X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=components%2Ftactics%2FprimitiveTactics.ml;h=47acc7c583a30cc789d96439852dfc5361b70aa2;hb=b0a6c05decc9f0e731f70cfc5ae5350ae4046b79;hp=50626aff0ed3f7d41b012a4483b106436d4569fe;hpb=609a4bb85c88a5e5090f7db0a6bcf547ba9d0593;p=helm.git diff --git a/components/tactics/primitiveTactics.ml b/components/tactics/primitiveTactics.ml index 50626aff0..47acc7c58 100644 --- a/components/tactics/primitiveTactics.ml +++ b/components/tactics/primitiveTactics.ml @@ -25,13 +25,13 @@ (* $Id$ *) -open ProofEngineTypes - exception TheTypeOfTheCurrentGoalIsAMetaICannotChooseTheRightElimiantionPrinciple exception NotAnInductiveTypeToEliminate exception WrongUriToVariable of string exception NotAnEliminator +module PET = ProofEngineTypes + (* lambda_abstract newmeta ty *) (* returns a triple [bo],[context],[ty'] where *) (* [ty] = Pi/LetIn [context].[ty'] ([context] is a vector!) *) @@ -52,9 +52,13 @@ let lambda_abstract ?(howmany=(-1)) metasenv context newmeta ty mk_fresh_name = match ty with C.Cast (te,_) -> collect_context context howmany do_whd te | C.Prod (n,s,t) -> - let n' = mk_fresh_name metasenv context n ~typ:s in + let n' = mk_fresh_name metasenv context n ~typ:s in let (context',ty,bo) = - let ctx = (Some (n',(C.Decl s)))::context in + let entry = match n' with + | C.Name _ -> Some (n',(C.Decl s)) + | C.Anonymous -> None + in + let ctx = entry :: context in collect_context ctx (howmany - 1) do_whd t in (context',ty,C.Lambda(n',s,bo)) @@ -73,7 +77,7 @@ let lambda_abstract ?(howmany=(-1)) metasenv context newmeta ty mk_fresh_name = let t = CicReduction.whd ~delta:true context t in collect_context context howmany false t else - raise (Fail (lazy "intro(s): not enough products or let-ins")) + raise (PET.Fail (lazy "intro(s): not enough products or let-ins")) in collect_context context howmany true ty @@ -234,12 +238,13 @@ let new_fresh_meta,newmetasenvfragment,exp_named_subst',exp_named_subst_diff ;; -let new_metasenv_and_unify_and_t newmeta' metasenv' context term' ty termty goal_arity = +let new_metasenv_and_unify_and_t newmeta' metasenv' subst context term' ty termty goal_arity = let (consthead,newmetasenv,arguments,_) = TermUtil.saturate_term newmeta' metasenv' context termty goal_arity in let subst,newmetasenv',_ = - CicUnification.fo_unif newmetasenv context consthead ty CicUniv.empty_ugraph + CicUnification.fo_unif_subst + subst context newmetasenv consthead ty CicUniv.empty_ugraph in let t = if List.length arguments = 0 then term' else Cic.Appl (term'::arguments) @@ -256,7 +261,7 @@ let apply_with_subst ~term ~subst ~maxmeta (proof, goal) = let module T = CicTypeChecker in let module R = CicReduction in let module C = Cic in - let (_,metasenv,_,_, _) = proof in + let (_,metasenv,_subst,_,_, _) = proof in let metano,context,ty = CicUtil.lookup_meta goal metasenv in let newmeta = max (CicMkImplicit.new_meta metasenv subst) maxmeta in let exp_named_subst_diff,newmeta',newmetasenvfragment,term' = @@ -301,7 +306,7 @@ let apply_with_subst ~term ~subst ~maxmeta (proof, goal) = let subst,newmetasenv',t = let rec add_one_argument n = try - new_metasenv_and_unify_and_t newmeta' metasenv' context term' ty + new_metasenv_and_unify_and_t newmeta' metasenv' subst context term' ty termty n with CicUnification.UnificationFailure _ when n > 0 -> add_one_argument (n - 1) @@ -320,13 +325,13 @@ let apply_with_subst ~term ~subst ~maxmeta (proof, goal) = let subst_in = (* if we just apply the subtitution, the type is irrelevant: we may use Implicit, since it will be dropped *) - CicMetaSubst.apply_subst ((metano,(context,bo',Cic.Implicit None))::subst) + ((metano,(context,bo',Cic.Implicit None))::subst) in let (newproof, newmetasenv''') = ProofEngineHelpers.subst_meta_and_metasenv_in_proof proof metano subst_in newmetasenv'' in - let subst = ((metano,(context,bo',Cic.Implicit None))::subst) in + let subst = ((metano,(context,bo',ty))::subst) in subst, (newproof, List.map (function (i,_,_) -> i) new_uninstantiatedmetas), max maxmeta (CicMkImplicit.new_meta newmetasenv''' subst) @@ -340,7 +345,7 @@ let apply_with_subst ~term ?(subst=[]) ?(maxmeta=0) status = (* TODO cacciare anche altre eccezioni? *) with | CicUnification.UnificationFailure msg - | CicTypeChecker.TypeCheckerFailure msg -> raise (Fail msg) + | CicTypeChecker.TypeCheckerFailure msg -> raise (PET.Fail msg) (* ALB *) let apply_tac_verbose ~term status = @@ -359,18 +364,16 @@ let apply_tac ~term = with | CicUnification.UnificationFailure msg | CicTypeChecker.TypeCheckerFailure msg -> - raise (Fail msg) + raise (PET.Fail msg) in - mk_tactic (apply_tac ~term) + PET.mk_tactic (apply_tac ~term) let intros_tac ?howmany ?(mk_fresh_name_callback = FreshNamesGenerator.mk_fresh_name ~subst:[]) ()= - let intros_tac - ?(mk_fresh_name_callback = (FreshNamesGenerator.mk_fresh_name ~subst:[])) () - (proof, goal) + let intros_tac (proof, goal) = let module C = Cic in let module R = CicReduction in - let (_,metasenv,_,_, _) = proof in + let (_,metasenv,_subst,_,_, _) = proof in let metano,context,ty = CicUtil.lookup_meta goal metasenv in let newmeta = ProofEngineHelpers.new_meta_of_proof ~proof in let (context',ty',bo') = @@ -382,7 +385,7 @@ let intros_tac ?howmany ?(mk_fresh_name_callback = FreshNamesGenerator.mk_fresh_ in (newproof, [newmeta]) in - mk_tactic (intros_tac ~mk_fresh_name_callback ()) + PET.mk_tactic intros_tac let cut_tac ?(mk_fresh_name_callback = FreshNamesGenerator.mk_fresh_name ~subst:[]) term = let cut_tac @@ -390,7 +393,7 @@ let cut_tac ?(mk_fresh_name_callback = FreshNamesGenerator.mk_fresh_name ~subst: term (proof, goal) = let module C = Cic in - let curi,metasenv,pbo,pty, attrs = proof in + let curi,metasenv,_subst,pbo,pty, attrs = proof in let metano,context,ty = CicUtil.lookup_meta goal metasenv in let newmeta1 = ProofEngineHelpers.new_meta_of_proof ~proof in let newmeta2 = newmeta1 + 1 in @@ -406,18 +409,23 @@ let cut_tac ?(mk_fresh_name_callback = FreshNamesGenerator.mk_fresh_name ~subst: CicMkImplicit.identity_relocation_list_for_metavariable context in let newmeta1ty = CicSubstitution.lift 1 ty in +(* This is the pre-letin implementation let bo' = C.Appl [C.Lambda (fresh_name,term,C.Meta (newmeta1,irl1)) ; C.Meta (newmeta2,irl2)] in +*) + let bo' = + Cic.LetIn (fresh_name, C.Meta (newmeta2,irl2), C.Meta (newmeta1,irl1)) + in let (newproof, _) = ProofEngineHelpers.subst_meta_in_proof proof metano bo' [newmeta2,context,term; newmeta1,context_for_newmeta1,newmeta1ty]; in (newproof, [newmeta1 ; newmeta2]) in - mk_tactic (cut_tac ~mk_fresh_name_callback term) + PET.mk_tactic (cut_tac ~mk_fresh_name_callback term) let letin_tac ?(mk_fresh_name_callback=FreshNamesGenerator.mk_fresh_name ~subst:[]) term = let letin_tac @@ -425,7 +433,7 @@ let letin_tac ?(mk_fresh_name_callback=FreshNamesGenerator.mk_fresh_name ~subst: term (proof, goal) = let module C = Cic in - let curi,metasenv,pbo,pty, attrs = proof in + let curi,metasenv,_subst,pbo,pty, attrs = proof in (* occur check *) let occur i t = let m = CicUtil.metas_of_term t in @@ -455,13 +463,13 @@ let letin_tac ?(mk_fresh_name_callback=FreshNamesGenerator.mk_fresh_name ~subst: in (newproof, [newmeta]) in - mk_tactic (letin_tac ~mk_fresh_name_callback term) + PET.mk_tactic (letin_tac ~mk_fresh_name_callback term) (** functional part of the "exact" tactic *) let exact_tac ~term = let exact_tac ~term (proof, goal) = (* Assumption: the term bo must be closed in the current context *) - let (_,metasenv,_,_, _) = proof in + let (_,metasenv,_subst,_,_, _) = proof in let metano,context,ty = CicUtil.lookup_meta goal metasenv in let module T = CicTypeChecker in let module R = CicReduction in @@ -474,17 +482,16 @@ let exact_tac ~term = (newproof, []) end else - raise (Fail (lazy "The type of the provided term is not the one expected.")) + raise (PET.Fail (lazy "The type of the provided term is not the one expected.")) in - mk_tactic (exact_tac ~term) + PET.mk_tactic (exact_tac ~term) (* not really "primitive" tactics .... *) module TC = CicTypeChecker -module U = UriManager +module UM = UriManager module R = CicReduction module C = Cic -module PET = ProofEngineTypes module PEH = ProofEngineHelpers module PER = ProofEngineReduction module MS = CicMetaSubst @@ -492,24 +499,141 @@ module S = CicSubstitution module T = Tacticals module RT = ReductionTactics +let rec args_init n f = + if n <= 0 then [] else f n :: args_init (pred n) f + +let mk_predicate_for_elim + ~context ~metasenv ~ugraph ~goal ~arg ~using ~cpattern ~args_no = + let instantiated_eliminator = + let f n = if n = 1 then arg else C.Implicit None in + C.Appl (using :: args_init args_no f) + in + let _actual_arg, iety, _metasenv', _ugraph = + CicRefine.type_of_aux' metasenv context instantiated_eliminator ugraph + in + let _actual_meta, actual_args = match iety with + | C.Meta (i, _) -> i, [] + | C.Appl (C.Meta (i, _) :: args) -> i, args + | _ -> assert false + in +(* let _, upto = PEH.split_with_whd (List.nth splits pred_pos) in *) + let rec mk_pred metasenv context' pred arg' cpattern' = function + | [] -> metasenv, pred, arg' + | arg :: tail -> +(* FG: we find the predicate for the eliminator as in the rewrite tactic ****) + let argty, _ugraph = TC.type_of_aux' metasenv context arg ugraph in + let argty = CicReduction.whd context argty in + let fresh_name = + FreshNamesGenerator.mk_fresh_name + ~subst:[] metasenv context' C.Anonymous ~typ:argty + in + let hyp = Some (fresh_name, C.Decl argty) in + let lazy_term c m u = + let distance = List.length c - List.length context in + S.lift distance arg, m, u + in + let pattern = Some lazy_term, [], Some cpattern' in + let subst, metasenv, _ugraph, _conjecture, selected_terms = + ProofEngineHelpers.select + ~metasenv ~ugraph ~conjecture:(0, context, pred) ~pattern + in + let metasenv = MS.apply_subst_metasenv subst metasenv in + let map (_context_of_t, t) l = t :: l in + let what = List.fold_right map selected_terms [] in + let arg' = MS.apply_subst subst arg' in + let argty = MS.apply_subst subst argty in + let pred = PER.replace_with_rel_1_from ~equality:(==) ~what 1 pred in + let pred = MS.apply_subst subst pred in + let pred = C.Lambda (fresh_name, argty, pred) in + let cpattern' = C.Lambda (C.Anonymous, C.Implicit None, cpattern') in + mk_pred metasenv (hyp :: context') pred arg' cpattern' tail + in + let metasenv, pred, arg = + mk_pred metasenv context goal arg cpattern (List.rev actual_args) + in + HLog.debug ("PREDICATE: " ^ CicPp.ppterm ~metasenv pred ^ " ARGS: " ^ String.concat " " (List.map (CicPp.ppterm ~metasenv) actual_args)); + metasenv, pred, arg, actual_args + +let beta_after_elim_tac upto predicate = + let beta_after_elim_tac status = + let proof, goal = status in + let _, metasenv, _subst, _, _, _ = proof in + let _, _, ty = CicUtil.lookup_meta goal metasenv in + let mk_pattern ~equality ~upto ~predicate ty = + (* code adapted from ProceduralConversion.generalize *) + let meta = C.Implicit None in + let hole = C.Implicit (Some `Hole) in + let anon = C.Anonymous in + let is_meta = + let map b = function + | C.Implicit None when b -> b + | _ -> false + in + List.fold_left map true + in + let rec gen_fix len k (name, i, ty, bo) = + name, i, gen_term k ty, gen_term (k + len) bo + and gen_cofix len k (name, ty, bo) = + name, gen_term k ty, gen_term (k + len) bo + and gen_term k = function + | C.Sort _ + | C.Implicit _ + | C.Const (_, _) + | C.Var (_, _) + | C.MutInd (_, _, _) + | C.MutConstruct (_, _, _, _) + | C.Meta (_, _) + | C.Rel _ -> meta + | C.Appl (hd :: tl) when equality hd (S.lift k predicate) -> + assert (List.length tl = upto); + hole + | C.Appl ts -> + let ts = List.map (gen_term k) ts in + if is_meta ts then meta else C.Appl ts + | C.Cast (te, ty) -> + let te, ty = gen_term k te, gen_term k ty in + if is_meta [te; ty] then meta else C.Cast (te, ty) + | C.MutCase (sp, i, outty, t, pl) -> + let outty, t, pl = gen_term k outty, gen_term k t, List.map (gen_term k) pl in + if is_meta (outty :: t :: pl) then meta else hole (* C.MutCase (sp, i, outty, t, pl) *) + | C.Prod (_, s, t) -> + let s, t = gen_term k s, gen_term (succ k) t in + if is_meta [s; t] then meta else C.Prod (anon, s, t) + | C.Lambda (_, s, t) -> + let s, t = gen_term k s, gen_term (succ k) t in + if is_meta [s; t] then meta else C.Lambda (anon, s, t) + | C.LetIn (_, s, t) -> + let s, t = gen_term k s, gen_term (succ k) t in + if is_meta [s; t] then meta else C.LetIn (anon, s, t) + | C.Fix (i, fl) -> C.Fix (i, List.map (gen_fix (List.length fl) k) fl) + | C.CoFix (i, fl) -> C.CoFix (i, List.map (gen_cofix (List.length fl) k) fl) + in + None, [], Some (gen_term 0 ty) + in + let equality = CicUtil.alpha_equivalence in + let pattern = mk_pattern ~equality ~upto ~predicate ty in + let tactic = RT.head_beta_reduce_tac ~delta:false ~upto ~pattern in + PET.apply_tactic tactic status + in + PET.mk_tactic beta_after_elim_tac + let elim_tac ?using ?(pattern = PET.conclusion_pattern None) term = let elim_tac (proof, goal) = + let cpattern = match pattern with + | None, [], Some cpattern -> cpattern + | _ -> raise (PET.Fail (lazy "not implemented")) + in let ugraph = CicUniv.empty_ugraph in - let curi, metasenv, proofbo, proofty, attrs = proof in + let curi, metasenv, _subst, proofbo, proofty, attrs = proof in let conjecture = CicUtil.lookup_meta goal metasenv in - let metano, context, ty = conjecture in -(* let (term, metasenv, _ugraph), cpatt = match pattern with - | Some f, [], Some cpatt -> f context metasenv ugraph, cpatt - | _ -> assert false - in -*) + let metano, context, ty = conjecture in let termty,_ugraph = TC.type_of_aux' metasenv context term ugraph in let termty = CicReduction.whd context termty in - let (termty,metasenv',arguments,_fresh_meta) = + let termty, metasenv', arguments, _fresh_meta = TermUtil.saturate_term (ProofEngineHelpers.new_meta_of_proof proof) metasenv context termty 0 in let term = if arguments = [] then term else Cic.Appl (term::arguments) in - let uri,exp_named_subst,typeno,args = + let uri, exp_named_subst, typeno, _args = match termty with C.MutInd (uri,typeno,exp_named_subst) -> (uri,exp_named_subst,typeno,[]) | C.Appl ((C.MutInd (uri,typeno,exp_named_subst))::args) -> @@ -517,7 +641,7 @@ let elim_tac ?using ?(pattern = PET.conclusion_pattern None) term = | _ -> raise NotAnInductiveTypeToEliminate in let eliminator_uri = - let buri = U.buri_of_uri uri in + let buri = UM.buri_of_uri uri in let name = let o,_ugraph = CicEnvironment.get_obj ugraph uri in match o with @@ -536,123 +660,75 @@ let elim_tac ?using ?(pattern = PET.conclusion_pattern None) term = | C.Meta (_,_) -> raise TheTypeOfTheCurrentGoalIsAMetaICannotChooseTheRightElimiantionPrinciple | _ -> assert false in - U.uri_of_string (buri ^ "/" ^ name ^ ext ^ ".con") + UM.uri_of_string (buri ^ "/" ^ name ^ ext ^ ".con") in let eliminator_ref = match using with - | None -> C.Const (eliminator_uri,exp_named_subst) + | None -> C.Const (eliminator_uri, exp_named_subst) | Some t -> t in - let ety,_ugraph = + let ety, _ugraph = TC.type_of_aux' metasenv' context eliminator_ref ugraph in (* FG: ADDED PART ***********************************************************) (* FG: we can not assume eliminator is the default eliminator ***************) -(* - let add_lambdas n t = - let rec aux n t = - if n <= 0 then t - else C.Lambda (C.Anonymous, C.Implicit None, aux (pred n) t) - in - aux n (S.lift n t) - in -*) - let rec args_init n f = - if n <= 0 then [] else f n :: args_init (pred n) f - in let splits, args_no = PEH.split_with_whd (context, ety) in let pred_pos = match List.hd splits with | _, C.Rel i when i > 1 && i <= args_no -> i | _, C.Appl (C.Rel i :: _) when i > 1 && i <= args_no -> i | _ -> raise NotAnEliminator in -(* - let _, lambdas = PEH.split_with_whd (List.nth splits pred_pos) in - let termty_ty = - let termty_ty,_ugraph = TC.type_of_aux' metasenv' context termty ugraph in - CicReduction.whd context termty_ty - in -*) -(* - let metasenv', term, pred, upto = match cpatt, termty_ty with - | C.Implicit (Some `Hole), _ - | _, C.Sort C.Prop when lambdas = 0 -> metasenv', term, C.Implicit None, 0 - | _ -> -(* FG: we find the predicate for the eliminator as in the rewrite tactic ****) - let fresh_name = - FreshNamesGenerator.mk_fresh_name - ~subst:[] metasenv' context C.Anonymous ~typ:termty - in - let lazy_term c m u = - let distance = List.length c - List.length context in - S.lift distance term, m, u - in - let pattern = Some lazy_term, [], Some cpatt in - let subst, metasenv', _ugraph, _conjecture, selected_terms = - ProofEngineHelpers.select - ~metasenv:metasenv' ~ugraph ~conjecture ~pattern - in - let metasenv' = MS.apply_subst_metasenv subst metasenv' in - let map (_context_of_t, t) l = t :: l in - let what = List.fold_right map selected_terms [] in - let ty = MS.apply_subst subst ty in - let term = MS.apply_subst subst term in - let termty = MS.apply_subst subst termty in - let abstr_ty = PER.replace_with_rel_1_from ~equality:(==) ~what 1 ty in - let abstr_ty = MS.apply_subst subst abstr_ty in - let pred_body = C.Lambda (fresh_name, termty, abstr_ty) in - metasenv', term, add_lambdas (pred lambdas) pred_body, lambdas + let metasenv', pred, term, actual_args = match pattern with + | None, [], Some (C.Implicit (Some `Hole)) -> + metasenv', C.Implicit None, term, [] + | _ -> + mk_predicate_for_elim + ~args_no ~context ~ugraph ~cpattern + ~metasenv:metasenv' ~arg:term ~using:eliminator_ref ~goal:ty in (* FG: END OF ADDED PART ****************************************************) -*) - let pred, upto = C.Implicit None, 0 in - - let term_to_refine = - let f n = - if n = pred_pos then pred else - if n = 1 then term else C.Implicit None - in - C.Appl (eliminator_ref :: args_init args_no f) + let term_to_refine = + let f n = + if n = pred_pos then pred else + if n = 1 then term else C.Implicit None in - let refined_term,_refined_termty,metasenv'',_ugraph = - CicRefine.type_of_aux' metasenv' context term_to_refine - ugraph - in - let new_goals = - ProofEngineHelpers.compare_metasenvs - ~oldmetasenv:metasenv ~newmetasenv:metasenv'' - in - let proof' = curi,metasenv'',proofbo,proofty, attrs in - let proof'', new_goals' = - apply_tactic (apply_tac ~term:refined_term) (proof',goal) - in - (* The apply_tactic can have closed some of the new_goals *) - let patched_new_goals = - let (_,metasenv''',_,_, _) = proof'' in - List.filter - (function i -> List.exists (function (j,_,_) -> j=i) metasenv''' - ) new_goals @ new_goals' - in - let res = proof'', patched_new_goals in - if upto = 0 then res else - let pattern = PET.conclusion_pattern None in - let continuation = - RT.simpl_tac ~pattern - (* RT.head_beta_reduce_tac ~delta:false ~upto ~pattern *) - in - let dummy_status = proof,goal in - PET.apply_tactic - (T.then_ ~start:(PET.mk_tactic (fun _ -> res)) ~continuation) - dummy_status - in - mk_tactic elim_tac + C.Appl (eliminator_ref :: args_init args_no f) + in + let refined_term,_refined_termty,metasenv'',_ugraph = + CicRefine.type_of_aux' metasenv' context term_to_refine ugraph + in + let new_goals = + ProofEngineHelpers.compare_metasenvs + ~oldmetasenv:metasenv ~newmetasenv:metasenv'' + in + let proof' = curi,metasenv'',_subst,proofbo,proofty, attrs in + let proof'', new_goals' = + PET.apply_tactic (apply_tac ~term:refined_term) (proof',goal) + in + (* The apply_tactic can have closed some of the new_goals *) + let patched_new_goals = + let (_,metasenv''',_subst,_,_, _) = proof'' in + List.filter + (function i -> List.exists (function (j,_,_) -> j=i) metasenv''') + new_goals @ new_goals' + in + let res = proof'', patched_new_goals in + let upto = List.length actual_args in + if upto = 0 then res else + let continuation = beta_after_elim_tac upto pred in + let dummy_status = proof,goal in + PET.apply_tactic + (T.then_ ~start:(PET.mk_tactic (fun _ -> res)) ~continuation) + dummy_status + in + PET.mk_tactic elim_tac ;; -let cases_intros_tac ?(mk_fresh_name_callback = FreshNamesGenerator.mk_fresh_name ~subst:[]) term = +let cases_intros_tac ?(howmany=(-1)) ?(mk_fresh_name_callback = FreshNamesGenerator.mk_fresh_name ~subst:[]) term = let cases_tac ~term (proof, goal) = let module TC = CicTypeChecker in let module U = UriManager in let module R = CicReduction in let module C = Cic in - let (curi,metasenv,proofbo,proofty, attrs) = proof in + let (curi,metasenv,_subst, proofbo,proofty, attrs) = proof in let metano,context,ty = CicUtil.lookup_meta goal metasenv in let termty,_ = TC.type_of_aux' metasenv context term CicUniv.empty_ugraph in let termty = CicReduction.whd context termty in @@ -715,8 +791,9 @@ let cases_intros_tac ?(mk_fresh_name_callback = FreshNamesGenerator.mk_fresh_nam in let replaced = ref false in let replace = ProofEngineReduction.replace_lifting - ~equality:(fun a b -> let rc = CicUtil.alpha_equivalence a b in + ~equality:(fun _ a b -> let rc = CicUtil.alpha_equivalence a b in if rc then replaced := true; rc) + ~context:[] in let captured = replace ~what:[CicSubstitution.lift n_lambdas term] @@ -762,20 +839,20 @@ let cases_intros_tac ?(mk_fresh_name_callback = FreshNamesGenerator.mk_fresh_nam ProofEngineHelpers.compare_metasenvs ~oldmetasenv:metasenv ~newmetasenv:metasenv'' in - let proof' = curi,metasenv'',proofbo,proofty, attrs in + let proof' = curi,metasenv'',_subst,proofbo,proofty, attrs in let proof'', new_goals' = - apply_tactic (apply_tac ~term:refined_term) (proof',goal) + PET.apply_tactic (apply_tac ~term:refined_term) (proof',goal) in (* The apply_tactic can have closed some of the new_goals *) let patched_new_goals = - let (_,metasenv''',_,_,_) = proof'' in + let (_,metasenv''',_subst,_,_,_) = proof'' in List.filter (function i -> List.exists (function (j,_,_) -> j=i) metasenv''') new_goals @ new_goals' in proof'', patched_new_goals in - mk_tactic (cases_tac ~term) + PET.mk_tactic (cases_tac ~term) ;; @@ -803,7 +880,7 @@ let letout_tac = let mk_fresh_name_callback = FreshNamesGenerator.mk_fresh_name ~subst:[] in let term = C.Sort C.Set in let letout_tac (proof, goal) = - let curi, metasenv, pbo, pty, attrs = proof in + let curi, metasenv, _subst, pbo, pty, attrs = proof in let metano, context, ty = CicUtil.lookup_meta goal metasenv in let newmeta = ProofEngineHelpers.new_meta_of_proof ~proof in let fresh_name = mk_fresh_name_callback metasenv context (Cic.Name "hole") ~typ:term in @@ -814,4 +891,4 @@ let letout_tac = let newproof, _ = ProofEngineHelpers.subst_meta_in_proof proof metano bo'[newmeta,context_for_newmeta,newmetaty] in newproof, [newmeta] in - mk_tactic letout_tac + PET.mk_tactic letout_tac