X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2FgTopLevel%2Fcic2acic.ml;h=a3cdfbb78603d3237e3006fc5ecfb41543a279e5;hb=70f855932359e26ca89deb11c22f9c9d26154827;hp=08cb06d9d93b8dcc49a827223fd1b2d7e629c01c;hpb=200d1d63cd5fc282df768f97d33214c1572c89da;p=helm.git diff --git a/helm/gTopLevel/cic2acic.ml b/helm/gTopLevel/cic2acic.ml index 08cb06d9d..a3cdfbb78 100644 --- a/helm/gTopLevel/cic2acic.ml +++ b/helm/gTopLevel/cic2acic.ml @@ -23,17 +23,26 @@ * http://cs.unibo.it/helm/. *) -exception NotImplemented;; +type anntypes = + {annsynthesized : Cic.annterm ; annexpected : Cic.annterm option} +;; + +let gen_id seed = + let res = "i" ^ string_of_int !seed in + incr seed ; + res +;; let fresh_id seed ids_to_terms ids_to_father_ids = fun father t -> - let res = "i" ^ string_of_int !seed in - incr seed ; + let res = gen_id seed in Hashtbl.add ids_to_father_ids res father ; Hashtbl.add ids_to_terms res t ; res ;; +let source_id_of_id id = "#source#" ^ id;; + exception NotEnoughElements;; exception NameExpected;; @@ -47,248 +56,353 @@ let rec get_nth l n = | (_,_) -> raise NotEnoughElements ;; -let acic_of_cic_env' seed ids_to_terms ids_to_father_ids ids_to_inner_sorts - ids_to_inner_types metasenv env t +let acic_of_cic_context' seed ids_to_terms ids_to_father_ids ids_to_inner_sorts + ids_to_inner_types metasenv context idrefs t expectedty = + let module D = DoubleTypeInference in let module T = CicTypeChecker in let module C = Cic in let fresh_id' = fresh_id seed ids_to_terms ids_to_father_ids in - let rec aux computeinnertypes father bs tt = - let fresh_id'' = fresh_id' father tt in - let aux' = aux true (Some fresh_id'') in - (* First of all we compute the inner type and the inner sort *) - (* of the term. They may be useful in what follows. *) - (*CSC: This is a very inefficient way of computing inner types *) - (*CSC: and inner sorts: very deep terms have their types/sorts *) - (*CSC: computed again and again. *) - let string_of_sort = - function - C.Sort C.Prop -> "Prop" - | C.Sort C.Set -> "Set" - | C.Sort C.Type -> "Type" - | _ -> assert false - in - let ainnertype,innertype,innersort = - let cicenv = List.map (function (_,ty) -> ty) bs in + let terms_to_types = + D.double_type_of metasenv context t expectedty + in + let rec aux computeinnertypes father context idrefs tt = + let fresh_id'' = fresh_id' father tt in + (*CSC: computeinnertypes era true, il che e' proprio sbagliato, no? *) + let aux' = aux computeinnertypes (Some fresh_id'') in + (* First of all we compute the inner type and the inner sort *) + (* of the term. They may be useful in what follows. *) + (*CSC: This is a very inefficient way of computing inner types *) + (*CSC: and inner sorts: very deep terms have their types/sorts *) + (*CSC: computed again and again. *) + let string_of_sort t = + match CicReduction.whd context t with + C.Sort C.Prop -> "Prop" + | C.Sort C.Set -> "Set" + | C.Sort C.Type -> "Type" + | _ -> assert false + in + let ainnertypes,innertype,innersort,expected_available = (*CSC: Here we need the algorithm for Coscoy's double type-inference *) (*CSC: (expected type + inferred type). Just for now we use the usual *) -(*CSC: type-inference, but the result is very poort. As a very weak *) +(*CSC: type-inference, but the result is very poor. As a very weak *) (*CSC: patch, I apply whd to the computed type. Full beta *) (*CSC: reduction would be a much better option. *) - let innertype = - CicReduction.whd cicenv (T.type_of_aux' metasenv cicenv tt) + let {D.synthesized = synthesized; D.expected = expected} = + if computeinnertypes then + D.CicHash.find terms_to_types tt + else + (* We are already in an inner-type and Coscoy's double *) + (* type inference algorithm has not been applied. *) + {D.synthesized = + CicReduction.whd context (T.type_of_aux' metasenv context tt) ; + D.expected = None} in - let innersort = T.type_of_aux' metasenv cicenv innertype in - let ainnertype = + let innersort = T.type_of_aux' metasenv context synthesized in + let ainnertypes,expected_available = if computeinnertypes then - Some (aux false (Some fresh_id'') bs innertype) + let annexpected,expected_available = + match expected with + None -> None,false + | Some expectedty' -> + Some + (aux false (Some fresh_id'') context idrefs expectedty'), + true + in + Some + {annsynthesized = + aux false (Some fresh_id'') context idrefs synthesized ; + annexpected = annexpected + }, expected_available else - None + None,false in - ainnertype, innertype, string_of_sort innersort - in - let add_inner_type id = - match ainnertype with - None -> () - | Some ainnertype -> Hashtbl.add ids_to_inner_types id ainnertype - in - match tt with - C.Rel n -> - let id = - match get_nth bs n with - (C.Name s,_) -> s - | _ -> raise NameExpected - in - Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; - C.ARel (fresh_id'', n, id) - | C.Var uri -> - Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; - C.AVar (fresh_id'', uri) - | C.Meta n -> - Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; - C.AMeta (fresh_id'', n) - | C.Sort s -> C.ASort (fresh_id'', s) - | C.Implicit -> C.AImplicit (fresh_id'') - | C.Cast (v,t) -> - Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; - if innersort = "Prop" then - add_inner_type fresh_id'' ; - C.ACast (fresh_id'', aux' bs v, aux' bs t) - | C.Prod (n,s,t) -> - Hashtbl.add ids_to_inner_sorts fresh_id'' - (string_of_sort innertype) ; - C.AProd (fresh_id'', n, aux' bs s, aux' ((n, C.Decl s)::bs) t) - | C.Lambda (n,s,t) -> - Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; - if innersort = "Prop" then - begin - let father_is_lambda = - match father with - None -> false - | Some father' -> - match Hashtbl.find ids_to_terms father' with - C.Lambda _ -> true - | _ -> false + ainnertypes,synthesized, string_of_sort innersort, expected_available + in + let add_inner_type id = + match ainnertypes with + None -> () + | Some ainnertypes -> Hashtbl.add ids_to_inner_types id ainnertypes + in + match tt with + C.Rel n -> + let id = + match get_nth context n with + (Some (C.Name s,_)) -> s + | _ -> raise NameExpected in - if not father_is_lambda then - add_inner_type fresh_id'' - end ; - C.ALambda (fresh_id'',n, aux' bs s, aux' ((n, C.Decl s)::bs) t) - | C.LetIn (n,s,t) -> - Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; - C.ALetIn (fresh_id'', n, aux' bs s, aux' ((n, C.Def s)::bs) t) - | C.Appl l -> - Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; - if innersort = "Prop" then - add_inner_type fresh_id'' ; - C.AAppl (fresh_id'', List.map (aux' bs) l) - | C.Const (uri,cn) -> - Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; - C.AConst (fresh_id'', uri, cn) - | C.Abst _ -> raise NotImplemented - | C.MutInd (uri,cn,tyno) -> C.AMutInd (fresh_id'', uri, cn, tyno) - | C.MutConstruct (uri,cn,tyno,consno) -> - Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; - C.AMutConstruct (fresh_id'', uri, cn, tyno, consno) - | C.MutCase (uri, cn, tyno, outty, term, patterns) -> - Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; - if innersort = "Prop" then - add_inner_type fresh_id'' ; - C.AMutCase (fresh_id'', uri, cn, tyno, aux' bs outty, - aux' bs term, List.map (aux' bs) patterns) - | C.Fix (funno, funs) -> - let names = - List.map (fun (name,_,ty,_) -> C.Name name, C.Decl ty) funs - in - Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; - if innersort = "Prop" then - add_inner_type fresh_id'' ; - C.AFix (fresh_id'', funno, - List.map - (fun (name, indidx, ty, bo) -> - (name, indidx, aux' bs ty, aux' (names@bs) bo) - ) funs - ) - | C.CoFix (funno, funs) -> - let names = - List.map (fun (name,ty,_) -> C.Name name, C.Decl ty) funs in - Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; - if innersort = "Prop" then - add_inner_type fresh_id'' ; - C.ACoFix (fresh_id'', funno, - List.map - (fun (name, ty, bo) -> - (name, aux' bs ty, aux' (names@bs) bo) - ) funs - ) - in - aux true None env t + Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; + if innersort = "Prop" && expected_available then + add_inner_type fresh_id'' ; + C.ARel (fresh_id'', List.nth idrefs (n-1), n, id) + | C.Var (uri,exp_named_subst) -> + Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; + if innersort = "Prop" && expected_available then + add_inner_type fresh_id'' ; + let exp_named_subst' = + List.map + (function i,t -> i, (aux' context idrefs t)) exp_named_subst + in + C.AVar (fresh_id'', uri,exp_named_subst') + | C.Meta (n,l) -> + let (_,canonical_context,_) = + List.find (function (m,_,_) -> n = m) metasenv + in + Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; + if innersort = "Prop" && expected_available then + add_inner_type fresh_id'' ; + C.AMeta (fresh_id'', n, + (List.map2 + (fun ct t -> + match (ct, t) with + | None, _ -> None + | _, Some t -> Some (aux' context idrefs t) + | Some _, None -> assert false (* due to typing rules *)) + canonical_context l)) + | C.Sort s -> C.ASort (fresh_id'', s) + | C.Implicit -> C.AImplicit (fresh_id'') + | C.Cast (v,t) -> + Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; + if innersort = "Prop" then + add_inner_type fresh_id'' ; + C.ACast (fresh_id'', aux' context idrefs v, aux' context idrefs t) + | C.Prod (n,s,t) -> + Hashtbl.add ids_to_inner_sorts fresh_id'' + (string_of_sort innertype) ; + let sourcetype = T.type_of_aux' metasenv context s in + Hashtbl.add ids_to_inner_sorts (source_id_of_id fresh_id'') + (string_of_sort sourcetype) ; + let n' = + match n with + C.Anonymous -> n + | C.Name n' -> + if D.does_not_occur 1 t then + C.Anonymous + else + C.Name n' + in + C.AProd + (fresh_id'', n', aux' context idrefs s, + aux' ((Some (n, C.Decl s))::context) (fresh_id''::idrefs) t) + | C.Lambda (n,s,t) -> + Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; + let sourcetype = T.type_of_aux' metasenv context s in + Hashtbl.add ids_to_inner_sorts (source_id_of_id fresh_id'') + (string_of_sort sourcetype) ; + if innersort = "Prop" then + begin + let father_is_lambda = + match father with + None -> false + | Some father' -> + match Hashtbl.find ids_to_terms father' with + C.Lambda _ -> true + | _ -> false + in + if (not father_is_lambda) || expected_available then + add_inner_type fresh_id'' + end ; + C.ALambda + (fresh_id'',n, aux' context idrefs s, + aux' ((Some (n, C.Decl s)::context)) (fresh_id''::idrefs) t) + | C.LetIn (n,s,t) -> + Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; + if innersort = "Prop" then + add_inner_type fresh_id'' ; + C.ALetIn + (fresh_id'', n, aux' context idrefs s, + aux' ((Some (n, C.Def s))::context) (fresh_id''::idrefs) t) + | C.Appl l -> + Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; + if innersort = "Prop" then + add_inner_type fresh_id'' ; + C.AAppl (fresh_id'', List.map (aux' context idrefs) l) + | C.Const (uri,exp_named_subst) -> + Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; + if innersort = "Prop" && expected_available then + add_inner_type fresh_id'' ; + let exp_named_subst' = + List.map + (function i,t -> i, (aux' context idrefs t)) exp_named_subst + in + C.AConst (fresh_id'', uri, exp_named_subst') + | C.MutInd (uri,tyno,exp_named_subst) -> + let exp_named_subst' = + List.map + (function i,t -> i, (aux' context idrefs t)) exp_named_subst + in + C.AMutInd (fresh_id'', uri, tyno, exp_named_subst') + | C.MutConstruct (uri,tyno,consno,exp_named_subst) -> + Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; + if innersort = "Prop" && expected_available then + add_inner_type fresh_id'' ; + let exp_named_subst' = + List.map + (function i,t -> i, (aux' context idrefs t)) exp_named_subst + in + C.AMutConstruct (fresh_id'', uri, tyno, consno, exp_named_subst') + | C.MutCase (uri, tyno, outty, term, patterns) -> + Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; + if innersort = "Prop" then + add_inner_type fresh_id'' ; + C.AMutCase (fresh_id'', uri, tyno, aux' context idrefs outty, + aux' context idrefs term, List.map (aux' context idrefs) patterns) + | C.Fix (funno, funs) -> + let fresh_idrefs = + List.map (function _ -> gen_id seed) funs in + let new_idrefs = List.rev fresh_idrefs @ idrefs in + let tys = + List.map (fun (name,_,ty,_) -> Some (C.Name name, C.Decl ty)) funs + in + Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; + if innersort = "Prop" then + add_inner_type fresh_id'' ; + C.AFix (fresh_id'', funno, + List.map2 + (fun id (name, indidx, ty, bo) -> + (id, name, indidx, aux' context idrefs ty, + aux' (tys@context) new_idrefs bo) + ) fresh_idrefs funs + ) + | C.CoFix (funno, funs) -> + let fresh_idrefs = + List.map (function _ -> gen_id seed) funs in + let new_idrefs = List.rev fresh_idrefs @ idrefs in + let tys = + List.map (fun (name,ty,_) -> Some (C.Name name, C.Decl ty)) funs + in + Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ; + if innersort = "Prop" then + add_inner_type fresh_id'' ; + C.ACoFix (fresh_id'', funno, + List.map2 + (fun id (name, ty, bo) -> + (id, name, aux' context idrefs ty, + aux' (tys@context) new_idrefs bo) + ) fresh_idrefs funs + ) + in + aux true None context idrefs t ;; -let acic_of_cic_env metasenv env t = +let acic_of_cic_context metasenv context idrefs t = let ids_to_terms = Hashtbl.create 503 in let ids_to_father_ids = Hashtbl.create 503 in let ids_to_inner_sorts = Hashtbl.create 503 in let ids_to_inner_types = Hashtbl.create 503 in let seed = ref 0 in - acic_of_cic_env' seed ids_to_terms ids_to_father_ids ids_to_inner_sorts - ids_to_inner_types metasenv env t, + acic_of_cic_context' seed ids_to_terms ids_to_father_ids ids_to_inner_sorts + ids_to_inner_types metasenv context idrefs t, ids_to_terms, ids_to_father_ids, ids_to_inner_sorts, ids_to_inner_types ;; -exception Found of (Cic.name * Cic.context_entry) list;; - -(* get_context_of_meta meta term *) -(* returns the context of the occurrence of [meta] in [term]. *) -(* Warning: if [meta] occurs not linearly in [term], the context *) -(* of one "random" occurrence is returned. *) -let get_context_of_meta meta term = - let module C = Cic in - let rec aux ctx = - function - C.Rel _ - | C.Var _ -> () - | C.Meta i when meta = i -> raise (Found ctx) - | C.Meta _ - | C.Sort _ - | C.Implicit -> () - | C.Cast (te,ty) -> aux ctx te ; aux ctx ty - | C.Prod (n,s,t) -> aux ctx s ; aux ((n, C.Decl s)::ctx) t - | C.Lambda (n,s,t) -> aux ctx s ; aux ((n, C.Decl s)::ctx) t - | C.LetIn (n,s,t) -> aux ctx s ; aux ((n, C.Def s)::ctx) t - | C.Appl l -> List.iter (aux ctx) l - | C.Const _ -> () - | C.Abst _ -> assert false - | C.MutInd _ - | C.MutConstruct _ -> () - | C.MutCase (_,_,_,outt,t,pl) -> - aux ctx outt ; aux ctx t; List.iter (aux ctx) pl - | C.Fix (_,ifl) -> - let counter = ref 0 in - let ctx' = - List.rev_map - (function (name,_,ty,bo) -> - let res = (C.Name name, C.Def (C.Fix (!counter,ifl))) in - incr counter ; - res - ) ifl - @ ctx - in - List.iter (function (_,_,ty,bo) -> aux ctx ty ; aux ctx' bo) ifl - | C.CoFix (_,ifl) -> - let counter = ref 0 in - let ctx' = - List.rev_map - (function (name,ty,bo) -> - let res = (C.Name name, C.Def (C.CoFix (!counter,ifl))) in - incr counter ; - res - ) ifl - @ ctx - in - List.iter (function (_,ty,bo) -> aux ctx ty ; aux ctx' bo) ifl - in - try - aux [] term ; - assert false (* No occurrences found. *) - with - Found context -> context -;; - -exception NotImplemented;; - let acic_object_of_cic_object obj = let module C = Cic in let ids_to_terms = Hashtbl.create 503 in let ids_to_father_ids = Hashtbl.create 503 in let ids_to_inner_sorts = Hashtbl.create 503 in let ids_to_inner_types = Hashtbl.create 503 in + let ids_to_conjectures = Hashtbl.create 11 in + let ids_to_hypotheses = Hashtbl.create 127 in + let hypotheses_seed = ref 0 in + let conjectures_seed = ref 0 in let seed = ref 0 in - let acic_term_of_cic_term_env' = - acic_of_cic_env' seed ids_to_terms ids_to_father_ids ids_to_inner_sorts + let acic_term_of_cic_term_context' = + acic_of_cic_context' seed ids_to_terms ids_to_father_ids ids_to_inner_sorts ids_to_inner_types in - let acic_term_of_cic_term' = acic_term_of_cic_term_env' [] [] in + let acic_term_of_cic_term' = acic_term_of_cic_term_context' [] [] [] in let aobj = match obj with - C.Definition (id,bo,ty,params) -> - let abo = acic_term_of_cic_term' bo in - let aty = acic_term_of_cic_term' ty + C.Constant (id,Some bo,ty,params) -> + let abo = acic_term_of_cic_term' bo (Some ty) in + let aty = acic_term_of_cic_term' ty None in + C.AConstant + ("mettereaposto",Some "mettereaposto2",id,Some abo,aty, params) + | C.Constant (id,None,ty,params) -> + let aty = acic_term_of_cic_term' ty None in + C.AConstant + ("mettereaposto",None,id,None,aty, params) + | C.Variable (id,bo,ty,params) -> + let abo = + match bo with + None -> None + | Some bo -> Some (acic_term_of_cic_term' bo (Some ty)) in - C.ADefinition ("mettereaposto",id,abo,aty,(Cic.Actual params)) - | C.Axiom (id,ty,params) -> raise NotImplemented - | C.Variable (id,bo,ty) -> raise NotImplemented - | C.CurrentProof (id,conjectures,bo,ty) -> + let aty = acic_term_of_cic_term' ty None in + C.AVariable + ("mettereaposto",id,abo,aty, params) + | C.CurrentProof (id,conjectures,bo,ty,params) -> let aconjectures = List.map - (function (i,term) -> - let context = get_context_of_meta i bo in - let aterm = acic_term_of_cic_term_env' conjectures context term in - (i, aterm)) - conjectures in - let abo = acic_term_of_cic_term_env' conjectures [] bo in - let aty = acic_term_of_cic_term_env' conjectures [] ty in - C.ACurrentProof ("mettereaposto",id,aconjectures,abo,aty) - | C.InductiveDefinition (tys,params,paramsno) -> raise NotImplemented + (function (i,canonical_context,term) as conjecture -> + let cid = "c" ^ string_of_int !conjectures_seed in + Hashtbl.add ids_to_conjectures cid conjecture ; + incr conjectures_seed ; + let idrefs',revacanonical_context = + let rec aux context idrefs = + function + [] -> idrefs,[] + | hyp::tl -> + let hid = "h" ^ string_of_int !hypotheses_seed in + let new_idrefs = hid::idrefs in + Hashtbl.add ids_to_hypotheses hid hyp ; + incr hypotheses_seed ; + match hyp with + (Some (n,C.Decl t)) -> + let final_idrefs,atl = + aux (hyp::context) new_idrefs tl in + let at = + acic_term_of_cic_term_context' + conjectures context idrefs t None + in + final_idrefs,(hid,Some (n,C.ADecl at))::atl + | (Some (n,C.Def t)) -> + let final_idrefs,atl = + aux (hyp::context) new_idrefs tl in + let at = + acic_term_of_cic_term_context' + conjectures context idrefs t None + in + final_idrefs,(hid,Some (n,C.ADef at))::atl + | None -> + let final_idrefs,atl = + aux (hyp::context) new_idrefs tl + in + final_idrefs,(hid,None)::atl + in + aux [] [] (List.rev canonical_context) + in + let aterm = + acic_term_of_cic_term_context' conjectures + canonical_context idrefs' term None + in + (cid,i,(List.rev revacanonical_context),aterm) + ) conjectures in + let abo = + acic_term_of_cic_term_context' conjectures [] [] bo (Some ty) in + let aty = acic_term_of_cic_term_context' conjectures [] [] ty None in + C.ACurrentProof + ("mettereaposto","mettereaposto2",id,aconjectures,abo,aty,params) + | C.InductiveDefinition (tys,params,paramsno) -> + let context = + List.map + (fun (name,_,arity,_) -> Some (C.Name name, C.Decl arity)) tys in + let idrefs = List.map (function _ -> gen_id seed) tys in + let atys = + List.map2 + (fun id (name,inductive,ty,cons) -> + let acons = + List.map + (function (name,ty) -> + (name, + acic_term_of_cic_term_context' [] context idrefs ty None) + ) cons + in + (id,name,inductive,acic_term_of_cic_term' ty None,acons) + ) (List.rev idrefs) tys + in + C.AInductiveDefinition ("mettereaposto",atys,params,paramsno) in - aobj,ids_to_terms,ids_to_father_ids,ids_to_inner_sorts,ids_to_inner_types + aobj,ids_to_terms,ids_to_father_ids,ids_to_inner_sorts,ids_to_inner_types, + ids_to_conjectures,ids_to_hypotheses ;;