X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fmatita%2Flibrary%2Falgebra%2Fgroups.ma;h=04a00c6f7e4184805e92a2263fd19d8fc4101550;hb=771ee8b9d122fa963881c876e86f90531bb7434f;hp=ae6b525e3906d9b6f5b153b0c767ed6c47faed08;hpb=ec13ac23f555f04b0a546d0e8ae464d9b5806d9b;p=helm.git diff --git a/helm/matita/library/algebra/groups.ma b/helm/matita/library/algebra/groups.ma index ae6b525e3..04a00c6f7 100644 --- a/helm/matita/library/algebra/groups.ma +++ b/helm/matita/library/algebra/groups.ma @@ -16,6 +16,8 @@ set "baseuri" "cic:/matita/algebra/groups/". include "algebra/monoids.ma". include "nat/le_arith.ma". +include "datatypes/bool.ma". +include "nat/compare.ma". record PreGroup : Type ≝ { premonoid:> PreMonoid; @@ -115,7 +117,7 @@ for @{ 'repr $C $i }. interpretation "Finite_enumerable representation" 'repr C i = (cic:/matita/algebra/groups/repr.con C _ i).*) -notation "hvbox(|C|)" with precedence 89 +notation < "hvbox(|C|)" with precedence 89 for @{ 'card $C }. interpretation "Finite_enumerable order" 'card C = @@ -162,7 +164,404 @@ interpretation "Index_of_finite_enumerable representation" = (cic:/matita/algebra/groups/index_of.con _ (cic:/matita/algebra/groups/is_finite_enumerable.con _) e). - + + +(* several definitions/theorems to be moved somewhere else *) + +definition ltb ≝ λn,m. leb n m ∧ notb (eqb n m). + +theorem not_eq_to_le_to_lt: ∀n,m. n≠m → n≤m → n (S_pred m); + [ apply le_S_S; + assumption + | assumption + ] +]. +qed. + +theorem le_to_le_pred: + ∀n,m. n ≤ m → pred n ≤ pred m. +intros 2; +elim n; +[ simplify; + apply le_O_n +| simplify; + generalize in match H1; + clear H1; + elim m; + [ elim (not_le_Sn_O ? H1) + | simplify; + apply le_S_S_to_le; + assumption + ] +]. +qed. + +theorem lt_n_m_to_not_lt_m_Sn: ∀n,m. n < m → m ≮ S n. +intros; +unfold Not; +intro; +unfold lt in H; +unfold lt in H1; +generalize in match (le_S_S ? ? H); +intro; +generalize in match (transitive_le ? ? ? H2 H1); +intro; +apply (not_le_Sn_n ? H3). +qed. + +theorem lt_S_S: ∀n,m. n < m → S n < S m. +intros; +unfold lt in H; +apply (le_S_S ? ? H). +qed. + +theorem lt_O_S: ∀n. O < S n. +intro; +unfold lt; +apply le_S_S; +apply le_O_n. +qed. + +theorem le_n_m_to_lt_m_Sn_to_eq_n_m: ∀n,m. n ≤ m → m < S n → n=m. +intros; +unfold lt in H1; +generalize in match (le_S_S_to_le ? ? H1); +intro; +apply cic:/matita/nat/orders/antisym_le.con; +assumption. +qed. + +theorem pigeonhole: + ∀n:nat.∀f:nat→nat. + (∀x,y.x≤n → y≤n → f x = f y → x=y) → + (∀m. m ≤ n → f m ≤ n) → + ∀x. x≤n \to ∃y.f y = x ∧ y ≤ n. +intro; +elim n; +[ apply (ex_intro ? ? O); + split; + [ rewrite < (le_n_O_to_eq ? H2); + rewrite < (le_n_O_to_eq ? (H1 O ?)); + [ reflexivity + | apply le_n + ] + | apply le_n + ] +| clear n; + letin f' ≝ + (λx. + let fSn1 ≝ f (S n1) in + let fx ≝ f x in + match ltb fSn1 fx with + [ true ⇒ pred fx + | false ⇒ fx + ]); + cut (∀x,y. x ≤ n1 → y ≤ n1 → f' x = f' y → x=y); + [ cut (∀x. x ≤ n1 → f' x ≤ n1); + [ apply (nat_compare_elim (f (S n1)) x); + [ intro; + elim (H f' ? ? (pred x)); + [ simplify in H5; + clear Hcut; + clear Hcut1; + clear f'; + elim H5; + clear H5; + apply (ex_intro ? ? a); + split; + [ generalize in match (eq_f ? ? S ? ? H6); + clear H6; + intro; + rewrite < S_pred in H5; + [ generalize in match H4; + clear H4; + rewrite < H5; + clear H5; + apply (ltb_elim (f (S n1)) (f a)); + [ simplify; + intros; + rewrite < S_pred; + [ reflexivity + | apply (ltn_to_ltO ? ? H4) + ] + | simplify; + intros; + generalize in match (not_lt_to_le ? ? H4); + clear H4; + intro; + generalize in match (le_n_m_to_lt_m_Sn_to_eq_n_m ? ? H6 H5); + intro; + generalize in match (H1 ? ? ? ? H4); + [ intro; + | + | + ] + ] + | apply (ltn_to_ltO ? ? H4) + ] + | apply le_S; + assumption + ] + | apply Hcut + | apply Hcut1 + | apply le_S_S_to_le; + rewrite < S_pred; + exact H3 + ] + (* TODO: caso complicato, ma simile al terzo *) + | intros; + apply (ex_intro ? ? (S n1)); + split; + [ assumption + | constructor 1 + ] + | intro; + elim (H f' ? ? x); + [ simplify in H5; + clear Hcut; + clear Hcut1; + clear f'; + elim H5; + clear H5; + apply (ex_intro ? ? a); + split; + [ generalize in match H4; + clear H4; + rewrite < H6; + clear H6; + apply (ltb_elim (f (S n1)) (f a)); + [ simplify; + intros; + generalize in match (lt_S_S ? ? H5); + intro; + rewrite < S_pred in H6; + [ elim (lt_n_m_to_not_lt_m_Sn ? ? H4 H6) + | apply (ltn_to_ltO ? ? H4) + ] + | simplify; + intros; + reflexivity + ] + | apply le_S; + assumption + ] + | apply Hcut + | apply Hcut1 + | rewrite > (pred_Sn n1); + simplify; + generalize in match (H2 (S n1)); + intro; + generalize in match (lt_to_le_to_lt ? ? ? H4 (H5 (le_n ?))); + intro; + unfold lt in H6; + apply le_S_S_to_le; + assumption + ] + ] + | unfold f'; + simplify; + intro; + apply (ltb_elim (f (S n1)) (f x1)); + simplify; + intros; + [ generalize in match (H2 x1); + intro; + change in match n1 with (pred (S n1)); + apply le_to_le_pred; + apply H6; + apply le_S; + assumption + | generalize in match (H2 (S n1) (le_n ?)); + intro; + generalize in match (not_lt_to_le ? ? H4); + intro; + generalize in match (transitive_le ? ? ? H7 H6); + intro; + cut (f x1 ≠ f (S n1)); + [ generalize in match (not_eq_to_le_to_lt ? ? Hcut1 H7); + intro; + unfold lt in H9; + generalize in match (transitive_le ? ? ? H9 H6); + intro; + apply le_S_S_to_le; + assumption + | unfold Not; + intro; + generalize in match (H1 ? ? ? ? H9); + [ intro; + rewrite > H10 in H5; + apply (not_le_Sn_n ? H5) + | apply le_S; + assumption + | apply le_n + ] + ] + ] + ] + | intros 4; + unfold f'; + simplify; + apply (ltb_elim (f (S n1)) (f x1)); + simplify; + apply (ltb_elim (f (S n1)) (f y)); + simplify; + intros; + [ cut (f x1 = f y); + [ apply (H1 ? ? ? ? Hcut); + apply le_S; + assumption + | apply eq_pred_to_eq; + [ apply (ltn_to_ltO ? ? H7) + | apply (ltn_to_ltO ? ? H6) + | assumption + ] + ] + | (* pred (f x1) = f y absurd since y ≠ S n1 and thus f y ≠ f (S n1) + so that f y < f (S n1) < f x1; hence pred (f x1) = f y is absurd *) + cut (y < S n1); + [ generalize in match (lt_to_not_eq ? ? Hcut); + intro; + cut (f y ≠ f (S n1)); + [ cut (f y < f (S n1)); + [ rewrite < H8 in Hcut2; + unfold lt in Hcut2; + unfold lt in H7; + generalize in match (le_S_S ? ? Hcut2); + intro; + generalize in match (transitive_le ? ? ? H10 H7); + intros; + rewrite < (S_pred (f x1)) in H11; + [ elim (not_le_Sn_n ? H11) + | fold simplify ((f (S n1)) < (f x1)) in H7; + apply (ltn_to_ltO ? ? H7) + ] + | apply not_eq_to_le_to_lt; + [ assumption + | apply not_lt_to_le; + assumption + ] + ] + | unfold Not; + intro; + apply H9; + apply (H1 ? ? ? ? H10); + [ apply lt_to_le; + assumption + | constructor 1 + ] + ] + | unfold lt; + apply le_S_S; + assumption + ] + | (* f x1 = pred (f y) absurd since it implies S (f x1) = f y and + f x1 ≤ f (S n1) < f y = S (f x1) so that f x1 = f (S n1); by + injectivity x1 = S n1 that is absurd since x1 ≤ n1 *) + generalize in match (eq_f ? ? S ? ? H8); + intro; + rewrite < S_pred in H9; + [ rewrite < H9 in H6; + generalize in match (not_lt_to_le ? ? H7); + intro; + unfold lt in H6; + generalize in match (le_S_S ? ? H10); + intro; + generalize in match (antisym_le ? ? H11 H6); + intro; + generalize in match (inj_S ? ? H12); + intro; + generalize in match (H1 ? ? ? ? H13); + [ intro; + rewrite > H14 in H4; + elim (not_le_Sn_n ? H4) + | apply le_S; + assumption + | apply le_n + ] + | apply (ltn_to_ltO ? ? H6) + ] + | apply (H1 ? ? ? ? H8); + apply le_S; + assumption + ] + ] +]. +qed. + theorem foo: ∀G:finite_enumerable_SemiGroup. left_cancellable ? (op G) → @@ -207,5 +606,5 @@ cut (∀n.n ≤ order ? (is_finite_enumerable G) → ∃m.f m = n); apply (H1 ? ? ? GaxGax) ] ] -| +| apply pigeonhole ].