X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fmatita%2Flibrary%2Fnat%2Fexp.ma;h=11d84f74ca7deb3b676007693f72b585c0547435;hb=4167cea65ca58897d1a3dbb81ff95de5074700cc;hp=c0d36377305f9f1878cb16f419f27294ed72358f;hpb=7bbce6bc163892cfd99cfcda65db42001b86789f;p=helm.git diff --git a/helm/matita/library/nat/exp.ma b/helm/matita/library/nat/exp.ma index c0d363773..11d84f74c 100644 --- a/helm/matita/library/nat/exp.ma +++ b/helm/matita/library/nat/exp.ma @@ -14,33 +14,84 @@ set "baseuri" "cic:/matita/nat/exp". -include "nat/times.ma". +include "nat/div_and_mod.ma". let rec exp n m on m\def match m with [ O \Rightarrow (S O) | (S p) \Rightarrow (times n (exp n p)) ]. +interpretation "natural exponent" 'exp a b = (cic:/matita/nat/exp/exp.con a b). + theorem exp_plus_times : \forall n,p,q:nat. -eq nat (exp n (plus p q)) (times (exp n p) (exp n q)). +n \sup (p + q) = (n \sup p) * (n \sup q). intros.elim p. simplify.rewrite < plus_n_O.reflexivity. simplify.rewrite > H.symmetry. apply assoc_times. qed. -theorem exp_n_O : \forall n:nat. eq nat (S O) (exp n O). +theorem exp_n_O : \forall n:nat. S O = n \sup O. intro.simplify.reflexivity. qed. -theorem exp_n_SO : \forall n:nat. eq nat n (exp n (S O)). +theorem exp_n_SO : \forall n:nat. n = n \sup (S O). intro.simplify.rewrite < times_n_SO.reflexivity. qed. -theorem bad : \forall n,p,q:nat. -eq nat (exp (exp n p) q) (exp n (times p q)). +theorem exp_exp_times : \forall n,p,q:nat. +(n \sup p) \sup q = n \sup (p * q). intros. elim q.simplify.rewrite < times_n_O.simplify.reflexivity. simplify.rewrite > H.rewrite < exp_plus_times. rewrite < times_n_Sm.reflexivity. -qed. \ No newline at end of file +qed. + +theorem lt_O_exp: \forall n,m:nat. O < n \to O < n \sup m. +intros.elim m.simplify.unfold lt.apply le_n. +simplify.unfold lt.rewrite > times_n_SO. +apply le_times.assumption.assumption. +qed. + +theorem lt_m_exp_nm: \forall n,m:nat. (S O) < n \to m < n \sup m. +intros.elim m.simplify.unfold lt.reflexivity. +simplify.unfold lt. +apply (trans_le ? ((S(S O))*(S n1))). +simplify. +rewrite < plus_n_Sm.apply le_S_S.apply le_S_S. +rewrite < sym_plus. +apply le_plus_n. +apply le_times.assumption.assumption. +qed. + +theorem exp_to_eq_O: \forall n,m:nat. (S O) < n +\to n \sup m = (S O) \to m = O. +intros.apply antisym_le.apply le_S_S_to_le. +rewrite < H1.change with (m < n \sup m). +apply lt_m_exp_nm.assumption. +apply le_O_n. +qed. + +theorem injective_exp_r: \forall n:nat. (S O) < n \to +injective nat nat (\lambda m:nat. n \sup m). +simplify.intros 4. +apply (nat_elim2 (\lambda x,y.n \sup x = n \sup y \to x = y)). +intros.apply sym_eq.apply (exp_to_eq_O n).assumption. +rewrite < H1.reflexivity. +intros.apply (exp_to_eq_O n).assumption.assumption. +intros.apply eq_f. +apply H1. +(* esprimere inj_times senza S *) +cut (\forall a,b:nat.O < n \to n*a=n*b \to a=b). +apply Hcut.simplify.unfold lt.apply le_S_S_to_le. apply le_S. assumption. +assumption. +intros 2. +apply (nat_case n). +intros.apply False_ind.apply (not_le_Sn_O O H3). +intros. +apply (inj_times_r m1).assumption. +qed. + +variant inj_exp_r: \forall p:nat. (S O) < p \to \forall n,m:nat. +p \sup n = p \sup m \to n = m \def +injective_exp_r.