X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=components%2Ftactics%2FprimitiveTactics.ml;h=47acc7c583a30cc789d96439852dfc5361b70aa2;hb=42f2dc48b4fef5b404f406bf512d6a0cde35c067;hp=5f8533916b74190ad1dc980760250f6c0692a9c7;hpb=6bb370c6e1a036e82315765d6dceb1939c30ed23;p=helm.git diff --git a/components/tactics/primitiveTactics.ml b/components/tactics/primitiveTactics.ml index 5f8533916..47acc7c58 100644 --- a/components/tactics/primitiveTactics.ml +++ b/components/tactics/primitiveTactics.ml @@ -25,11 +25,12 @@ (* $Id$ *) -open ProofEngineTypes - exception TheTypeOfTheCurrentGoalIsAMetaICannotChooseTheRightElimiantionPrinciple exception NotAnInductiveTypeToEliminate exception WrongUriToVariable of string +exception NotAnEliminator + +module PET = ProofEngineTypes (* lambda_abstract newmeta ty *) (* returns a triple [bo],[context],[ty'] where *) @@ -40,7 +41,7 @@ exception WrongUriToVariable of string (* howmany = -1 means Intros, howmany > 0 means Intros n *) let lambda_abstract ?(howmany=(-1)) metasenv context newmeta ty mk_fresh_name = let module C = Cic in - let rec collect_context context howmany ty = + let rec collect_context context howmany do_whd ty = match howmany with | 0 -> let irl = @@ -49,16 +50,21 @@ let lambda_abstract ?(howmany=(-1)) metasenv context newmeta ty mk_fresh_name = context, ty, (C.Meta (newmeta,irl)) | _ -> match ty with - C.Cast (te,_) -> collect_context context howmany te + C.Cast (te,_) -> collect_context context howmany do_whd te | C.Prod (n,s,t) -> - let n' = mk_fresh_name metasenv context n ~typ:s in + let n' = mk_fresh_name metasenv context n ~typ:s in let (context',ty,bo) = - collect_context ((Some (n',(C.Decl s)))::context) (howmany - 1) t + let entry = match n' with + | C.Name _ -> Some (n',(C.Decl s)) + | C.Anonymous -> None + in + let ctx = entry :: context in + collect_context ctx (howmany - 1) do_whd t in (context',ty,C.Lambda(n',s,bo)) | C.LetIn (n,s,t) -> let (context',ty,bo) = - collect_context ((Some (n,(C.Def (s,None))))::context) (howmany - 1) t + collect_context ((Some (n,(C.Def (s,None))))::context) (howmany - 1) do_whd t in (context',ty,C.LetIn(n,s,bo)) | _ as t -> @@ -67,10 +73,13 @@ let lambda_abstract ?(howmany=(-1)) metasenv context newmeta ty mk_fresh_name = CicMkImplicit.identity_relocation_list_for_metavariable context in context, t, (C.Meta (newmeta,irl)) - else - raise (Fail (lazy "intro(s): not enough products or let-ins")) + else if do_whd then + let t = CicReduction.whd ~delta:true context t in + collect_context context howmany false t + else + raise (PET.Fail (lazy "intro(s): not enough products or let-ins")) in - collect_context context howmany ty + collect_context context howmany true ty let eta_expand metasenv context t arg = let module T = CicTypeChecker in @@ -229,12 +238,13 @@ let new_fresh_meta,newmetasenvfragment,exp_named_subst',exp_named_subst_diff ;; -let new_metasenv_and_unify_and_t newmeta' metasenv' context term' ty termty goal_arity = +let new_metasenv_and_unify_and_t newmeta' metasenv' subst context term' ty termty goal_arity = let (consthead,newmetasenv,arguments,_) = TermUtil.saturate_term newmeta' metasenv' context termty goal_arity in let subst,newmetasenv',_ = - CicUnification.fo_unif newmetasenv context consthead ty CicUniv.empty_ugraph + CicUnification.fo_unif_subst + subst context newmetasenv consthead ty CicUniv.empty_ugraph in let t = if List.length arguments = 0 then term' else Cic.Appl (term'::arguments) @@ -251,7 +261,7 @@ let apply_with_subst ~term ~subst ~maxmeta (proof, goal) = let module T = CicTypeChecker in let module R = CicReduction in let module C = Cic in - let (_,metasenv,_,_) = proof in + let (_,metasenv,_subst,_,_, _) = proof in let metano,context,ty = CicUtil.lookup_meta goal metasenv in let newmeta = max (CicMkImplicit.new_meta metasenv subst) maxmeta in let exp_named_subst_diff,newmeta',newmetasenvfragment,term' = @@ -296,7 +306,7 @@ let apply_with_subst ~term ~subst ~maxmeta (proof, goal) = let subst,newmetasenv',t = let rec add_one_argument n = try - new_metasenv_and_unify_and_t newmeta' metasenv' context term' ty + new_metasenv_and_unify_and_t newmeta' metasenv' subst context term' ty termty n with CicUnification.UnificationFailure _ when n > 0 -> add_one_argument (n - 1) @@ -315,13 +325,13 @@ let apply_with_subst ~term ~subst ~maxmeta (proof, goal) = let subst_in = (* if we just apply the subtitution, the type is irrelevant: we may use Implicit, since it will be dropped *) - CicMetaSubst.apply_subst ((metano,(context,bo',Cic.Implicit None))::subst) + ((metano,(context,bo',Cic.Implicit None))::subst) in let (newproof, newmetasenv''') = ProofEngineHelpers.subst_meta_and_metasenv_in_proof proof metano subst_in newmetasenv'' in - let subst = ((metano,(context,bo',Cic.Implicit None))::subst) in + let subst = ((metano,(context,bo',ty))::subst) in subst, (newproof, List.map (function (i,_,_) -> i) new_uninstantiatedmetas), max maxmeta (CicMkImplicit.new_meta newmetasenv''' subst) @@ -335,7 +345,7 @@ let apply_with_subst ~term ?(subst=[]) ?(maxmeta=0) status = (* TODO cacciare anche altre eccezioni? *) with | CicUnification.UnificationFailure msg - | CicTypeChecker.TypeCheckerFailure msg -> raise (Fail msg) + | CicTypeChecker.TypeCheckerFailure msg -> raise (PET.Fail msg) (* ALB *) let apply_tac_verbose ~term status = @@ -354,18 +364,16 @@ let apply_tac ~term = with | CicUnification.UnificationFailure msg | CicTypeChecker.TypeCheckerFailure msg -> - raise (Fail msg) + raise (PET.Fail msg) in - mk_tactic (apply_tac ~term) + PET.mk_tactic (apply_tac ~term) let intros_tac ?howmany ?(mk_fresh_name_callback = FreshNamesGenerator.mk_fresh_name ~subst:[]) ()= - let intros_tac - ?(mk_fresh_name_callback = (FreshNamesGenerator.mk_fresh_name ~subst:[])) () - (proof, goal) + let intros_tac (proof, goal) = let module C = Cic in let module R = CicReduction in - let (_,metasenv,_,_) = proof in + let (_,metasenv,_subst,_,_, _) = proof in let metano,context,ty = CicUtil.lookup_meta goal metasenv in let newmeta = ProofEngineHelpers.new_meta_of_proof ~proof in let (context',ty',bo') = @@ -377,7 +385,7 @@ let intros_tac ?howmany ?(mk_fresh_name_callback = FreshNamesGenerator.mk_fresh_ in (newproof, [newmeta]) in - mk_tactic (intros_tac ~mk_fresh_name_callback ()) + PET.mk_tactic intros_tac let cut_tac ?(mk_fresh_name_callback = FreshNamesGenerator.mk_fresh_name ~subst:[]) term = let cut_tac @@ -385,7 +393,7 @@ let cut_tac ?(mk_fresh_name_callback = FreshNamesGenerator.mk_fresh_name ~subst: term (proof, goal) = let module C = Cic in - let curi,metasenv,pbo,pty = proof in + let curi,metasenv,_subst,pbo,pty, attrs = proof in let metano,context,ty = CicUtil.lookup_meta goal metasenv in let newmeta1 = ProofEngineHelpers.new_meta_of_proof ~proof in let newmeta2 = newmeta1 + 1 in @@ -401,18 +409,23 @@ let cut_tac ?(mk_fresh_name_callback = FreshNamesGenerator.mk_fresh_name ~subst: CicMkImplicit.identity_relocation_list_for_metavariable context in let newmeta1ty = CicSubstitution.lift 1 ty in +(* This is the pre-letin implementation let bo' = C.Appl [C.Lambda (fresh_name,term,C.Meta (newmeta1,irl1)) ; C.Meta (newmeta2,irl2)] in +*) + let bo' = + Cic.LetIn (fresh_name, C.Meta (newmeta2,irl2), C.Meta (newmeta1,irl1)) + in let (newproof, _) = ProofEngineHelpers.subst_meta_in_proof proof metano bo' [newmeta2,context,term; newmeta1,context_for_newmeta1,newmeta1ty]; in (newproof, [newmeta1 ; newmeta2]) in - mk_tactic (cut_tac ~mk_fresh_name_callback term) + PET.mk_tactic (cut_tac ~mk_fresh_name_callback term) let letin_tac ?(mk_fresh_name_callback=FreshNamesGenerator.mk_fresh_name ~subst:[]) term = let letin_tac @@ -420,7 +433,7 @@ let letin_tac ?(mk_fresh_name_callback=FreshNamesGenerator.mk_fresh_name ~subst: term (proof, goal) = let module C = Cic in - let curi,metasenv,pbo,pty = proof in + let curi,metasenv,_subst,pbo,pty, attrs = proof in (* occur check *) let occur i t = let m = CicUtil.metas_of_term t in @@ -450,13 +463,13 @@ let letin_tac ?(mk_fresh_name_callback=FreshNamesGenerator.mk_fresh_name ~subst: in (newproof, [newmeta]) in - mk_tactic (letin_tac ~mk_fresh_name_callback term) + PET.mk_tactic (letin_tac ~mk_fresh_name_callback term) (** functional part of the "exact" tactic *) let exact_tac ~term = let exact_tac ~term (proof, goal) = (* Assumption: the term bo must be closed in the current context *) - let (_,metasenv,_,_) = proof in + let (_,metasenv,_subst,_,_, _) = proof in let metano,context,ty = CicUtil.lookup_meta goal metasenv in let module T = CicTypeChecker in let module R = CicReduction in @@ -469,26 +482,158 @@ let exact_tac ~term = (newproof, []) end else - raise (Fail (lazy "The type of the provided term is not the one expected.")) + raise (PET.Fail (lazy "The type of the provided term is not the one expected.")) in - mk_tactic (exact_tac ~term) + PET.mk_tactic (exact_tac ~term) (* not really "primitive" tactics .... *) -let elim_tac ~term = - let elim_tac ~term (proof, goal) = - let module T = CicTypeChecker in - let module U = UriManager in - let module R = CicReduction in - let module C = Cic in - let (curi,metasenv,proofbo,proofty) = proof in - let metano,context,ty = CicUtil.lookup_meta goal metasenv in - let termty,_ = T.type_of_aux' metasenv context term CicUniv.empty_ugraph in + +module TC = CicTypeChecker +module UM = UriManager +module R = CicReduction +module C = Cic +module PEH = ProofEngineHelpers +module PER = ProofEngineReduction +module MS = CicMetaSubst +module S = CicSubstitution +module T = Tacticals +module RT = ReductionTactics + +let rec args_init n f = + if n <= 0 then [] else f n :: args_init (pred n) f + +let mk_predicate_for_elim + ~context ~metasenv ~ugraph ~goal ~arg ~using ~cpattern ~args_no = + let instantiated_eliminator = + let f n = if n = 1 then arg else C.Implicit None in + C.Appl (using :: args_init args_no f) + in + let _actual_arg, iety, _metasenv', _ugraph = + CicRefine.type_of_aux' metasenv context instantiated_eliminator ugraph + in + let _actual_meta, actual_args = match iety with + | C.Meta (i, _) -> i, [] + | C.Appl (C.Meta (i, _) :: args) -> i, args + | _ -> assert false + in +(* let _, upto = PEH.split_with_whd (List.nth splits pred_pos) in *) + let rec mk_pred metasenv context' pred arg' cpattern' = function + | [] -> metasenv, pred, arg' + | arg :: tail -> +(* FG: we find the predicate for the eliminator as in the rewrite tactic ****) + let argty, _ugraph = TC.type_of_aux' metasenv context arg ugraph in + let argty = CicReduction.whd context argty in + let fresh_name = + FreshNamesGenerator.mk_fresh_name + ~subst:[] metasenv context' C.Anonymous ~typ:argty + in + let hyp = Some (fresh_name, C.Decl argty) in + let lazy_term c m u = + let distance = List.length c - List.length context in + S.lift distance arg, m, u + in + let pattern = Some lazy_term, [], Some cpattern' in + let subst, metasenv, _ugraph, _conjecture, selected_terms = + ProofEngineHelpers.select + ~metasenv ~ugraph ~conjecture:(0, context, pred) ~pattern + in + let metasenv = MS.apply_subst_metasenv subst metasenv in + let map (_context_of_t, t) l = t :: l in + let what = List.fold_right map selected_terms [] in + let arg' = MS.apply_subst subst arg' in + let argty = MS.apply_subst subst argty in + let pred = PER.replace_with_rel_1_from ~equality:(==) ~what 1 pred in + let pred = MS.apply_subst subst pred in + let pred = C.Lambda (fresh_name, argty, pred) in + let cpattern' = C.Lambda (C.Anonymous, C.Implicit None, cpattern') in + mk_pred metasenv (hyp :: context') pred arg' cpattern' tail + in + let metasenv, pred, arg = + mk_pred metasenv context goal arg cpattern (List.rev actual_args) + in + HLog.debug ("PREDICATE: " ^ CicPp.ppterm ~metasenv pred ^ " ARGS: " ^ String.concat " " (List.map (CicPp.ppterm ~metasenv) actual_args)); + metasenv, pred, arg, actual_args + +let beta_after_elim_tac upto predicate = + let beta_after_elim_tac status = + let proof, goal = status in + let _, metasenv, _subst, _, _, _ = proof in + let _, _, ty = CicUtil.lookup_meta goal metasenv in + let mk_pattern ~equality ~upto ~predicate ty = + (* code adapted from ProceduralConversion.generalize *) + let meta = C.Implicit None in + let hole = C.Implicit (Some `Hole) in + let anon = C.Anonymous in + let is_meta = + let map b = function + | C.Implicit None when b -> b + | _ -> false + in + List.fold_left map true + in + let rec gen_fix len k (name, i, ty, bo) = + name, i, gen_term k ty, gen_term (k + len) bo + and gen_cofix len k (name, ty, bo) = + name, gen_term k ty, gen_term (k + len) bo + and gen_term k = function + | C.Sort _ + | C.Implicit _ + | C.Const (_, _) + | C.Var (_, _) + | C.MutInd (_, _, _) + | C.MutConstruct (_, _, _, _) + | C.Meta (_, _) + | C.Rel _ -> meta + | C.Appl (hd :: tl) when equality hd (S.lift k predicate) -> + assert (List.length tl = upto); + hole + | C.Appl ts -> + let ts = List.map (gen_term k) ts in + if is_meta ts then meta else C.Appl ts + | C.Cast (te, ty) -> + let te, ty = gen_term k te, gen_term k ty in + if is_meta [te; ty] then meta else C.Cast (te, ty) + | C.MutCase (sp, i, outty, t, pl) -> + let outty, t, pl = gen_term k outty, gen_term k t, List.map (gen_term k) pl in + if is_meta (outty :: t :: pl) then meta else hole (* C.MutCase (sp, i, outty, t, pl) *) + | C.Prod (_, s, t) -> + let s, t = gen_term k s, gen_term (succ k) t in + if is_meta [s; t] then meta else C.Prod (anon, s, t) + | C.Lambda (_, s, t) -> + let s, t = gen_term k s, gen_term (succ k) t in + if is_meta [s; t] then meta else C.Lambda (anon, s, t) + | C.LetIn (_, s, t) -> + let s, t = gen_term k s, gen_term (succ k) t in + if is_meta [s; t] then meta else C.LetIn (anon, s, t) + | C.Fix (i, fl) -> C.Fix (i, List.map (gen_fix (List.length fl) k) fl) + | C.CoFix (i, fl) -> C.CoFix (i, List.map (gen_cofix (List.length fl) k) fl) + in + None, [], Some (gen_term 0 ty) + in + let equality = CicUtil.alpha_equivalence in + let pattern = mk_pattern ~equality ~upto ~predicate ty in + let tactic = RT.head_beta_reduce_tac ~delta:false ~upto ~pattern in + PET.apply_tactic tactic status + in + PET.mk_tactic beta_after_elim_tac + +let elim_tac ?using ?(pattern = PET.conclusion_pattern None) term = + let elim_tac (proof, goal) = + let cpattern = match pattern with + | None, [], Some cpattern -> cpattern + | _ -> raise (PET.Fail (lazy "not implemented")) + in + let ugraph = CicUniv.empty_ugraph in + let curi, metasenv, _subst, proofbo, proofty, attrs = proof in + let conjecture = CicUtil.lookup_meta goal metasenv in + let metano, context, ty = conjecture in + let termty,_ugraph = TC.type_of_aux' metasenv context term ugraph in let termty = CicReduction.whd context termty in - let (termty,metasenv',arguments,fresh_meta) = + let termty, metasenv', arguments, _fresh_meta = TermUtil.saturate_term (ProofEngineHelpers.new_meta_of_proof proof) metasenv context termty 0 in let term = if arguments = [] then term else Cic.Appl (term::arguments) in - let uri,exp_named_subst,typeno,args = + let uri, exp_named_subst, typeno, _args = match termty with C.MutInd (uri,typeno,exp_named_subst) -> (uri,exp_named_subst,typeno,[]) | C.Appl ((C.MutInd (uri,typeno,exp_named_subst))::args) -> @@ -496,16 +641,16 @@ let elim_tac ~term = | _ -> raise NotAnInductiveTypeToEliminate in let eliminator_uri = - let buri = U.buri_of_uri uri in + let buri = UM.buri_of_uri uri in let name = - let o,_ = CicEnvironment.get_obj CicUniv.empty_ugraph uri in + let o,_ugraph = CicEnvironment.get_obj ugraph uri in match o with C.InductiveDefinition (tys,_,_,_) -> let (name,_,_,_) = List.nth tys typeno in name | _ -> assert false in - let ty_ty,_ = T.type_of_aux' metasenv' context ty CicUniv.empty_ugraph in + let ty_ty,_ugraph = TC.type_of_aux' metasenv' context ty ugraph in let ext = match ty_ty with C.Sort C.Prop -> "_ind" @@ -515,61 +660,212 @@ let elim_tac ~term = | C.Meta (_,_) -> raise TheTypeOfTheCurrentGoalIsAMetaICannotChooseTheRightElimiantionPrinciple | _ -> assert false in - U.uri_of_string (buri ^ "/" ^ name ^ ext ^ ".con") + UM.uri_of_string (buri ^ "/" ^ name ^ ext ^ ".con") in - let eliminator_ref = C.Const (eliminator_uri,exp_named_subst) in - let ety,_ = - T.type_of_aux' metasenv' context eliminator_ref CicUniv.empty_ugraph in - let rec find_args_no = - function - C.Prod (_,_,t) -> 1 + find_args_no t - | C.Cast (s,_) -> find_args_no s - | C.LetIn (_,_,t) -> 0 + find_args_no t - | _ -> 0 - in - let args_no = find_args_no ety in - let term_to_refine = - let rec make_tl base_case = - function - 0 -> [base_case] - | n -> (C.Implicit None)::(make_tl base_case (n - 1)) - in - C.Appl (eliminator_ref :: make_tl term (args_no - 1)) + let eliminator_ref = match using with + | None -> C.Const (eliminator_uri, exp_named_subst) + | Some t -> t + in + let ety, _ugraph = + TC.type_of_aux' metasenv' context eliminator_ref ugraph in +(* FG: ADDED PART ***********************************************************) +(* FG: we can not assume eliminator is the default eliminator ***************) + let splits, args_no = PEH.split_with_whd (context, ety) in + let pred_pos = match List.hd splits with + | _, C.Rel i when i > 1 && i <= args_no -> i + | _, C.Appl (C.Rel i :: _) when i > 1 && i <= args_no -> i + | _ -> raise NotAnEliminator + in + let metasenv', pred, term, actual_args = match pattern with + | None, [], Some (C.Implicit (Some `Hole)) -> + metasenv', C.Implicit None, term, [] + | _ -> + mk_predicate_for_elim + ~args_no ~context ~ugraph ~cpattern + ~metasenv:metasenv' ~arg:term ~using:eliminator_ref ~goal:ty + in +(* FG: END OF ADDED PART ****************************************************) + let term_to_refine = + let f n = + if n = pred_pos then pred else + if n = 1 then term else C.Implicit None in - let refined_term,_,metasenv'',_ = - CicRefine.type_of_aux' metasenv' context term_to_refine - CicUniv.empty_ugraph - in - let new_goals = - ProofEngineHelpers.compare_metasenvs - ~oldmetasenv:metasenv ~newmetasenv:metasenv'' - in - let proof' = curi,metasenv'',proofbo,proofty in - let proof'', new_goals' = - apply_tactic (apply_tac ~term:refined_term) (proof',goal) + C.Appl (eliminator_ref :: args_init args_no f) + in + let refined_term,_refined_termty,metasenv'',_ugraph = + CicRefine.type_of_aux' metasenv' context term_to_refine ugraph + in + let new_goals = + ProofEngineHelpers.compare_metasenvs + ~oldmetasenv:metasenv ~newmetasenv:metasenv'' + in + let proof' = curi,metasenv'',_subst,proofbo,proofty, attrs in + let proof'', new_goals' = + PET.apply_tactic (apply_tac ~term:refined_term) (proof',goal) + in + (* The apply_tactic can have closed some of the new_goals *) + let patched_new_goals = + let (_,metasenv''',_subst,_,_, _) = proof'' in + List.filter + (function i -> List.exists (function (j,_,_) -> j=i) metasenv''') + new_goals @ new_goals' + in + let res = proof'', patched_new_goals in + let upto = List.length actual_args in + if upto = 0 then res else + let continuation = beta_after_elim_tac upto pred in + let dummy_status = proof,goal in + PET.apply_tactic + (T.then_ ~start:(PET.mk_tactic (fun _ -> res)) ~continuation) + dummy_status + in + PET.mk_tactic elim_tac +;; + +let cases_intros_tac ?(howmany=(-1)) ?(mk_fresh_name_callback = FreshNamesGenerator.mk_fresh_name ~subst:[]) term = + let cases_tac ~term (proof, goal) = + let module TC = CicTypeChecker in + let module U = UriManager in + let module R = CicReduction in + let module C = Cic in + let (curi,metasenv,_subst, proofbo,proofty, attrs) = proof in + let metano,context,ty = CicUtil.lookup_meta goal metasenv in + let termty,_ = TC.type_of_aux' metasenv context term CicUniv.empty_ugraph in + let termty = CicReduction.whd context termty in + let (termty,metasenv',arguments,fresh_meta) = + TermUtil.saturate_term + (ProofEngineHelpers.new_meta_of_proof proof) metasenv context termty 0 in + let term = if arguments = [] then term else Cic.Appl (term::arguments) in + let uri,exp_named_subst,typeno,args = + match termty with + | C.MutInd (uri,typeno,exp_named_subst) -> (uri,exp_named_subst,typeno,[]) + | C.Appl ((C.MutInd (uri,typeno,exp_named_subst))::args) -> + (uri,exp_named_subst,typeno,args) + | _ -> raise NotAnInductiveTypeToEliminate + in + let paramsno,itty,patterns,right_args = + match CicEnvironment.get_obj CicUniv.empty_ugraph uri with + | C.InductiveDefinition (tys,_,paramsno,_),_ -> + let _,left_parameters,right_args = + List.fold_right + (fun x (n,acc1,acc2) -> + if n > 0 then (n-1,acc1,x::acc2) else (n,x::acc1,acc2)) + args (List.length args - paramsno, [],[]) + in + let _,_,itty,cl = List.nth tys typeno in + let rec aux left_parameters context t = + match left_parameters,CicReduction.whd context t with + | [],C.Prod (name,source,target) -> + let fresh_name = + mk_fresh_name_callback metasenv' context name ~typ:source in - (* The apply_tactic can have closed some of the new_goals *) - let patched_new_goals = - let (_,metasenv''',_,_) = proof'' in - List.filter - (function i -> List.exists (function (j,_,_) -> j=i) metasenv''' - ) new_goals @ new_goals' - in - proof'', patched_new_goals - in - mk_tactic (elim_tac ~term) + C.Lambda (fresh_name,C.Implicit None, + aux [] (Some (fresh_name,C.Decl source)::context) target) + | hd::tl,C.Prod (name,source,target) -> + (* left parameters instantiation *) + aux tl context (CicSubstitution.subst hd target) + | [],_ -> C.Implicit None + | _ -> assert false + in + paramsno,itty, + List.map (function (_,cty) -> aux left_parameters context cty) cl, + right_args + | _ -> assert false + in + let outtype = + let n_right_args = List.length right_args in + let n_lambdas = n_right_args + 1 in + let lifted_ty = CicSubstitution.lift n_lambdas ty in + let captured_ty = + let what = + List.map (CicSubstitution.lift n_lambdas) (right_args) + in + let with_what meta = + let rec mkargs = function + | 0 -> assert false + | 1 -> [] + | n -> + (if meta then Cic.Implicit None else Cic.Rel n)::(mkargs (n-1)) + in + mkargs n_lambdas + in + let replaced = ref false in + let replace = ProofEngineReduction.replace_lifting + ~equality:(fun _ a b -> let rc = CicUtil.alpha_equivalence a b in + if rc then replaced := true; rc) + ~context:[] + in + let captured = + replace ~what:[CicSubstitution.lift n_lambdas term] + ~with_what:[Cic.Rel 1] ~where:lifted_ty + in + if not !replaced then + (* this means the matched term is not there, + * but maybe right params are: we user rels (to right args lambdas) *) + replace ~what ~with_what:(with_what false) ~where:captured + else + (* since the matched is there, rights should be inferrable *) + replace ~what ~with_what:(with_what true) ~where:captured + in + let captured_term_ty = + let term_ty = CicSubstitution.lift n_right_args termty in + let rec mkrels = function 0 -> []|n -> (Cic.Rel n)::(mkrels (n-1)) in + let rec fstn acc l n = + if n = 0 then acc else fstn (acc@[List.hd l]) (List.tl l) (n-1) + in + match term_ty with + | C.MutInd _ -> term_ty + | C.Appl ((C.MutInd (a,b,c))::args) -> + C.Appl ((C.MutInd (a,b,c)):: + fstn [] args paramsno @ mkrels n_right_args) + | _ -> raise NotAnInductiveTypeToEliminate + in + let rec add_lambdas = function + | 0 -> captured_ty + | 1 -> + C.Lambda (C.Name "matched", captured_term_ty, (add_lambdas 0)) + | n -> + C.Lambda (C.Name ("right_"^(string_of_int (n-1))), + C.Implicit None, (add_lambdas (n-1))) + in + add_lambdas n_lambdas + in + let term_to_refine = C.MutCase (uri,typeno,outtype,term,patterns) in + let refined_term,_,metasenv'',_ = + CicRefine.type_of_aux' metasenv' context term_to_refine + CicUniv.empty_ugraph + in + let new_goals = + ProofEngineHelpers.compare_metasenvs + ~oldmetasenv:metasenv ~newmetasenv:metasenv'' + in + let proof' = curi,metasenv'',_subst,proofbo,proofty, attrs in + let proof'', new_goals' = + PET.apply_tactic (apply_tac ~term:refined_term) (proof',goal) + in + (* The apply_tactic can have closed some of the new_goals *) + let patched_new_goals = + let (_,metasenv''',_subst,_,_,_) = proof'' in + List.filter + (function i -> List.exists (function (j,_,_) -> j=i) metasenv''') + new_goals @ new_goals' + in + proof'', patched_new_goals + in + PET.mk_tactic (cases_tac ~term) ;; + let elim_intros_tac ?(mk_fresh_name_callback = FreshNamesGenerator.mk_fresh_name ~subst:[]) - ?depth ?using what = - Tacticals.then_ ~start:(elim_tac ~term:what) + ?depth ?using ?pattern what = + Tacticals.then_ ~start:(elim_tac ?using ?pattern what) ~continuation:(intros_tac ~mk_fresh_name_callback ?howmany:depth ()) ;; (* The simplification is performed only on the conclusion *) let elim_intros_simpl_tac ?(mk_fresh_name_callback = FreshNamesGenerator.mk_fresh_name ~subst:[]) - ?depth ?using what = - Tacticals.then_ ~start:(elim_tac ~term:what) + ?depth ?using ?pattern what = + Tacticals.then_ ~start:(elim_tac ?using ?pattern what) ~continuation: (Tacticals.thens ~start:(intros_tac ~mk_fresh_name_callback ?howmany:depth ()) @@ -580,13 +876,11 @@ let elim_intros_simpl_tac ?(mk_fresh_name_callback = FreshNamesGenerator.mk_fres (* FG: insetrts a "hole" in the context (derived from letin_tac) *) -module C = Cic - let letout_tac = let mk_fresh_name_callback = FreshNamesGenerator.mk_fresh_name ~subst:[] in let term = C.Sort C.Set in let letout_tac (proof, goal) = - let curi, metasenv, pbo, pty = proof in + let curi, metasenv, _subst, pbo, pty, attrs = proof in let metano, context, ty = CicUtil.lookup_meta goal metasenv in let newmeta = ProofEngineHelpers.new_meta_of_proof ~proof in let fresh_name = mk_fresh_name_callback metasenv context (Cic.Name "hole") ~typ:term in @@ -597,4 +891,4 @@ let letout_tac = let newproof, _ = ProofEngineHelpers.subst_meta_in_proof proof metano bo'[newmeta,context_for_newmeta,newmetaty] in newproof, [newmeta] in - mk_tactic letout_tac + PET.mk_tactic letout_tac