X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fmatita%2Flibrary%2Fnat%2Fgcd.ma;h=65f61b581691cdabbdaeeb34fc7d10ac21927a93;hb=97c2d258a5c524eb5c4b85208899d80751a2c82f;hp=d42a57e8e8db6c1661d480d829bcf1d6289c96de;hpb=cca04138889cd0dbafb669a5c3fd8abe424d699e;p=helm.git diff --git a/helm/matita/library/nat/gcd.ma b/helm/matita/library/nat/gcd.ma index d42a57e8e..65f61b581 100644 --- a/helm/matita/library/nat/gcd.ma +++ b/helm/matita/library/nat/gcd.ma @@ -136,7 +136,7 @@ intros.change with \land gcd_aux (S m1) m (S m1) \divides (S m1)). apply divides_gcd_aux_mn. -simplify.apply le_S_S.apply le_O_n. +unfold lt.apply le_S_S.apply le_O_n. assumption.apply le_n. simplify.intro. apply (nat_case1 m). @@ -152,8 +152,8 @@ cut (gcd_aux (S m1) n (S m1) \divides n gcd_aux (S m1) n (S m1) \divides S m1). elim Hcut.split.assumption.assumption. apply divides_gcd_aux_mn. -simplify.apply le_S_S.apply le_O_n. -apply not_lt_to_le.simplify.intro.apply H. +unfold lt.apply le_S_S.apply le_O_n. +apply not_lt_to_le.unfold Not. unfold lt.intro.apply H. rewrite > H1.apply (trans_le ? (S n)). apply le_n_Sn.assumption.apply le_n. qed. @@ -221,13 +221,13 @@ apply (nat_case1 n).simplify.intros.assumption. intros. change with (d \divides gcd_aux (S m1) m (S m1)). apply divides_gcd_aux. -simplify.apply le_S_S.apply le_O_n.assumption.apply le_n.assumption. +unfold lt.apply le_S_S.apply le_O_n.assumption.apply le_n.assumption. rewrite < H2.assumption. apply (nat_case1 m).simplify.intros.assumption. intros. change with (d \divides gcd_aux (S m1) n (S m1)). apply divides_gcd_aux. -simplify.apply le_S_S.apply le_O_n. +unfold lt.apply le_S_S.apply le_O_n. apply lt_to_le.apply not_le_to_lt.assumption.apply le_n.assumption. rewrite < H2.assumption. qed. @@ -343,7 +343,7 @@ change with a*(S m1) - b*m = (gcd_aux (S m1) m (S m1)) \lor b*m - a*(S m1) = (gcd_aux (S m1) m (S m1))). apply eq_minus_gcd_aux. -simplify. apply le_S_S.apply le_O_n. +unfold lt. apply le_S_S.apply le_O_n. assumption.apply le_n. apply (nat_case1 m). simplify.intros. @@ -370,7 +370,7 @@ apply (ex_intro ? ? a1). apply (ex_intro ? ? a). left.assumption. apply eq_minus_gcd_aux. -simplify. apply le_S_S.apply le_O_n. +unfold lt. apply le_S_S.apply le_O_n. apply lt_to_le.apply not_le_to_lt.assumption. apply le_n. qed. @@ -397,7 +397,7 @@ intros. generalize in match (gcd_O_to_eq_O m n H1). intros.elim H2. rewrite < H4 in \vdash (? ? %).assumption. -intros.simplify.apply le_S_S.apply le_O_n. +intros.unfold lt.apply le_S_S.apply le_O_n. qed. theorem symmetric_gcd: symmetric nat gcd. @@ -435,7 +435,7 @@ intro. apply divides_to_le. apply lt_O_gcd. rewrite > (times_n_O O). -apply lt_times.simplify.apply le_S_S.apply le_O_n.assumption. +apply lt_times.unfold lt.apply le_S_S.apply le_O_n.assumption. apply divides_d_gcd. apply (transitive_divides ? (S m1)). apply divides_gcd_m. @@ -457,7 +457,7 @@ qed. theorem gcd_SO_n: \forall n:nat. gcd (S O) n = (S O). intro. -apply antisym_le.apply divides_to_le.simplify.apply le_n. +apply antisym_le.apply divides_to_le.unfold lt.apply le_n. apply divides_gcd_n. cut (O < gcd (S O) n \lor O = gcd (S O) n). elim Hcut.assumption. @@ -502,7 +502,7 @@ qed. theorem prime_to_gcd_SO: \forall n,m:nat. prime n \to n \ndivides m \to gcd n m = (S O). -intros.simplify in H.change with (gcd n m = (S O)). +intros.unfold prime in H.change with (gcd n m = (S O)). elim H. apply antisym_le. apply not_lt_to_le. @@ -557,8 +557,8 @@ rewrite < (prime_to_gcd_SO n p). apply eq_minus_gcd. assumption.assumption. apply (decidable_divides n p). -apply (trans_lt ? (S O)).simplify.apply le_n. -simplify in H.elim H. assumption. +apply (trans_lt ? (S O)).unfold lt.apply le_n. +unfold prime in H.elim H. assumption. qed. theorem eq_gcd_times_SO: \forall m,n,p:nat. O < n \to O < p \to @@ -576,11 +576,11 @@ rewrite < H2 in \vdash (? ? %). apply (lt_to_le_to_lt ? (smallest_factor (gcd m (n*p)))). apply lt_SO_smallest_factor.assumption. apply divides_to_le. -rewrite > H2.simplify.apply le_n. +rewrite > H2.unfold lt.apply le_n. apply divides_d_gcd.assumption. apply (transitive_divides ? (gcd m (n*p))). apply divides_smallest_factor_n. -apply (trans_lt ? (S O)). simplify. apply le_n. assumption. +apply (trans_lt ? (S O)). unfold lt. apply le_n. assumption. apply divides_gcd_n. apply (not_le_Sn_n (S O)). change with ((S O) < (S O)). @@ -588,18 +588,18 @@ rewrite < H3 in \vdash (? ? %). apply (lt_to_le_to_lt ? (smallest_factor (gcd m (n*p)))). apply lt_SO_smallest_factor.assumption. apply divides_to_le. -rewrite > H3.simplify.apply le_n. +rewrite > H3.unfold lt.apply le_n. apply divides_d_gcd.assumption. apply (transitive_divides ? (gcd m (n*p))). apply divides_smallest_factor_n. -apply (trans_lt ? (S O)). simplify. apply le_n. assumption. +apply (trans_lt ? (S O)). unfold lt. apply le_n. assumption. apply divides_gcd_n. apply divides_times_to_divides. apply prime_smallest_factor_n. assumption. apply (transitive_divides ? (gcd m (n*p))). apply divides_smallest_factor_n. -apply (trans_lt ? (S O)). simplify. apply le_n. assumption. +apply (trans_lt ? (S O)).unfold lt. apply le_n. assumption. apply divides_gcd_m. change with (O < gcd m (n*p)). apply lt_O_gcd.