - [P.Rewrite (false, what, Some (premise, name), dtext)] - else begin match get_itype st v with - | Some ty -> - let qs = [[P.Id ""]; mk_proof (next st) v] in - [P.Branch (qs, ""); P.Cut (name, ty, dtext)] - | None -> - let ty, _ = TC.type_of_aux' [] st.entries (cic hd) U.empty_ugraph in - let (classes, rc) as h = L.classify ty in - let text = Printf.sprintf "%u %s" (List.length classes) (L.to_string h) in - [P.LetIn (name, v, dtext ^ text)] + if is_rewrite_right hd then mk_fwd_rewrite st dtext name tl true else + if is_rewrite_left hd then mk_fwd_rewrite st dtext name tl false else + begin match get_inner_types st v with + | Some (ity, _) -> + let qs = [[T.Id ""]; mk_proof (next st) v] in + [T.Branch (qs, ""); T.Cut (name, ity, dtext)] + | None -> + let ty, _ = TC.type_of_aux' [] st.context (cic hd) Un.empty_ugraph in + let (classes, rc) as h = Cl.classify st.context ty in + let text = Printf.sprintf "%u %s" (List.length classes) (Cl.to_string h) in + [T.LetIn (name, v, dtext ^ text)] end | v -> - [P.LetIn (name, v, dtext)] + [T.LetIn (name, v, dtext)] and mk_proof st = function - | C.ALambda (_, name, v, t) -> + | C.ALambda (_, name, v, t) as what -> let entry = Some (name, C.Decl (cic v)) in let intro = get_intro name t in - mk_proof (add st entry intro) t - | C.ALetIn (_, name, v, t) as what -> + let ety = match get_inner_types st what with + | Some (_, ety) -> Some ety + | None -> None + in + mk_proof (add st entry intro ety) t + | C.ALetIn (_, name, v, t) as what -> let proceed, dtext = test_depth st in let script = if proceed then let entry = Some (name, C.Def (cic v, None)) in let intro = get_intro name t in - let q = mk_proof (next (add st entry intro)) t in + let q = mk_proof (next (add st entry intro None)) t in List.rev_append (mk_fwd_proof st dtext intro v) q else - [P.Apply (what, dtext)] + [T.Apply (what, dtext)] in mk_intros st script - | C.ARel _ as what -> + | C.ARel _ as what -> let _, dtext = test_depth st in - let script = [P.Apply (what, dtext)] in + let text = "assumption" in + let script = [T.Apply (what, dtext ^ text)] in mk_intros st script - | C.AAppl (_, hd :: tl) as t -> + | C.AMutConstruct _ as what -> + let _, dtext = test_depth st in + let script = [T.Apply (what, dtext)] in + mk_intros st script + | C.AAppl (_, hd :: tl) as t -> let proceed, dtext = test_depth st in let script = if proceed then - let ty, _ = TC.type_of_aux' [] st.entries (cic hd) U.empty_ugraph in - let (classes, rc) as h = L.classify ty in - let synth = L.S.singleton 0 in - let text = Printf.sprintf "%u %s" (List.length classes) (L.to_string h) in + let ty, _ = TC.type_of_aux' [] st.context (cic hd) Un.empty_ugraph in + let (classes, rc) as h = Cl.classify st.context ty in + let decurry = List.length classes - List.length tl in + if decurry < 0 then mk_proof (clear st) (appl_expand decurry t) else + if decurry > 0 then mk_proof (clear st) (eta_expand decurry t) else + let synth = Cl.S.singleton 0 in + let text = Printf.sprintf "%u %s" (List.length classes) (Cl.to_string h) in match rc with - | Some (i, j) when i > 1 -> + | Some (i, j) when i > 1 && i <= List.length classes -> let classes, tl, _, what = split2_last classes tl in - let synth = L.S.add 1 synth in + let script, what = mk_atomic st dtext what in + let synth = Cl.S.add 1 synth in let qs = mk_bkd_proofs (next st) synth classes tl in if is_rewrite_right hd then - [P.Rewrite (false, what, None, dtext); P.Branch (qs, "")] + List.rev script @ + [T.Rewrite (false, what, None, dtext); T.Branch (qs, "")] else if is_rewrite_left hd then - [P.Rewrite (true, what, None, dtext); P.Branch (qs, "")] + List.rev script @ + [T.Rewrite (true, what, None, dtext); T.Branch (qs, "")] else let using = Some hd in - [P.Elim (what, using, dtext ^ text); P.Branch (qs, "")] - | _ -> + List.rev script @ + [T.Elim (what, using, dtext ^ text); T.Branch (qs, "")] + | _ -> let qs = mk_bkd_proofs (next st) synth classes tl in - [P.Apply (hd, dtext ^ text); P.Branch (qs, "")] + let script, hd = mk_atomic st dtext hd in + List.rev script @ + [T.Apply (hd, dtext ^ text); T.Branch (qs, "")] else - [P.Apply (t, dtext)] + [T.Apply (t, dtext)] in mk_intros st script - | t -> + | t -> let text = Printf.sprintf "%s: %s" "UNEXPANDED" (string_of_head t) in - let script = [P.Note text] in + let script = [T.Note text] in mk_intros st script and mk_bkd_proofs st synth classes ts = try let _, dtext = test_depth st in let aux inv v = - if L.overlaps synth inv then None else - if L.S.is_empty inv then Some (mk_proof st v) else - Some [P.Apply (v, dtext ^ "dependent")] + if Cl.overlaps synth inv then None else + if Cl.S.is_empty inv then Some (mk_proof st v) else + Some [T.Apply (v, dtext ^ "dependent")] in - let l1, l2 = List.length classes, List.length ts in - if l1 > l2 then failwith "partial application" else - if l1 < l2 then failwith "too many arguments" else - P.list_map2_filter aux classes ts + T.list_map2_filter aux classes ts with Invalid_argument _ -> failwith "A2P.mk_bkd_proofs" (* object costruction *******************************************************) @@ -231,26 +322,27 @@ let is_theorem pars = let mk_obj st = function | C.AConstant (_, _, s, Some v, t, [], pars) when is_theorem pars -> - let ast = mk_proof st v in - let count = P.count_steps 0 ast in + let ast = mk_proof (set_ety st (Some t)) v in + let count = T.count_steps 0 ast in let text = Printf.sprintf "tactics: %u" count in - P.Theorem (s, t, text) :: ast @ [P.Qed ""] + T.Theorem (s, t, text) :: ast @ [T.Qed ""] | _ -> failwith "not a theorem" (* interface functions ******************************************************) -let acic2procedural ~ids_to_inner_sorts ~ids_to_inner_types prefix aobj = +let acic2procedural ~ids_to_inner_sorts ~ids_to_inner_types ?depth prefix aobj = let st = { sorts = ids_to_inner_sorts; types = ids_to_inner_types; prefix = prefix; - max_depth = None; + max_depth = depth; depth = 0; - entries = []; - intros = [] + context = []; + intros = []; + ety = None } in prerr_endline "Level 2 transformation"; let steps = mk_obj st aobj in prerr_endline "grafite rendering"; - List.rev (P.render_steps [] steps) + List.rev (T.render_steps [] steps)