X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fmatita%2Flibrary%2Fnat%2Ffermat_little_theorem.ma;h=cc18a8bb9e4249005d96e772d7e41f4d01409720;hb=4167cea65ca58897d1a3dbb81ff95de5074700cc;hp=aafdc2f19e95a18967eb2b34cea2dc4bce3129e3;hpb=7273c698dd60c1a8a0f35b44376acb548c6a4a33;p=helm.git diff --git a/helm/matita/library/nat/fermat_little_theorem.ma b/helm/matita/library/nat/fermat_little_theorem.ma index aafdc2f19..cc18a8bb9 100644 --- a/helm/matita/library/nat/fermat_little_theorem.ma +++ b/helm/matita/library/nat/fermat_little_theorem.ma @@ -14,77 +14,237 @@ set "baseuri" "cic:/matita/nat/fermat_little_theorem". +include "nat/exp.ma". include "nat/gcd.ma". include "nat/permutation.ma". +include "nat/congruence.ma". + +theorem permut_S_mod: \forall n:nat. permut (S_mod (S n)) n. +intro.unfold permut.split.intros. +unfold S_mod. +apply le_S_S_to_le. +change with ((S i) \mod (S n) < S n). +apply lt_mod_m_m. +unfold lt.apply le_S_S.apply le_O_n. +unfold injn.intros. +apply inj_S. +rewrite < (lt_to_eq_mod i (S n)). +rewrite < (lt_to_eq_mod j (S n)). +cut (i < n \lor i = n). +cut (j < n \lor j = n). +elim Hcut. +elim Hcut1. +(* i < n, j< n *) +rewrite < mod_S. +rewrite < mod_S. +apply H2.unfold lt.apply le_S_S.apply le_O_n. +rewrite > lt_to_eq_mod. +unfold lt.apply le_S_S.assumption. +unfold lt.apply le_S_S.assumption. +unfold lt.apply le_S_S.apply le_O_n. +rewrite > lt_to_eq_mod. +unfold lt.apply le_S_S.assumption. +unfold lt.apply le_S_S.assumption. +(* i < n, j=n *) +unfold S_mod in H2. +simplify. +apply False_ind. +apply (not_eq_O_S (i \mod (S n))). +apply sym_eq. +rewrite < (mod_n_n (S n)). +rewrite < H4 in \vdash (? ? ? (? %?)). +rewrite < mod_S.assumption. +unfold lt.apply le_S_S.apply le_O_n. +rewrite > lt_to_eq_mod. +unfold lt.apply le_S_S.assumption. +unfold lt.apply le_S_S.assumption. +unfold lt.apply le_S_S.apply le_O_n. +(* i = n, j < n *) +elim Hcut1. +apply False_ind. +apply (not_eq_O_S (j \mod (S n))). +rewrite < (mod_n_n (S n)). +rewrite < H3 in \vdash (? ? (? %?) ?). +rewrite < mod_S.assumption. +unfold lt.apply le_S_S.apply le_O_n. +rewrite > lt_to_eq_mod. +unfold lt.apply le_S_S.assumption. +unfold lt.apply le_S_S.assumption. +unfold lt.apply le_S_S.apply le_O_n. +(* i = n, j= n*) +rewrite > H3. +rewrite > H4. +reflexivity. +apply le_to_or_lt_eq.assumption. +apply le_to_or_lt_eq.assumption. +unfold lt.apply le_S_S.assumption. +unfold lt.apply le_S_S.assumption. +qed. + +(* +theorem eq_fact_pi: \forall n,m:nat. n < m \to n! = pi n (S_mod m). +intro.elim n. +simplify.reflexivity. +change with (S n1)*n1!=(S_mod m n1)*(pi n1 (S_mod m)). +unfold S_mod in \vdash (? ? ? (? % ?)). +rewrite > lt_to_eq_mod. +apply eq_f.apply H.apply (trans_lt ? (S n1)). +simplify. apply le_n.assumption.assumption. +qed. +*) + +theorem prime_to_not_divides_fact: \forall p:nat. prime p \to \forall n:nat. +n \lt p \to \not divides p n!. +intros 3.elim n.unfold Not.intros. +apply (lt_to_not_le (S O) p). +unfold prime in H.elim H. +assumption.apply divides_to_le.unfold lt.apply le_n. +assumption. +change with (divides p ((S n1)*n1!) \to False). +intro. +cut (divides p (S n1) \lor divides p n1!). +elim Hcut.apply (lt_to_not_le (S n1) p). +assumption. +apply divides_to_le.unfold lt.apply le_S_S.apply le_O_n. +assumption.apply H1. +apply (trans_lt ? (S n1)).unfold lt. apply le_n. +assumption.assumption. +apply divides_times_to_divides. +assumption.assumption. +qed. theorem permut_mod: \forall p,a:nat. prime p \to \lnot divides p a\to permut (\lambda n.(mod (a*n) p)) (pred p). unfold permut.intros. split.intros.apply le_S_S_to_le. -apply trans_le ? p. -change with mod (a*i) p < p. +apply (trans_le ? p). +change with (mod (a*i) p < p). apply lt_mod_m_m. -simplify in H.elim H. -simplify.apply trans_le ? (S (S O)). +unfold prime in H.elim H. +unfold lt.apply (trans_le ? (S (S O))). apply le_n_Sn.assumption. rewrite < S_pred.apply le_n. unfold prime in H. elim H. -apply trans_lt ? (S O).simplify.apply le_n.assumption. +apply (trans_lt ? (S O)).unfold lt.apply le_n.assumption. unfold injn.intros. -apply nat_compare_elim i j. +apply (nat_compare_elim i j). (* i < j *) intro. -absurd j-i \lt p. -simplify. -rewrite > S_pred p. +absurd (j-i \lt p). +unfold lt. +rewrite > (S_pred p). apply le_S_S. apply le_plus_to_minus. -apply trans_le ? (pred p).assumption. +apply (trans_le ? (pred p)).assumption. rewrite > sym_plus. apply le_plus_n. unfold prime in H. elim H. -apply trans_lt ? (S O).simplify.apply le_n.assumption. -apply le_to_not_lt p (j-i). -apply divides_to_le.simplify. +apply (trans_lt ? (S O)).unfold lt.apply le_n.assumption. +apply (le_to_not_lt p (j-i)). +apply divides_to_le.unfold lt. apply le_SO_minus.assumption. -cut divides p a \lor divides p (j-i). +cut (divides p a \lor divides p (j-i)). elim Hcut.apply False_ind.apply H1.assumption.assumption. apply divides_times_to_divides.assumption. rewrite > distr_times_minus. apply eq_mod_to_divides. unfold prime in H. elim H. -apply trans_lt ? (S O).simplify.apply le_n.assumption. +apply (trans_lt ? (S O)).unfold lt.apply le_n.assumption. apply sym_eq. apply H4. (* i = j *) intro. assumption. (* j < i *) intro. -absurd i-j \lt p. -simplify. -rewrite > S_pred p. +absurd (i-j \lt p). +unfold lt. +rewrite > (S_pred p). apply le_S_S. apply le_plus_to_minus. -apply trans_le ? (pred p).assumption. +apply (trans_le ? (pred p)).assumption. rewrite > sym_plus. apply le_plus_n. unfold prime in H. elim H. -apply trans_lt ? (S O).simplify.apply le_n.assumption. -apply le_to_not_lt p (i-j). -apply divides_to_le.simplify. +apply (trans_lt ? (S O)).unfold lt.apply le_n.assumption. +apply (le_to_not_lt p (i-j)). +apply divides_to_le.unfold lt. apply le_SO_minus.assumption. -cut divides p a \lor divides p (i-j). +cut (divides p a \lor divides p (i-j)). elim Hcut.apply False_ind.apply H1.assumption.assumption. apply divides_times_to_divides.assumption. rewrite > distr_times_minus. apply eq_mod_to_divides. unfold prime in H. elim H. -apply trans_lt ? (S O).simplify.apply le_n.assumption. +apply (trans_lt ? (S O)).unfold lt.apply le_n.assumption. apply H4. qed. +theorem congruent_exp_pred_SO: \forall p,a:nat. prime p \to \lnot divides p a \to +congruent (exp a (pred p)) (S O) p. +intros. +cut (O < a). +cut (O < p). +cut (O < pred p). +apply divides_to_congruent. +assumption. +change with (O < exp a (pred p)). +apply lt_O_exp.assumption. +cut (divides p (exp a (pred p)-(S O)) \lor divides p (pred p)!). +elim Hcut3. +assumption. +apply False_ind. +apply (prime_to_not_divides_fact p H (pred p)). +change with (S (pred p) \le p). +rewrite < S_pred.apply le_n. +assumption.assumption. +apply divides_times_to_divides. +assumption. +rewrite > times_minus_l. +rewrite > (sym_times (S O)). +rewrite < times_n_SO. +rewrite > (S_pred (pred p)). +rewrite > eq_fact_pi. +(* in \vdash (? ? (? % ?)). *) +rewrite > exp_pi_l. +apply congruent_to_divides. +assumption. +apply (transitive_congruent p ? +(pi (pred (pred p)) (\lambda m. a*m \mod p) (S O))). +apply (congruent_pi (\lambda m. a*m)). +assumption. +cut (pi (pred(pred p)) (\lambda m.m) (S O) += pi (pred(pred p)) (\lambda m.a*m \mod p) (S O)). +rewrite > Hcut3.apply congruent_n_n. +rewrite < eq_map_iter_i_pi. +rewrite < eq_map_iter_i_pi. +apply permut_to_eq_map_iter_i. +apply assoc_times. +apply sym_times. +rewrite < plus_n_Sm.rewrite < plus_n_O. +rewrite < S_pred. +apply permut_mod.assumption. +assumption.assumption. +intros.cut (m=O). +rewrite > Hcut3.rewrite < times_n_O. +apply mod_O_n.apply sym_eq.apply le_n_O_to_eq. +apply le_S_S_to_le.assumption. +assumption. +change with ((S O) \le pred p). +apply le_S_S_to_le.rewrite < S_pred. +unfold prime in H.elim H.assumption.assumption. +unfold prime in H.elim H.apply (trans_lt ? (S O)). +unfold lt.apply le_n.assumption. +cut (O < a \lor O = a). +elim Hcut.assumption. +apply False_ind.apply H1. +rewrite < H2. +apply (witness ? ? O).apply times_n_O. +apply le_to_or_lt_eq. +apply le_O_n. +qed. +