X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fmatita%2Flibrary%2Fnat%2Fexp.ma;h=11d84f74ca7deb3b676007693f72b585c0547435;hb=4167cea65ca58897d1a3dbb81ff95de5074700cc;hp=a80a0cee362fc3fd4024dd565faec8df6d6f4373;hpb=5a702cea95883f7095c16b450e065ccb1714fc5a;p=helm.git diff --git a/helm/matita/library/nat/exp.ma b/helm/matita/library/nat/exp.ma index a80a0cee3..11d84f74c 100644 --- a/helm/matita/library/nat/exp.ma +++ b/helm/matita/library/nat/exp.ma @@ -21,40 +21,42 @@ let rec exp n m on m\def [ O \Rightarrow (S O) | (S p) \Rightarrow (times n (exp n p)) ]. +interpretation "natural exponent" 'exp a b = (cic:/matita/nat/exp/exp.con a b). + theorem exp_plus_times : \forall n,p,q:nat. -eq nat (exp n (plus p q)) (times (exp n p) (exp n q)). +n \sup (p + q) = (n \sup p) * (n \sup q). intros.elim p. simplify.rewrite < plus_n_O.reflexivity. simplify.rewrite > H.symmetry. apply assoc_times. qed. -theorem exp_n_O : \forall n:nat. eq nat (S O) (exp n O). +theorem exp_n_O : \forall n:nat. S O = n \sup O. intro.simplify.reflexivity. qed. -theorem exp_n_SO : \forall n:nat. eq nat n (exp n (S O)). +theorem exp_n_SO : \forall n:nat. n = n \sup (S O). intro.simplify.rewrite < times_n_SO.reflexivity. qed. theorem exp_exp_times : \forall n,p,q:nat. -eq nat (exp (exp n p) q) (exp n (times p q)). +(n \sup p) \sup q = n \sup (p * q). intros. elim q.simplify.rewrite < times_n_O.simplify.reflexivity. simplify.rewrite > H.rewrite < exp_plus_times. rewrite < times_n_Sm.reflexivity. qed. -theorem lt_O_exp: \forall n,m:nat. O < n \to O < exp n m. -intros.elim m.simplify.apply le_n. -simplify.rewrite > times_n_SO. +theorem lt_O_exp: \forall n,m:nat. O < n \to O < n \sup m. +intros.elim m.simplify.unfold lt.apply le_n. +simplify.unfold lt.rewrite > times_n_SO. apply le_times.assumption.assumption. qed. -theorem lt_m_exp_nm: \forall n,m:nat. (S O) < n \to m < exp n m. -intros.elim m.simplify.reflexivity. -simplify. -apply trans_le ? ((S(S O))*(S n1)). +theorem lt_m_exp_nm: \forall n,m:nat. (S O) < n \to m < n \sup m. +intros.elim m.simplify.unfold lt.reflexivity. +simplify.unfold lt. +apply (trans_le ? ((S(S O))*(S n1))). simplify. rewrite < plus_n_Sm.apply le_S_S.apply le_S_S. rewrite < sym_plus. @@ -63,33 +65,33 @@ apply le_times.assumption.assumption. qed. theorem exp_to_eq_O: \forall n,m:nat. (S O) < n -\to exp n m = (S O) \to m = O. +\to n \sup m = (S O) \to m = O. intros.apply antisym_le.apply le_S_S_to_le. -rewrite < H1.change with m < exp n m. +rewrite < H1.change with (m < n \sup m). apply lt_m_exp_nm.assumption. apply le_O_n. qed. theorem injective_exp_r: \forall n:nat. (S O) < n \to -injective nat nat (\lambda m:nat. exp n m). +injective nat nat (\lambda m:nat. n \sup m). simplify.intros 4. -apply nat_elim2 (\lambda x,y.exp n x = exp n y \to x = y). -intros.apply sym_eq.apply exp_to_eq_O n.assumption. +apply (nat_elim2 (\lambda x,y.n \sup x = n \sup y \to x = y)). +intros.apply sym_eq.apply (exp_to_eq_O n).assumption. rewrite < H1.reflexivity. -intros.apply exp_to_eq_O n.assumption.assumption. +intros.apply (exp_to_eq_O n).assumption.assumption. intros.apply eq_f. apply H1. (* esprimere inj_times senza S *) -cut \forall a,b:nat.O < n \to n*a=n*b \to a=b. -apply Hcut.simplify. apply le_S_S_to_le. apply le_S. assumption. +cut (\forall a,b:nat.O < n \to n*a=n*b \to a=b). +apply Hcut.simplify.unfold lt.apply le_S_S_to_le. apply le_S. assumption. assumption. intros 2. -apply nat_case n. -intros.apply False_ind.apply not_le_Sn_O O H3. +apply (nat_case n). +intros.apply False_ind.apply (not_le_Sn_O O H3). intros. -apply inj_times_r m1.assumption. +apply (inj_times_r m1).assumption. qed. variant inj_exp_r: \forall p:nat. (S O) < p \to \forall n,m:nat. -(exp p n) = (exp p m) \to n = m \def -injective_exp_r. \ No newline at end of file +p \sup n = p \sup m \to n = m \def +injective_exp_r.