X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2FgTopLevel%2FproofEngine.ml;h=55531c2aadd5b2c8c3d6446a536deb0804252683;hb=7d47820d03f154a86c966fb72c52f42b6c52176a;hp=69e8062eeddd17f10c667c7634c60f26c31b78bb;hpb=5a8a7dd777c55a9907699a709760b0616b571919;p=helm.git diff --git a/helm/gTopLevel/proofEngine.ml b/helm/gTopLevel/proofEngine.ml index 69e8062ee..55531c2aa 100644 --- a/helm/gTopLevel/proofEngine.ml +++ b/helm/gTopLevel/proofEngine.ml @@ -31,21 +31,35 @@ open ProofEngineTypes let proof = ref (None : proof option) let goal = ref (None : goal option) -let apply_tactic ~tactic:tactic = +let apply_or_can_apply_tactic ~try_only ~tactic = match !proof,!goal with None,_ | _,None -> assert false | Some proof', Some goal' -> let (newproof, newgoals) = tactic ~status:(proof', goal') in - proof := Some newproof; - goal := - (match newgoals, newproof with - goal::_, _ -> Some goal - | [], (_,(goal,_,_)::_,_,_) -> + if not try_only then + begin + proof := Some newproof; + goal := + (match newgoals, newproof with + goal::_, _ -> Some goal + | [], (_,(goal,_,_)::_,_,_) -> (* the tactic left no open goal ; let's choose the first open goal *) (*CSC: here we could implement and use a proof-tree like notion... *) - Some goal - | _, _ -> None) + Some goal + | _, _ -> None) + end +;; + +let apply_tactic = apply_or_can_apply_tactic ~try_only:false;; + +let can_apply_tactic ~tactic = + try + apply_or_can_apply_tactic ~try_only:true ~tactic ; + true + with + Fail _ -> false +;; (* metas_in_term term *) (* Returns the ordered list of the metas that occur in [term]. *) @@ -54,8 +68,7 @@ let metas_in_term term = let module C = Cic in let rec aux = function - C.Rel _ - | C.Var _ -> [] + C.Rel _ -> [] | C.Meta (n,_) -> [n] | C.Sort _ | C.Implicit -> [] @@ -64,15 +77,17 @@ let metas_in_term term = | C.Lambda (_,s,t) -> (aux s) @ (aux t) | C.LetIn (_,s,t) -> (aux s) @ (aux t) | C.Appl l -> List.fold_left (fun i t -> i @ (aux t)) [] l - | C.Const _ - | C.MutInd _ - | C.MutConstruct _ -> [] - | C.MutCase (sp,cookingsno,i,outt,t,pl) -> + | C.Var (_,exp_named_subst) + | C.Const (_,exp_named_subst) + | C.MutInd (_,_,exp_named_subst) + | C.MutConstruct (_,_,_,exp_named_subst) -> + List.fold_left (fun i (_,t) -> i @ (aux t)) [] exp_named_subst + | C.MutCase (_,_,outt,t,pl) -> (aux outt) @ (aux t) @ (List.fold_left (fun i t -> i @ (aux t)) [] pl) - | C.Fix (i,fl) -> + | C.Fix (_,fl) -> List.fold_left (fun i (_,_,ty,bo) -> i @ (aux bo) @ (aux ty)) [] fl - | C.CoFix (i,fl) -> + | C.CoFix (_,fl) -> List.fold_left (fun i (_,ty,bo) -> i @ (aux bo) @ (aux ty)) [] fl in let metas = aux term in @@ -129,56 +144,6 @@ in incr next_fresh_index ; "fresh_name" ^ string_of_int !next_fresh_index -let reduction_tactic reduction_function term = - let curi,metasenv,pbo,pty = - match !proof with - None -> assert false - | Some (curi,metasenv,bo,ty) -> curi,metasenv,bo,ty - in - let metano,context,ty = - match !goal with - None -> assert false - | Some metano -> List.find (function (m,_,_) -> m=metano) metasenv - in - (* We don't know if [term] is a subterm of [ty] or a subterm of *) - (* the type of one metavariable. So we replace it everywhere. *) - (*CSC: Il vero problema e' che non sapendo dove sia il term non *) - (*CSC: sappiamo neppure quale sia il suo contesto!!!! Insomma, *) - (*CSC: e' meglio prima cercare il termine e scoprirne il *) - (*CSC: contesto, poi ridurre e infine rimpiazzare. *) - let replace context where= -(*CSC: Per il momento se la riduzione fallisce significa solamente che *) -(*CSC: siamo nel contesto errato. Metto il try, ma che schifo!!!! *) -(*CSC: Anche perche' cosi' catturo anche quelle del replace che non dovrei *) - try - let term' = reduction_function context term in - ProofEngineReduction.replace ~equality:(==) ~what:term ~with_what:term' - ~where:where - with - _ -> where - in - let ty' = replace context ty in - let context' = - List.fold_right - (fun entry context -> - match entry with - Some (name,Cic.Def t) -> - (Some (name,Cic.Def (replace context t)))::context - | Some (name,Cic.Decl t) -> - (Some (name,Cic.Decl (replace context t)))::context - | None -> None::context - ) context [] - in - let metasenv' = - List.map - (function - (n,_,_) when n = metano -> (metano,context',ty') - | _ as t -> t - ) metasenv - in - proof := Some (curi,metasenv',pbo,pty) ; - goal := Some metano - (* Reduces [term] using [reduction_function] in the current scratch goal [ty] *) let reduction_tactic_in_scratch reduction_function term ty = let metasenv = @@ -194,104 +159,11 @@ let reduction_tactic_in_scratch reduction_function term ty = let term' = reduction_function context term in ProofEngineReduction.replace ~equality:(==) ~what:term ~with_what:term' ~where:ty - -let whd = reduction_tactic CicReduction.whd -let reduce = reduction_tactic ProofEngineReduction.reduce -let simpl = reduction_tactic ProofEngineReduction.simpl +;; let whd_in_scratch = reduction_tactic_in_scratch CicReduction.whd -let reduce_in_scratch = - reduction_tactic_in_scratch ProofEngineReduction.reduce -let simpl_in_scratch = - reduction_tactic_in_scratch ProofEngineReduction.simpl - -(* It is just the opposite of whd. The code should probably be merged. *) -let fold term = - let curi,metasenv,pbo,pty = - match !proof with - None -> assert false - | Some (curi,metasenv,bo,ty) -> curi,metasenv,bo,ty - in - let metano,context,ty = - match !goal with - None -> assert false - | Some metano -> List.find (function (m,_,_) -> m=metano) metasenv - in - let term' = CicReduction.whd context term in - (* We don't know if [term] is a subterm of [ty] or a subterm of *) - (* the type of one metavariable. So we replace it everywhere. *) - (*CSC: ma si potrebbe ovviare al problema. Ma non credo *) - (*CSC: che si guadagni nulla in fatto di efficienza. *) - let replace = - ProofEngineReduction.replace - ~equality:(ProofEngineReduction.syntactic_equality) - ~what:term' ~with_what:term - in - let ty' = replace ty in - let context' = - List.map - (function - Some (n,Cic.Decl t) -> Some (n,Cic.Decl (replace t)) - | Some (n,Cic.Def t) -> Some (n,Cic.Def (replace t)) - | None -> None - ) context - in - let metasenv' = - List.map - (function - (n,_,_) when n = metano -> (metano,context',ty') - | _ as t -> t - ) metasenv - in - proof := Some (curi,metasenv',pbo,pty) ; - goal := Some metano - -exception NotConvertible - -(*CSC: Bug (or feature?). [input] is parsed in the context of the goal, *) -(*CSC: while [goal_input] can have a richer context (because of binders) *) -(*CSC: So it is _NOT_ possible to use those binders in the [input] term. *) -(*CSC: Is that evident? Is that right? Or should it be changed? *) -let change ~goal_input ~input = - let curi,metasenv,pbo,pty = - match !proof with - None -> assert false - | Some (curi,metasenv,bo,ty) -> curi,metasenv,bo,ty - in - let metano,context,ty = - match !goal with - None -> assert false - | Some metano -> List.find (function (m,_,_) -> m=metano) metasenv - in - (* are_convertible works only on well-typed terms *) - ignore (CicTypeChecker.type_of_aux' metasenv context input) ; - if CicReduction.are_convertible context goal_input input then - begin - let replace = - ProofEngineReduction.replace - ~equality:(==) ~what:goal_input ~with_what:input - in - let ty' = replace ty in - let context' = - List.map - (function - Some (name,Cic.Def t) -> Some (name,Cic.Def (replace t)) - | Some (name,Cic.Decl t) -> Some (name,Cic.Decl (replace t)) - | None -> None - ) context - in - let metasenv' = - List.map - (function - (n,_,_) when n = metano -> (metano,context',ty') - | _ as t -> t - ) metasenv - in - proof := Some (curi,metasenv',pbo,pty) ; - goal := Some metano - end - else - raise NotConvertible +let reduce_in_scratch = reduction_tactic_in_scratch ProofEngineReduction.reduce +let simpl_in_scratch = reduction_tactic_in_scratch ProofEngineReduction.simpl (************************************************************) (* Tactics defined elsewhere *) @@ -299,23 +171,54 @@ let change ~goal_input ~input = (* primitive tactics *) +let can_apply term = can_apply_tactic (PrimitiveTactics.apply_tac ~term) let apply term = apply_tactic (PrimitiveTactics.apply_tac ~term) let intros () = apply_tactic (PrimitiveTactics.intros_tac ~name:(fresh_name ())) let cut term = apply_tactic (PrimitiveTactics.cut_tac ~term) let letin term = apply_tactic (PrimitiveTactics.letin_tac ~term) let exact term = apply_tactic (PrimitiveTactics.exact_tac ~term) -let elim_intros_simpl term = - apply_tactic (PrimitiveTactics.elim_intros_simpl_tac ~term) +let elim_simpl_intros term = + apply_tactic (PrimitiveTactics.elim_simpl_intros_tac ~term) +let change ~goal_input:what ~input:with_what = + apply_tactic (PrimitiveTactics.change_tac ~what ~with_what) (* structural tactics *) let clearbody hyp = apply_tactic (ProofEngineStructuralRules.clearbody ~hyp) let clear hyp = apply_tactic (ProofEngineStructuralRules.clear ~hyp) + (* reduction tactics *) + +let whd term = + apply_tactic + (ReductionTactics.whd_tac ~also_in_hypotheses:true ~term:(Some term)) +let reduce term = + apply_tactic + (ReductionTactics.reduce_tac ~also_in_hypotheses:true ~term:(Some term)) +let simpl term = + apply_tactic + (ReductionTactics.simpl_tac ~also_in_hypotheses:true ~term:(Some term)) + +let fold term = + apply_tactic (ReductionTactics.fold_tac ~also_in_hypotheses:true ~term) + (* other tactics *) let elim_type term = apply_tactic (Ring.elim_type_tac ~term) let ring () = apply_tactic Ring.ring_tac let fourier () = apply_tactic FourierR.fourier_tac +let rewrite_simpl term = apply_tactic (FourierR.rewrite_simpl_tac ~term) + +let reflexivity () = apply_tactic VariousTactics.reflexivity_tac +let symmetry () = apply_tactic VariousTactics.symmetry_tac +let transitivity term = apply_tactic (VariousTactics.transitivity_tac ~term) + +let left () = apply_tactic VariousTactics.left_tac +let right () = apply_tactic VariousTactics.right_tac + +let assumption () = apply_tactic VariousTactics.assumption_tac +(* +let prova_tatticali () = apply_tactic Tacticals.prova_tac +*)