X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fmatita%2Flibrary%2FZ%2Fz.ma;h=d18c80b23ac323b996280a835a52912fc2ffc8ce;hb=4167cea65ca58897d1a3dbb81ff95de5074700cc;hp=cdc0e44d7c28f29fb01681a6d2b52a139a2955d0;hpb=7bbce6bc163892cfd99cfcda65db42001b86789f;p=helm.git diff --git a/helm/matita/library/Z/z.ma b/helm/matita/library/Z/z.ma index cdc0e44d7..d18c80b23 100644 --- a/helm/matita/library/Z/z.ma +++ b/helm/matita/library/Z/z.ma @@ -14,9 +14,8 @@ set "baseuri" "cic:/matita/Z/z". -include "nat/compare.ma". -include "nat/minus.ma". -include "higher_order_defs/functions.ma". +include "datatypes/bool.ma". +include "nat/nat.ma". inductive Z : Set \def OZ : Z @@ -52,23 +51,88 @@ match z with theorem OZ_test_to_Prop :\forall z:Z. match OZ_test z with [true \Rightarrow z=OZ -|false \Rightarrow \lnot (z=OZ)]. +|false \Rightarrow z \neq OZ]. intros.elim z. simplify.reflexivity. -simplify.intros. -cut match neg n with -[ OZ \Rightarrow True -| (pos n) \Rightarrow False -| (neg n) \Rightarrow False]. -apply Hcut.rewrite > H.simplify.exact I. -simplify.intros. -cut match pos n with -[ OZ \Rightarrow True -| (pos n) \Rightarrow False -| (neg n) \Rightarrow False]. -apply Hcut. rewrite > H.simplify.exact I. +simplify. unfold Not. intros (H). +discriminate H. +simplify. unfold Not. intros (H). +discriminate H. qed. +(* discrimination *) +theorem injective_pos: injective nat Z pos. +unfold injective. +intros. +change with (abs (pos x) = abs (pos y)). +apply eq_f.assumption. +qed. + +variant inj_pos : \forall n,m:nat. pos n = pos m \to n = m +\def injective_pos. + +theorem injective_neg: injective nat Z neg. +unfold injective. +intros. +change with (abs (neg x) = abs (neg y)). +apply eq_f.assumption. +qed. + +variant inj_neg : \forall n,m:nat. neg n = neg m \to n = m +\def injective_neg. + +theorem not_eq_OZ_pos: \forall n:nat. OZ \neq pos n. +unfold Not.intros (n H). +discriminate H. +qed. + +theorem not_eq_OZ_neg :\forall n:nat. OZ \neq neg n. +unfold Not.intros (n H). +discriminate H. +qed. + +theorem not_eq_pos_neg :\forall n,m:nat. pos n \neq neg m. +unfold Not.intros (n m H). +discriminate H. +qed. + +theorem decidable_eq_Z : \forall x,y:Z. decidable (x=y). +intros.unfold decidable. +elim x. +(* goal: x=OZ *) + elim y. + (* goal: x=OZ y=OZ *) + left.reflexivity. + (* goal: x=OZ 2=2 *) + right.apply not_eq_OZ_pos. + (* goal: x=OZ 2=3 *) + right.apply not_eq_OZ_neg. +(* goal: x=pos *) + elim y. + (* goal: x=pos y=OZ *) + right.unfold Not.intro. + apply (not_eq_OZ_pos n). symmetry. assumption. + (* goal: x=pos y=pos *) + elim (decidable_eq_nat n n1:((n=n1) \lor ((n=n1) \to False))). + left.apply eq_f.assumption. + right.unfold Not.intros (H_inj).apply H. injection H_inj. assumption. + (* goal: x=pos y=neg *) + right.unfold Not.intro.apply (not_eq_pos_neg n n1). assumption. +(* goal: x=neg *) + elim y. + (* goal: x=neg y=OZ *) + right.unfold Not.intro. + apply (not_eq_OZ_neg n). symmetry. assumption. + (* goal: x=neg y=pos *) + right. unfold Not.intro. apply (not_eq_pos_neg n1 n). symmetry. assumption. + (* goal: x=neg y=neg *) + elim (decidable_eq_nat n n1:((n=n1) \lor ((n=n1) \to False))). + left.apply eq_f.assumption. + right.unfold Not.intro.apply H.apply injective_neg.assumption. +qed. + +(* end discrimination *) + definition Zsucc \def \lambda z. match z with [ OZ \Rightarrow pos O @@ -88,273 +152,22 @@ definition Zpred \def | (neg n) \Rightarrow neg (S n)]. theorem Zpred_Zsucc: \forall z:Z. Zpred (Zsucc z) = z. -intros.elim z.reflexivity. -elim n.reflexivity. -reflexivity. -reflexivity. -qed. - -theorem Zsucc_Zpred: \forall z:Z. Zsucc (Zpred z) = z. -intros.elim z.reflexivity. -reflexivity. -elim n.reflexivity. -reflexivity. -qed. - -definition Zplus :Z \to Z \to Z \def -\lambda x,y. - match x with - [ OZ \Rightarrow y - | (pos m) \Rightarrow - match y with - [ OZ \Rightarrow x - | (pos n) \Rightarrow (pos (pred ((S m)+(S n)))) - | (neg n) \Rightarrow - match nat_compare m n with - [ LT \Rightarrow (neg (pred (n-m))) - | EQ \Rightarrow OZ - | GT \Rightarrow (pos (pred (m-n)))]] - | (neg m) \Rightarrow - match y with - [ OZ \Rightarrow x - | (pos n) \Rightarrow - match nat_compare m n with - [ LT \Rightarrow (pos (pred (n-m))) - | EQ \Rightarrow OZ - | GT \Rightarrow (neg (pred (m-n)))] - | (neg n) \Rightarrow (neg (pred ((S m)+(S n))))]]. - -(*CSC: the URI must disappear: there is a bug now *) -interpretation "integer plus" 'plus x y = (cic:/matita/Z/z/Zplus.con x y). - -theorem Zplus_z_OZ: \forall z:Z. z+OZ = z. -intro.elim z. -simplify.reflexivity. -simplify.reflexivity. -simplify.reflexivity. -qed. - -(* theorem symmetric_Zplus: symmetric Z Zplus. *) - -theorem sym_Zplus : \forall x,y:Z. x+y = y+x. -intros.elim x.rewrite > Zplus_z_OZ.reflexivity. -elim y.simplify.reflexivity. -simplify. -rewrite < plus_n_Sm. rewrite < plus_n_Sm.rewrite < sym_plus.reflexivity. -simplify. -rewrite > nat_compare_n_m_m_n. -simplify.elim nat_compare ? ?.simplify.reflexivity. -simplify. reflexivity. -simplify. reflexivity. -elim y.simplify.reflexivity. -simplify.rewrite > nat_compare_n_m_m_n. -simplify.elim nat_compare ? ?.simplify.reflexivity. -simplify. reflexivity. -simplify. reflexivity. -simplify.rewrite < plus_n_Sm. rewrite < plus_n_Sm.rewrite < sym_plus.reflexivity. -qed. - -theorem Zpred_Zplus_neg_O : \forall z:Z. Zpred z = (neg O)+z. -intros.elim z. -simplify.reflexivity. -simplify.reflexivity. -elim n.simplify.reflexivity. -simplify.reflexivity. -qed. - -theorem Zsucc_Zplus_pos_O : \forall z:Z. Zsucc z = (pos O)+z. -intros.elim z. -simplify.reflexivity. -elim n.simplify.reflexivity. -simplify.reflexivity. -simplify.reflexivity. -qed. - -theorem Zplus_pos_pos: -\forall n,m. (pos n)+(pos m) = (Zsucc (pos n))+(Zpred (pos m)). intros. -elim n.elim m. -simplify.reflexivity. -simplify.reflexivity. -elim m. -simplify.rewrite < plus_n_Sm. -rewrite < plus_n_O.reflexivity. -simplify.rewrite < plus_n_Sm. -rewrite < plus_n_Sm.reflexivity. -qed. - -theorem Zplus_pos_neg: -\forall n,m. (pos n)+(neg m) = (Zsucc (pos n))+(Zpred (neg m)). -intros.reflexivity. +elim z. + reflexivity. + reflexivity. + elim n. + reflexivity. + reflexivity. qed. -theorem Zplus_neg_pos : -\forall n,m. (neg n)+(pos m) = (Zsucc (neg n))+(Zpred (pos m)). -intros. -elim n.elim m. -simplify.reflexivity. -simplify.reflexivity. -elim m. -simplify.reflexivity. -simplify.reflexivity. -qed. - -theorem Zplus_neg_neg: -\forall n,m. (neg n)+(neg m) = (Zsucc (neg n))+(Zpred (neg m)). -intros. -elim n.elim m. -simplify.reflexivity. -simplify.reflexivity. -elim m. -simplify.rewrite > plus_n_Sm.reflexivity. -simplify.rewrite > plus_n_Sm.reflexivity. -qed. - -theorem Zplus_Zsucc_Zpred: -\forall x,y. x+y = (Zsucc x)+(Zpred y). -intros. -elim x. elim y. -simplify.reflexivity. -simplify.reflexivity. -rewrite < Zsucc_Zplus_pos_O. -rewrite > Zsucc_Zpred.reflexivity. -elim y.rewrite < sym_Zplus.rewrite < sym_Zplus (Zpred OZ). -rewrite < Zpred_Zplus_neg_O. -rewrite > Zpred_Zsucc. -simplify.reflexivity. -rewrite < Zplus_neg_neg.reflexivity. -apply Zplus_neg_pos. -elim y.simplify.reflexivity. -apply Zplus_pos_neg. -apply Zplus_pos_pos. -qed. - -theorem Zplus_Zsucc_pos_pos : -\forall n,m. (Zsucc (pos n))+(pos m) = Zsucc ((pos n)+(pos m)). -intros.reflexivity. -qed. - -theorem Zplus_Zsucc_pos_neg: -\forall n,m. (Zsucc (pos n))+(neg m) = (Zsucc ((pos n)+(neg m))). -intros. -apply nat_elim2 -(\lambda n,m. (Zsucc (pos n))+(neg m) = (Zsucc ((pos n)+(neg m)))).intro. -intros.elim n1. -simplify. reflexivity. -elim n2.simplify. reflexivity. -simplify. reflexivity. -intros. elim n1. -simplify. reflexivity. -simplify.reflexivity. -intros. -rewrite < (Zplus_pos_neg ? m1). -elim H.reflexivity. -qed. - -theorem Zplus_Zsucc_neg_neg : -\forall n,m. (Zsucc (neg n))+(neg m) = Zsucc ((neg n)+(neg m)). -intros. -apply nat_elim2 -(\lambda n,m. ((Zsucc (neg n))+(neg m)) = Zsucc ((neg n)+(neg m))).intro. -intros.elim n1. -simplify. reflexivity. -elim n2.simplify. reflexivity. -simplify. reflexivity. -intros. elim n1. -simplify. reflexivity. -simplify.reflexivity. -intros. -rewrite < (Zplus_neg_neg ? m1). -reflexivity. -qed. - -theorem Zplus_Zsucc_neg_pos: -\forall n,m. Zsucc (neg n)+(pos m) = Zsucc ((neg n)+(pos m)). -intros. -apply nat_elim2 -(\lambda n,m. (Zsucc (neg n))+(pos m) = Zsucc ((neg n)+(pos m))). -intros.elim n1. -simplify. reflexivity. -elim n2.simplify. reflexivity. -simplify. reflexivity. -intros. elim n1. -simplify. reflexivity. -simplify.reflexivity. -intros. -rewrite < H. -rewrite < (Zplus_neg_pos ? (S m1)). -reflexivity. -qed. - -theorem Zplus_Zsucc : \forall x,y:Z. (Zsucc x)+y = Zsucc (x+y). -intros.elim x.elim y. -simplify. reflexivity. -rewrite < Zsucc_Zplus_pos_O.reflexivity. -simplify.reflexivity. -elim y.rewrite < sym_Zplus.rewrite < sym_Zplus OZ.simplify.reflexivity. -apply Zplus_Zsucc_neg_neg. -apply Zplus_Zsucc_neg_pos. -elim y. -rewrite < sym_Zplus OZ.reflexivity. -apply Zplus_Zsucc_pos_neg. -apply Zplus_Zsucc_pos_pos. -qed. - -theorem Zplus_Zpred: \forall x,y:Z. (Zpred x)+y = Zpred (x+y). +theorem Zsucc_Zpred: \forall z:Z. Zsucc (Zpred z) = z. intros. -cut Zpred (x+y) = Zpred ((Zsucc (Zpred x))+y). -rewrite > Hcut. -rewrite > Zplus_Zsucc. -rewrite > Zpred_Zsucc. -reflexivity. -rewrite > Zsucc_Zpred. -reflexivity. -qed. - - -theorem associative_Zplus: associative Z Zplus. -change with \forall x,y,z:Z. (x + y) + z = x + (y + z). -(* simplify. *) -intros.elim x.simplify.reflexivity. -elim n.rewrite < (Zpred_Zplus_neg_O (y+z)). -rewrite < (Zpred_Zplus_neg_O y). -rewrite < Zplus_Zpred. -reflexivity. -rewrite > Zplus_Zpred (neg n1). -rewrite > Zplus_Zpred (neg n1). -rewrite > Zplus_Zpred ((neg n1)+y). -apply eq_f.assumption. -elim n.rewrite < Zsucc_Zplus_pos_O. -rewrite < Zsucc_Zplus_pos_O. -rewrite > Zplus_Zsucc. -reflexivity. -rewrite > Zplus_Zsucc (pos n1). -rewrite > Zplus_Zsucc (pos n1). -rewrite > Zplus_Zsucc ((pos n1)+y). -apply eq_f.assumption. -qed. - -variant assoc_Zplus : \forall x,y,z:Z. (x+y)+z = x+(y+z) -\def associative_Zplus. - -(* Zopp *) -definition Zopp : Z \to Z \def -\lambda x:Z. match x with -[ OZ \Rightarrow OZ -| (pos n) \Rightarrow (neg n) -| (neg n) \Rightarrow (pos n) ]. - -(*CSC: the URI must disappear: there is a bug now *) -interpretation "integer unary minus" 'uminus x = (cic:/matita/Z/z/Zopp.con x). - -theorem Zplus_Zopp: \forall x:Z. x+ -x = OZ. -intro.elim x. -apply refl_eq. -simplify. -rewrite > nat_compare_n_n. -simplify.apply refl_eq. -simplify. -rewrite > nat_compare_n_n. -simplify.apply refl_eq. +elim z. + reflexivity. + elim n. + reflexivity. + reflexivity. + reflexivity. qed.