X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fmatita%2Flibrary%2Fnat%2Fdiv_and_mod.ma;h=e9831f82ad1ec5cc01decf9e920f9e80518c3f64;hb=4167cea65ca58897d1a3dbb81ff95de5074700cc;hp=f79891b48a39b7394493d8cf7cc2cfa547450c81;hpb=fcc4e47ab6406a9a666471e017b81cf364195866;p=helm.git diff --git a/helm/matita/library/nat/div_and_mod.ma b/helm/matita/library/nat/div_and_mod.ma index f79891b48..e9831f82a 100644 --- a/helm/matita/library/nat/div_and_mod.ma +++ b/helm/matita/library/nat/div_and_mod.ma @@ -53,35 +53,35 @@ interpretation "natural divide" 'divide x y = theorem le_mod_aux_m_m: \forall p,n,m. n \leq p \to (mod_aux p n m) \leq m. intro.elim p. -apply le_n_O_elim n H (\lambda n.(mod_aux O n m) \leq m). +apply (le_n_O_elim n H (\lambda n.(mod_aux O n m) \leq m)). simplify.apply le_O_n. simplify. -apply leb_elim n1 m. +apply (leb_elim n1 m). simplify.intro.assumption. simplify.intro.apply H. -cut n1 \leq (S n) \to n1-(S m) \leq n. +cut (n1 \leq (S n) \to n1-(S m) \leq n). apply Hcut.assumption. elim n1. simplify.apply le_O_n. -simplify.apply trans_le ? n2 n. +simplify.apply (trans_le ? n2 n). apply le_minus_m.apply le_S_S_to_le.assumption. qed. theorem lt_mod_m_m: \forall n,m. O < m \to (n \mod m) < m. intros 2.elim m.apply False_ind. -apply not_le_Sn_O O H. -simplify.apply le_S_S.apply le_mod_aux_m_m. +apply (not_le_Sn_O O H). +simplify.unfold lt.apply le_S_S.apply le_mod_aux_m_m. apply le_n. qed. theorem div_aux_mod_aux: \forall p,n,m:nat. (n=(div_aux p n m)*(S m) + (mod_aux p n m)). intro.elim p. -simplify.elim leb n m. +simplify.elim (leb n m). simplify.apply refl_eq. simplify.apply refl_eq. simplify. -apply leb_elim n1 m. +apply (leb_elim n1 m). simplify.intro.apply refl_eq. simplify.intro. rewrite > assoc_plus. @@ -89,7 +89,7 @@ elim (H (n1-(S m)) m). change with (n1=(S m)+(n1-(S m))). rewrite < sym_plus. apply plus_minus_m_m. -change with m < n1. +change with (m < n1). apply not_le_to_lt.exact H1. qed. @@ -108,9 +108,9 @@ definition div_mod_spec : nat \to nat \to nat \to nat \to Prop \def *) theorem div_mod_spec_to_not_eq_O: \forall n,m,q,r.(div_mod_spec n m q r) \to m \neq O. -intros 4.simplify.intros.elim H.absurd le (S r) O. +intros 4.unfold Not.intros.elim H.absurd (le (S r) O). rewrite < H1.assumption. -exact not_le_Sn_O r. +exact (not_le_Sn_O r). qed. theorem div_mod_spec_div_mod: @@ -125,14 +125,14 @@ theorem div_mod_spec_to_eq :\forall a,b,q,r,q1,r1. (div_mod_spec a b q r) \to (div_mod_spec a b q1 r1) \to (eq nat q q1). intros.elim H.elim H1. -apply nat_compare_elim q q1.intro. +apply (nat_compare_elim q q1).intro. apply False_ind. -cut eq nat ((q1-q)*b+r1) r. -cut b \leq (q1-q)*b+r1. -cut b \leq r. -apply lt_to_not_le r b H2 Hcut2. +cut (eq nat ((q1-q)*b+r1) r). +cut (b \leq (q1-q)*b+r1). +cut (b \leq r). +apply (lt_to_not_le r b H2 Hcut2). elim Hcut.assumption. -apply trans_le ? ((q1-q)*b). +apply (trans_le ? ((q1-q)*b)). apply le_times_n. apply le_SO_minus.exact H6. rewrite < sym_plus. @@ -153,12 +153,12 @@ intros.assumption. (* the following case is symmetric *) intro. apply False_ind. -cut eq nat ((q-q1)*b+r) r1. -cut b \leq (q-q1)*b+r. -cut b \leq r1. -apply lt_to_not_le r1 b H4 Hcut2. +cut (eq nat ((q-q1)*b+r) r1). +cut (b \leq (q-q1)*b+r). +cut (b \leq r1). +apply (lt_to_not_le r1 b H4 Hcut2). elim Hcut.assumption. -apply trans_le ? ((q-q1)*b). +apply (trans_le ? ((q-q1)*b)). apply le_times_n. apply le_SO_minus.exact H6. rewrite < sym_plus. @@ -180,31 +180,31 @@ theorem div_mod_spec_to_eq2 :\forall a,b,q,r,q1,r1. (div_mod_spec a b q r) \to (div_mod_spec a b q1 r1) \to (eq nat r r1). intros.elim H.elim H1. -apply inj_plus_r (q*b). +apply (inj_plus_r (q*b)). rewrite < H3. -rewrite > div_mod_spec_to_eq a b q r q1 r1 H H1. +rewrite > (div_mod_spec_to_eq a b q r q1 r1 H H1). assumption. qed. theorem div_mod_spec_times : \forall n,m:nat.div_mod_spec ((S n)*m) (S n) m O. intros.constructor 1. -simplify.apply le_S_S.apply le_O_n. +unfold lt.apply le_S_S.apply le_O_n. rewrite < plus_n_O.rewrite < sym_times.reflexivity. qed. (* some properties of div and mod *) theorem div_times: \forall n,m:nat. ((S n)*m) / (S n) = m. intros. -apply div_mod_spec_to_eq ((S n)*m) (S n) ? ? ? O. +apply (div_mod_spec_to_eq ((S n)*m) (S n) ? ? ? O). goal 15. (* ?11 is closed with the following tactics *) apply div_mod_spec_div_mod. -simplify.apply le_S_S.apply le_O_n. +unfold lt.apply le_S_S.apply le_O_n. apply div_mod_spec_times. qed. theorem div_n_n: \forall n:nat. O < n \to n / n = S O. intros. -apply div_mod_spec_to_eq n n (n / n) (n \mod n) (S O) O. +apply (div_mod_spec_to_eq n n (n / n) (n \mod n) (S O) O). apply div_mod_spec_div_mod.assumption. constructor 1.assumption. rewrite < plus_n_O.simplify.rewrite < plus_n_O.reflexivity. @@ -212,16 +212,16 @@ qed. theorem eq_div_O: \forall n,m. n < m \to n / m = O. intros. -apply div_mod_spec_to_eq n m (n/m) (n \mod m) O n. +apply (div_mod_spec_to_eq n m (n/m) (n \mod m) O n). apply div_mod_spec_div_mod. -apply le_to_lt_to_lt O n m. +apply (le_to_lt_to_lt O n m). apply le_O_n.assumption. constructor 1.assumption.reflexivity. qed. theorem mod_n_n: \forall n:nat. O < n \to n \mod n = O. intros. -apply div_mod_spec_to_eq2 n n (n / n) (n \mod n) (S O) O. +apply (div_mod_spec_to_eq2 n n (n / n) (n \mod n) (S O) O). apply div_mod_spec_div_mod.assumption. constructor 1.assumption. rewrite < plus_n_O.simplify.rewrite < plus_n_O.reflexivity. @@ -230,7 +230,7 @@ qed. theorem mod_S: \forall n,m:nat. O < m \to S (n \mod m) < m \to ((S n) \mod m) = S (n \mod m). intros. -apply div_mod_spec_to_eq2 (S n) m ((S n) / m) ((S n) \mod m) (n / m) (S (n \mod m)). +apply (div_mod_spec_to_eq2 (S n) m ((S n) / m) ((S n) \mod m) (n / m) (S (n \mod m))). apply div_mod_spec_div_mod.assumption. constructor 1.assumption.rewrite < plus_n_Sm. apply eq_f. @@ -245,19 +245,19 @@ qed. theorem lt_to_eq_mod:\forall n,m:nat. n < m \to n \mod m = n. intros. -apply div_mod_spec_to_eq2 n m (n/m) (n \mod m) O n. +apply (div_mod_spec_to_eq2 n m (n/m) (n \mod m) O n). apply div_mod_spec_div_mod. -apply le_to_lt_to_lt O n m.apply le_O_n.assumption. +apply (le_to_lt_to_lt O n m).apply le_O_n.assumption. constructor 1. assumption.reflexivity. qed. (* injectivity *) theorem injective_times_r: \forall n:nat.injective nat nat (\lambda m:nat.(S n)*m). -change with \forall n,p,q:nat.(S n)*p = (S n)*q \to p=q. +change with (\forall n,p,q:nat.(S n)*p = (S n)*q \to p=q). intros. -rewrite < div_times n. -rewrite < div_times n q. +rewrite < (div_times n). +rewrite < (div_times n q). apply eq_f2.assumption. reflexivity. qed. @@ -266,21 +266,21 @@ variant inj_times_r : \forall n,p,q:nat.(S n)*p = (S n)*q \to p=q \def injective_times_r. theorem lt_O_to_injective_times_r: \forall n:nat. O < n \to injective nat nat (\lambda m:nat.n*m). -change with \forall n. O < n \to \forall p,q:nat.n*p = n*q \to p=q. +change with (\forall n. O < n \to \forall p,q:nat.n*p = n*q \to p=q). intros 4. -apply lt_O_n_elim n H.intros. -apply inj_times_r m.assumption. +apply (lt_O_n_elim n H).intros. +apply (inj_times_r m).assumption. qed. variant inj_times_r1:\forall n. O < n \to \forall p,q:nat.n*p = n*q \to p=q \def lt_O_to_injective_times_r. theorem injective_times_l: \forall n:nat.injective nat nat (\lambda m:nat.m*(S n)). -change with \forall n,p,q:nat.p*(S n) = q*(S n) \to p=q. +change with (\forall n,p,q:nat.p*(S n) = q*(S n) \to p=q). intros. -apply inj_times_r n p q. +apply (inj_times_r n p q). rewrite < sym_times. -rewrite < sym_times q. +rewrite < (sym_times q). assumption. qed. @@ -288,10 +288,10 @@ variant inj_times_l : \forall n,p,q:nat. p*(S n) = q*(S n) \to p=q \def injective_times_l. theorem lt_O_to_injective_times_l: \forall n:nat. O < n \to injective nat nat (\lambda m:nat.m*n). -change with \forall n. O < n \to \forall p,q:nat.p*n = q*n \to p=q. +change with (\forall n. O < n \to \forall p,q:nat.p*n = q*n \to p=q). intros 4. -apply lt_O_n_elim n H.intros. -apply inj_times_l m.assumption. +apply (lt_O_n_elim n H).intros. +apply (inj_times_l m).assumption. qed. variant inj_times_l1:\forall n. O < n \to \forall p,q:nat.p*n = q*n \to p=q