X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fmatita%2Flibrary%2Fnat%2Fdiv_and_mod.ma;h=f79891b48a39b7394493d8cf7cc2cfa547450c81;hb=8b55faddb06e3c4b0a13839210bb49170939b33e;hp=73344c7c46b0cf1466b0aea949755ced792fc13a;hpb=ab44166935d77276c04fcce50aa8281292776e29;p=helm.git diff --git a/helm/matita/library/nat/div_and_mod.ma b/helm/matita/library/nat/div_and_mod.ma index 73344c7c4..f79891b48 100644 --- a/helm/matita/library/nat/div_and_mod.ma +++ b/helm/matita/library/nat/div_and_mod.ma @@ -1,5 +1,5 @@ (**************************************************************************) -(* ___ *) +(* ___ *) (* ||M|| *) (* ||A|| A project by Andrea Asperti *) (* ||T|| *) @@ -30,6 +30,9 @@ match m with [O \Rightarrow m | (S p) \Rightarrow mod_aux n n p]. +interpretation "natural remainder" 'module x y = + (cic:/matita/nat/div_and_mod/mod.con x y). + let rec div_aux p m n : nat \def match (leb m n) with [ true \Rightarrow O @@ -44,6 +47,9 @@ match m with [O \Rightarrow S n | (S p) \Rightarrow div_aux n n p]. +interpretation "natural divide" 'divide x y = + (cic:/matita/nat/div_and_mod/div.con x y). + theorem le_mod_aux_m_m: \forall p,n,m. n \leq p \to (mod_aux p n m) \leq m. intro.elim p. @@ -61,7 +67,7 @@ simplify.apply trans_le ? n2 n. apply le_minus_m.apply le_S_S_to_le.assumption. qed. -theorem lt_mod_m_m: \forall n,m. O < m \to (mod n m) < m. +theorem lt_mod_m_m: \forall n,m. O < m \to (n \mod m) < m. intros 2.elim m.apply False_ind. apply not_le_Sn_O O H. simplify.apply le_S_S.apply le_mod_aux_m_m. @@ -87,7 +93,7 @@ change with m < n1. apply not_le_to_lt.exact H1. qed. -theorem div_mod: \forall n,m:nat. O < m \to n=(div n m)*m+(mod n m). +theorem div_mod: \forall n,m:nat. O < m \to n=(n / m)*m+(n \mod m). intros 2.elim m.elim (not_le_Sn_O O H). simplify. apply div_aux_mod_aux. @@ -101,14 +107,14 @@ definition div_mod_spec : nat \to nat \to nat \to nat \to Prop \def \lambda n,m,q,r:nat.r < m \land n=q*m+r). *) -theorem div_mod_spec_to_not_eq_O: \forall n,m,q,r.(div_mod_spec n m q r) \to \lnot m=O. +theorem div_mod_spec_to_not_eq_O: \forall n,m,q,r.(div_mod_spec n m q r) \to m \neq O. intros 4.simplify.intros.elim H.absurd le (S r) O. rewrite < H1.assumption. exact not_le_Sn_O r. qed. theorem div_mod_spec_div_mod: -\forall n,m. O < m \to (div_mod_spec n m (div n m) (mod n m)). +\forall n,m. O < m \to (div_mod_spec n m (n / m) (n \mod m)). intros. apply div_mod_spec_intro. apply lt_mod_m_m.assumption. @@ -138,7 +144,6 @@ rewrite > sym_times. rewrite < H5. rewrite < sym_times. apply plus_to_minus. -apply eq_plus_to_le ? ? ? H3. apply H3. apply le_times_r. apply lt_to_le. @@ -165,7 +170,6 @@ rewrite > sym_times. rewrite < H3. rewrite < sym_times. apply plus_to_minus. -apply eq_plus_to_le ? ? ? H5. apply H5. apply le_times_r. apply lt_to_le. @@ -189,7 +193,7 @@ rewrite < plus_n_O.rewrite < sym_times.reflexivity. qed. (* some properties of div and mod *) -theorem div_times: \forall n,m:nat. div ((S n)*m) (S n) = m. +theorem div_times: \forall n,m:nat. ((S n)*m) / (S n) = m. intros. apply div_mod_spec_to_eq ((S n)*m) (S n) ? ? ? O. goal 15. (* ?11 is closed with the following tactics *) @@ -198,26 +202,35 @@ simplify.apply le_S_S.apply le_O_n. apply div_mod_spec_times. qed. -theorem div_n_n: \forall n:nat. O < n \to div n n = S O. +theorem div_n_n: \forall n:nat. O < n \to n / n = S O. intros. -apply div_mod_spec_to_eq n n (div n n) (mod n n) (S O) O. +apply div_mod_spec_to_eq n n (n / n) (n \mod n) (S O) O. apply div_mod_spec_div_mod.assumption. constructor 1.assumption. rewrite < plus_n_O.simplify.rewrite < plus_n_O.reflexivity. qed. -theorem mod_n_n: \forall n:nat. O < n \to mod n n = O. +theorem eq_div_O: \forall n,m. n < m \to n / m = O. intros. -apply div_mod_spec_to_eq2 n n (div n n) (mod n n) (S O) O. +apply div_mod_spec_to_eq n m (n/m) (n \mod m) O n. +apply div_mod_spec_div_mod. +apply le_to_lt_to_lt O n m. +apply le_O_n.assumption. +constructor 1.assumption.reflexivity. +qed. + +theorem mod_n_n: \forall n:nat. O < n \to n \mod n = O. +intros. +apply div_mod_spec_to_eq2 n n (n / n) (n \mod n) (S O) O. apply div_mod_spec_div_mod.assumption. constructor 1.assumption. rewrite < plus_n_O.simplify.rewrite < plus_n_O.reflexivity. qed. -theorem mod_S: \forall n,m:nat. O < m \to S (mod n m) < m \to -(mod (S n) m) = S (mod n m). +theorem mod_S: \forall n,m:nat. O < m \to S (n \mod m) < m \to +((S n) \mod m) = S (n \mod m). intros. -apply div_mod_spec_to_eq2 (S n) m (div (S n) m) (mod (S n) m) (div n m) (S (mod n m)). +apply div_mod_spec_to_eq2 (S n) m ((S n) / m) ((S n) \mod m) (n / m) (S (n \mod m)). apply div_mod_spec_div_mod.assumption. constructor 1.assumption.rewrite < plus_n_Sm. apply eq_f. @@ -225,11 +238,19 @@ apply div_mod. assumption. qed. -theorem mod_O_n: \forall n:nat.mod O n = O. +theorem mod_O_n: \forall n:nat.O \mod n = O. intro.elim n.simplify.reflexivity. simplify.reflexivity. qed. +theorem lt_to_eq_mod:\forall n,m:nat. n < m \to n \mod m = n. +intros. +apply div_mod_spec_to_eq2 n m (n/m) (n \mod m) O n. +apply div_mod_spec_div_mod. +apply le_to_lt_to_lt O n m.apply le_O_n.assumption. +constructor 1. +assumption.reflexivity. +qed. (* injectivity *) theorem injective_times_r: \forall n:nat.injective nat nat (\lambda m:nat.(S n)*m).