X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2FgTopLevel%2FproofEngine.ml;h=81b2cd3e04540936f617433b26aed3b96ca36d8b;hb=7ff85e55518d06d96b9abbea4aa68d83e6be35b0;hp=ca8c0b54dc52cb0d35a8ab528859f67fbfc33451;hpb=76cb30ecd0159512548aee0ba7085ab17c6fd5bd;p=helm.git diff --git a/helm/gTopLevel/proofEngine.ml b/helm/gTopLevel/proofEngine.ml index ca8c0b54d..81b2cd3e0 100644 --- a/helm/gTopLevel/proofEngine.ml +++ b/helm/gTopLevel/proofEngine.ml @@ -28,13 +28,38 @@ open ProofEngineTypes (* proof assistant status *) -let proof = ref (None : proof) -let goal = ref (None : goal) - -let apply_tactic ~tactic:tactic = - let (newproof, newgoal) = tactic ~status:(!proof, !goal) in - proof := newproof; - goal := newgoal +let proof = ref (None : proof option) +let goal = ref (None : goal option) + +let apply_or_can_apply_tactic ~try_only ~tactic = + match !proof,!goal with + None,_ + | _,None -> assert false + | Some proof', Some goal' -> + let (newproof, newgoals) = tactic ~status:(proof', goal') in + if not try_only then + begin + proof := Some newproof; + goal := + (match newgoals, newproof with + goal::_, _ -> Some goal + | [], (_,(goal,_,_)::_,_,_) -> + (* the tactic left no open goal ; let's choose the first open goal *) +(*CSC: here we could implement and use a proof-tree like notion... *) + Some goal + | _, _ -> None) + end +;; + +let apply_tactic = apply_or_can_apply_tactic ~try_only:false;; + +let can_apply_tactic ~tactic = + try + apply_or_can_apply_tactic ~try_only:true ~tactic ; + true + with + Fail _ -> false +;; (* metas_in_term term *) (* Returns the ordered list of the metas that occur in [term]. *) @@ -43,8 +68,7 @@ let metas_in_term term = let module C = Cic in let rec aux = function - C.Rel _ - | C.Var _ -> [] + C.Rel _ -> [] | C.Meta (n,_) -> [n] | C.Sort _ | C.Implicit -> [] @@ -53,15 +77,17 @@ let metas_in_term term = | C.Lambda (_,s,t) -> (aux s) @ (aux t) | C.LetIn (_,s,t) -> (aux s) @ (aux t) | C.Appl l -> List.fold_left (fun i t -> i @ (aux t)) [] l - | C.Const _ - | C.MutInd _ - | C.MutConstruct _ -> [] - | C.MutCase (sp,cookingsno,i,outt,t,pl) -> + | C.Var (_,exp_named_subst) + | C.Const (_,exp_named_subst) + | C.MutInd (_,_,exp_named_subst) + | C.MutConstruct (_,_,_,exp_named_subst) -> + List.fold_left (fun i (_,t) -> i @ (aux t)) [] exp_named_subst + | C.MutCase (_,_,outt,t,pl) -> (aux outt) @ (aux t) @ (List.fold_left (fun i t -> i @ (aux t)) [] pl) - | C.Fix (i,fl) -> + | C.Fix (_,fl) -> List.fold_left (fun i (_,_,ty,bo) -> i @ (aux bo) @ (aux ty)) [] fl - | C.CoFix (i,fl) -> + | C.CoFix (_,fl) -> List.fold_left (fun i (_,ty,bo) -> i @ (aux bo) @ (aux ty)) [] fl in let metas = aux term in @@ -80,10 +106,10 @@ let metas_in_term term = (* are efficiency reasons. *) let perforate context term ty = let module C = Cic in - let newmeta = new_meta !proof in - match !proof with - None -> assert false - | Some (uri,metasenv,bo,gty) -> + match !proof with + None -> assert false + | Some (uri,metasenv,bo,gty as proof') -> + let newmeta = new_meta proof' in (* We push the new meta at the end of the list for pretty-printing *) (* purposes: in this way metas are ordered. *) let metasenv' = metasenv@[newmeta,context,ty] in @@ -110,64 +136,6 @@ let perforate context term ty = (* Some easy tactics. *) (************************************************************) -(*CSC: generatore di nomi? Chiedere il nome? *) -let fresh_name = - let next_fresh_index = ref 0 -in - function () -> - incr next_fresh_index ; - "fresh_name" ^ string_of_int !next_fresh_index - -let reduction_tactic reduction_function term = - let curi,metasenv,pbo,pty = - match !proof with - None -> assert false - | Some (curi,metasenv,bo,ty) -> curi,metasenv,bo,ty - in - let metano,context,ty = - match !goal with - None -> assert false - | Some metano -> List.find (function (m,_,_) -> m=metano) metasenv - in - (* We don't know if [term] is a subterm of [ty] or a subterm of *) - (* the type of one metavariable. So we replace it everywhere. *) - (*CSC: Il vero problema e' che non sapendo dove sia il term non *) - (*CSC: sappiamo neppure quale sia il suo contesto!!!! Insomma, *) - (*CSC: e' meglio prima cercare il termine e scoprirne il *) - (*CSC: contesto, poi ridurre e infine rimpiazzare. *) - let replace context where= -(*CSC: Per il momento se la riduzione fallisce significa solamente che *) -(*CSC: siamo nel contesto errato. Metto il try, ma che schifo!!!! *) -(*CSC: Anche perche' cosi' catturo anche quelle del replace che non dovrei *) - try - let term' = reduction_function context term in - ProofEngineReduction.replace ~equality:(==) ~what:term ~with_what:term' - ~where:where - with - _ -> where - in - let ty' = replace context ty in - let context' = - List.fold_right - (fun entry context -> - match entry with - Some (name,Cic.Def t) -> - (Some (name,Cic.Def (replace context t)))::context - | Some (name,Cic.Decl t) -> - (Some (name,Cic.Decl (replace context t)))::context - | None -> None::context - ) context [] - in - let metasenv' = - List.map - (function - (n,_,_) when n = metano -> (metano,context',ty') - | _ as t -> t - ) metasenv - in - proof := Some (curi,metasenv',pbo,pty) ; - goal := Some metano - (* Reduces [term] using [reduction_function] in the current scratch goal [ty] *) let reduction_tactic_in_scratch reduction_function term ty = let metasenv = @@ -183,104 +151,11 @@ let reduction_tactic_in_scratch reduction_function term ty = let term' = reduction_function context term in ProofEngineReduction.replace ~equality:(==) ~what:term ~with_what:term' ~where:ty - -let whd = reduction_tactic CicReduction.whd -let reduce = reduction_tactic ProofEngineReduction.reduce -let simpl = reduction_tactic ProofEngineReduction.simpl +;; let whd_in_scratch = reduction_tactic_in_scratch CicReduction.whd -let reduce_in_scratch = - reduction_tactic_in_scratch ProofEngineReduction.reduce -let simpl_in_scratch = - reduction_tactic_in_scratch ProofEngineReduction.simpl - -(* It is just the opposite of whd. The code should probably be merged. *) -let fold term = - let curi,metasenv,pbo,pty = - match !proof with - None -> assert false - | Some (curi,metasenv,bo,ty) -> curi,metasenv,bo,ty - in - let metano,context,ty = - match !goal with - None -> assert false - | Some metano -> List.find (function (m,_,_) -> m=metano) metasenv - in - let term' = CicReduction.whd context term in - (* We don't know if [term] is a subterm of [ty] or a subterm of *) - (* the type of one metavariable. So we replace it everywhere. *) - (*CSC: ma si potrebbe ovviare al problema. Ma non credo *) - (*CSC: che si guadagni nulla in fatto di efficienza. *) - let replace = - ProofEngineReduction.replace - ~equality:(ProofEngineReduction.syntactic_equality) - ~what:term' ~with_what:term - in - let ty' = replace ty in - let context' = - List.map - (function - Some (n,Cic.Decl t) -> Some (n,Cic.Decl (replace t)) - | Some (n,Cic.Def t) -> Some (n,Cic.Def (replace t)) - | None -> None - ) context - in - let metasenv' = - List.map - (function - (n,_,_) when n = metano -> (metano,context',ty') - | _ as t -> t - ) metasenv - in - proof := Some (curi,metasenv',pbo,pty) ; - goal := Some metano - -exception NotConvertible - -(*CSC: Bug (or feature?). [input] is parsed in the context of the goal, *) -(*CSC: while [goal_input] can have a richer context (because of binders) *) -(*CSC: So it is _NOT_ possible to use those binders in the [input] term. *) -(*CSC: Is that evident? Is that right? Or should it be changed? *) -let change ~goal_input ~input = - let curi,metasenv,pbo,pty = - match !proof with - None -> assert false - | Some (curi,metasenv,bo,ty) -> curi,metasenv,bo,ty - in - let metano,context,ty = - match !goal with - None -> assert false - | Some metano -> List.find (function (m,_,_) -> m=metano) metasenv - in - (* are_convertible works only on well-typed terms *) - ignore (CicTypeChecker.type_of_aux' metasenv context input) ; - if CicReduction.are_convertible context goal_input input then - begin - let replace = - ProofEngineReduction.replace - ~equality:(==) ~what:goal_input ~with_what:input - in - let ty' = replace ty in - let context' = - List.map - (function - Some (name,Cic.Def t) -> Some (name,Cic.Def (replace t)) - | Some (name,Cic.Decl t) -> Some (name,Cic.Decl (replace t)) - | None -> None - ) context - in - let metasenv' = - List.map - (function - (n,_,_) when n = metano -> (metano,context',ty') - | _ as t -> t - ) metasenv - in - proof := Some (curi,metasenv',pbo,pty) ; - goal := Some metano - end - else - raise NotConvertible +let reduce_in_scratch = reduction_tactic_in_scratch ProofEngineReduction.reduce +let simpl_in_scratch = reduction_tactic_in_scratch ProofEngineReduction.simpl (************************************************************) (* Tactics defined elsewhere *) @@ -288,22 +163,78 @@ let change ~goal_input ~input = (* primitive tactics *) +let can_apply term = can_apply_tactic (PrimitiveTactics.apply_tac ~term) let apply term = apply_tactic (PrimitiveTactics.apply_tac ~term) -let intros () = - apply_tactic (PrimitiveTactics.intros_tac ~name:(fresh_name ())) +let intros () = apply_tactic PrimitiveTactics.intros_tac let cut term = apply_tactic (PrimitiveTactics.cut_tac ~term) let letin term = apply_tactic (PrimitiveTactics.letin_tac ~term) let exact term = apply_tactic (PrimitiveTactics.exact_tac ~term) let elim_intros_simpl term = apply_tactic (PrimitiveTactics.elim_intros_simpl_tac ~term) +let change ~goal_input:what ~input:with_what = + apply_tactic (PrimitiveTactics.change_tac ~what ~with_what) (* structural tactics *) let clearbody hyp = apply_tactic (ProofEngineStructuralRules.clearbody ~hyp) let clear hyp = apply_tactic (ProofEngineStructuralRules.clear ~hyp) + (* reduction tactics *) + +let whd term = + apply_tactic + (ReductionTactics.whd_tac ~also_in_hypotheses:true ~term:(Some term)) +let reduce term = + apply_tactic + (ReductionTactics.reduce_tac ~also_in_hypotheses:true ~term:(Some term)) +let simpl term = + apply_tactic + (ReductionTactics.simpl_tac ~also_in_hypotheses:true ~term:(Some term)) + +let fold_whd term = + apply_tactic + (ReductionTactics.fold_tac ~reduction:CicReduction.whd + ~also_in_hypotheses:true ~term) +let fold_reduce term = + apply_tactic + (ReductionTactics.fold_tac ~reduction:ProofEngineReduction.reduce + ~also_in_hypotheses:true ~term) +let fold_simpl term = + apply_tactic + (ReductionTactics.fold_tac ~reduction:ProofEngineReduction.simpl + ~also_in_hypotheses:true ~term) + (* other tactics *) -let elim_type term = apply_tactic (Ring.elim_type_tac ~term) +let elim_type term = apply_tactic (VariousTactics.elim_type_tac ~term) let ring () = apply_tactic Ring.ring_tac +let fourier () = apply_tactic FourierR.fourier_tac +let rewrite_simpl term = apply_tactic (VariousTactics.rewrite_simpl_tac ~term) + +let reflexivity () = apply_tactic VariousTactics.reflexivity_tac +let symmetry () = apply_tactic VariousTactics.symmetry_tac +let transitivity term = apply_tactic (VariousTactics.transitivity_tac ~term) + +let exists () = apply_tactic VariousTactics.exists_tac +let split () = apply_tactic VariousTactics.split_tac +let left () = apply_tactic VariousTactics.left_tac +let right () = apply_tactic VariousTactics.right_tac + +let assumption () = apply_tactic VariousTactics.assumption_tac + +let generalize term = apply_tactic (VariousTactics.generalize_tac ~term) + +let absurd term = apply_tactic (VariousTactics.absurd_tac ~term) +let contradiction () = apply_tactic VariousTactics.contradiction_tac + +let decompose ~clist = apply_tactic (VariousTactics.decompose_tac ~clist) + +(* +let decide_equality () = apply_tactic VariousTactics.decide_equality_tac +let compare term1 term2 = apply_tactic (VariousTactics.compare_tac ~term1 ~term2) +*) + +(* +let prova_tatticali () = apply_tactic Tacticals.prova_tac +*)