X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fmatita%2Flibrary%2Fnat%2Fgcd.ma;h=99c97b09add8d506bc1566c5250da6fd3b76969f;hb=28ac70d3f475442cda4ef30e0e9c0e6d012b2527;hp=be1d79b1d265c3fb50f059015b8a5fda4058f1f1;hpb=ab44166935d77276c04fcce50aa8281292776e29;p=helm.git diff --git a/helm/matita/library/nat/gcd.ma b/helm/matita/library/nat/gcd.ma index be1d79b1d..99c97b09a 100644 --- a/helm/matita/library/nat/gcd.ma +++ b/helm/matita/library/nat/gcd.ma @@ -36,8 +36,8 @@ definition gcd : nat \to nat \to nat \def [ O \Rightarrow n | (S p) \Rightarrow gcd_aux (S p) n (S p) ]]. -theorem divides_mod: \forall p,m,n:nat. O < n \to divides p m \to divides p n \to -divides p (mod m n). +theorem divides_mod: \forall p,m,n:nat. O < n \to p \divides m \to p \divides n \to +p \divides mod m n. intros.elim H1.elim H2. apply witness ? ? (n2 - n1*(div m n)). rewrite > distr_times_minus. @@ -56,7 +56,7 @@ apply div_mod.assumption. qed. theorem divides_mod_to_divides: \forall p,m,n:nat. O < n \to -divides p (mod m n) \to divides p n \to divides p m. +p \divides mod m n \to p \divides n \to p \divides m. intros.elim H1.elim H2. apply witness p m ((n1*(div m n))+n2). rewrite > distr_times_plus. @@ -67,29 +67,27 @@ apply div_mod.assumption. qed. theorem divides_gcd_aux_mn: \forall p,m,n. O < n \to n \le m \to n \le p \to -divides (gcd_aux p m n) m \land divides (gcd_aux p m n) n. +gcd_aux p m n \divides m \land gcd_aux p m n \divides n. intro.elim p. absurd O < n.assumption.apply le_to_not_lt.assumption. -cut (divides n1 m) \lor \not (divides n1 m). +cut (n1 \divides m) \lor (n1 \ndivides m). change with -(divides (match divides_b n1 m with [ true \Rightarrow n1 -| false \Rightarrow gcd_aux n n1 (mod m n1)]) m) \land -(divides +| false \Rightarrow gcd_aux n n1 (mod m n1)]) \divides m \land (match divides_b n1 m with [ true \Rightarrow n1 -| false \Rightarrow gcd_aux n n1 (mod m n1)]) n1). +| false \Rightarrow gcd_aux n n1 (mod m n1)]) \divides n1. elim Hcut.rewrite > divides_to_divides_b_true. simplify. split.assumption.apply witness n1 n1 (S O).apply times_n_SO. assumption.assumption. rewrite > not_divides_to_divides_b_false. change with -(divides (gcd_aux n n1 (mod m n1)) m) \land -(divides (gcd_aux n n1 (mod m n1)) n1). -cut (divides (gcd_aux n n1 (mod m n1)) n1) \land -(divides (gcd_aux n n1 (mod m n1)) (mod m n1)). +gcd_aux n n1 (mod m n1) \divides m \land +gcd_aux n n1 (mod m n1) \divides n1. +cut gcd_aux n n1 (mod m n1) \divides n1 \land +gcd_aux n n1 (mod m n1) \divides mod m n1. elim Hcut1. split.apply divides_mod_to_divides ? ? n1. assumption.assumption.assumption.assumption. @@ -110,11 +108,10 @@ apply decidable_divides n1 m.assumption. qed. theorem divides_gcd_nm: \forall n,m. -divides (gcd n m) m \land divides (gcd n m) n. +gcd n m \divides m \land gcd n m \divides n. intros. change with -divides -(match leb n m with +match leb n m with [ true \Rightarrow match n with [ O \Rightarrow m @@ -122,10 +119,9 @@ divides | false \Rightarrow match m with [ O \Rightarrow n - | (S p) \Rightarrow gcd_aux (S p) n (S p) ]]) m + | (S p) \Rightarrow gcd_aux (S p) n (S p) ]] \divides m \land - divides -(match leb n m with +match leb n m with [ true \Rightarrow match n with [ O \Rightarrow m @@ -133,16 +129,16 @@ divides | false \Rightarrow match m with [ O \Rightarrow n - | (S p) \Rightarrow gcd_aux (S p) n (S p) ]]) n. + | (S p) \Rightarrow gcd_aux (S p) n (S p) ]] \divides n. apply leb_elim n m. apply nat_case1 n. simplify.intros.split. apply witness m m (S O).apply times_n_SO. apply witness m O O.apply times_n_O. intros.change with -divides (gcd_aux (S m1) m (S m1)) m +gcd_aux (S m1) m (S m1) \divides m \land -divides (gcd_aux (S m1) m (S m1)) (S m1). +gcd_aux (S m1) m (S m1) \divides (S m1). apply divides_gcd_aux_mn. simplify.apply le_S_S.apply le_O_n. assumption.apply le_n. @@ -152,12 +148,12 @@ simplify.intros.split. apply witness n O O.apply times_n_O. apply witness n n (S O).apply times_n_SO. intros.change with -divides (gcd_aux (S m1) n (S m1)) (S m1) +gcd_aux (S m1) n (S m1) \divides (S m1) \land -divides (gcd_aux (S m1) n (S m1)) n. -cut divides (gcd_aux (S m1) n (S m1)) n +gcd_aux (S m1) n (S m1) \divides n. +cut gcd_aux (S m1) n (S m1) \divides n \land -divides (gcd_aux (S m1) n (S m1)) (S m1). +gcd_aux (S m1) n (S m1) \divides S m1. elim Hcut.split.assumption.assumption. apply divides_gcd_aux_mn. simplify.apply le_S_S.apply le_O_n. @@ -166,38 +162,36 @@ rewrite > H1.apply trans_le ? (S n). apply le_n_Sn.assumption.apply le_n. qed. -theorem divides_gcd_n: \forall n,m. -divides (gcd n m) n. +theorem divides_gcd_n: \forall n,m. gcd n m \divides n. intros. exact proj2 ? ? (divides_gcd_nm n m). qed. -theorem divides_gcd_m: \forall n,m. -divides (gcd n m) m. +theorem divides_gcd_m: \forall n,m. gcd n m \divides m. intros. exact proj1 ? ? (divides_gcd_nm n m). qed. theorem divides_gcd_aux: \forall p,m,n,d. O < n \to n \le m \to n \le p \to -divides d m \to divides d n \to divides d (gcd_aux p m n). +d \divides m \to d \divides n \to d \divides gcd_aux p m n. intro.elim p. absurd O < n.assumption.apply le_to_not_lt.assumption. change with -divides d +d \divides (match divides_b n1 m with [ true \Rightarrow n1 | false \Rightarrow gcd_aux n n1 (mod m n1)]). -cut divides n1 m \lor \not (divides n1 m). +cut n1 \divides m \lor n1 \ndivides m. elim Hcut. rewrite > divides_to_divides_b_true. simplify.assumption. assumption.assumption. rewrite > not_divides_to_divides_b_false. -change with divides d (gcd_aux n n1 (mod m n1)). +change with d \divides gcd_aux n n1 (mod m n1). apply H. cut O \lt mod m n1 \lor O = mod m n1. elim Hcut1.assumption. -absurd divides n1 m.apply mod_O_to_divides. +absurd n1 \divides m.apply mod_O_to_divides. assumption.apply sym_eq.assumption.assumption. apply le_to_or_lt_eq.apply le_O_n. apply lt_to_le. @@ -213,10 +207,10 @@ apply decidable_divides n1 m.assumption. qed. theorem divides_d_gcd: \forall m,n,d. -divides d m \to divides d n \to divides d (gcd n m). +d \divides m \to d \divides n \to d \divides gcd n m. intros. change with -divides d ( +d \divides match leb n m with [ true \Rightarrow match n with @@ -225,17 +219,17 @@ match leb n m with | false \Rightarrow match m with [ O \Rightarrow n - | (S p) \Rightarrow gcd_aux (S p) n (S p) ]]). + | (S p) \Rightarrow gcd_aux (S p) n (S p) ]]. apply leb_elim n m. apply nat_case1 n.simplify.intros.assumption. intros. -change with divides d (gcd_aux (S m1) m (S m1)). +change with d \divides gcd_aux (S m1) m (S m1). apply divides_gcd_aux. simplify.apply le_S_S.apply le_O_n.assumption.apply le_n.assumption. rewrite < H2.assumption. apply nat_case1 m.simplify.intros.assumption. intros. -change with divides d (gcd_aux (S m1) n (S m1)). +change with d \divides gcd_aux (S m1) n (S m1). apply divides_gcd_aux. simplify.apply le_S_S.apply le_O_n. apply lt_to_le.apply not_le_to_lt.assumption.apply le_n.assumption. @@ -248,7 +242,7 @@ intro. elim p. absurd O < n.assumption.apply le_to_not_lt.assumption. cut O < m. -cut (divides n1 m) \lor \not (divides n1 m). +cut n1 \divides m \lor n1 \ndivides m. change with \exists a,b. a*n1 - b*m = match divides_b n1 m with @@ -303,6 +297,7 @@ rewrite < H7. apply ex_intro ? ? (a1+a*(div m n1)). apply ex_intro ? ? a. left. +(* clear Hcut2.clear H5.clear H6.clear H. *) rewrite > sym_times. rewrite > distr_times_plus. rewrite > sym_times. @@ -319,7 +314,7 @@ assumption. apply H n1 (mod m n1). cut O \lt mod m n1 \lor O = mod m n1. elim Hcut2.assumption. -absurd divides n1 m.apply mod_O_to_divides. +absurd n1 \divides m.apply mod_O_to_divides. assumption. symmetry.assumption.assumption. apply le_to_or_lt_eq.apply le_O_n. @@ -337,28 +332,7 @@ qed. theorem eq_minus_gcd: \forall m,n.\exists a,b.a*n - b*m = (gcd n m) \lor b*m - a*n = (gcd n m). intros. -change with -\exists a,b. -a*n - b*m = -match leb n m with - [ true \Rightarrow - match n with - [ O \Rightarrow m - | (S p) \Rightarrow gcd_aux (S p) m (S p) ] - | false \Rightarrow - match m with - [ O \Rightarrow n - | (S p) \Rightarrow gcd_aux (S p) n (S p) ]] -\lor b*m - a*n = -match leb n m with - [ true \Rightarrow - match n with - [ O \Rightarrow m - | (S p) \Rightarrow gcd_aux (S p) m (S p) ] - | false \Rightarrow - match m with - [ O \Rightarrow n - | (S p) \Rightarrow gcd_aux (S p) n (S p) ]]. +unfold gcd. apply leb_elim n m. apply nat_case1 n. simplify.intros. @@ -413,7 +387,7 @@ qed. theorem gcd_O_to_eq_O:\forall m,n:nat. (gcd m n) = O \to m = O \land n = O. -intros.cut divides O n \land divides O m. +intros.cut O \divides n \land O \divides m. elim Hcut.elim H2.split. assumption.elim H1.assumption. rewrite < H. @@ -462,7 +436,7 @@ apply gcd_O_to_eq_O.apply sym_eq.assumption. apply le_to_or_lt_eq.apply le_O_n. qed. -theorem prime_to_gcd_SO: \forall n,m:nat. prime n \to \not (divides n m) \to +theorem prime_to_gcd_SO: \forall n,m:nat. prime n \to n \ndivides m \to gcd n m = (S O). intros.simplify in H.change with gcd n m = (S O). elim H. @@ -482,10 +456,10 @@ apply gcd_O_to_eq_O.apply sym_eq.assumption. apply le_to_or_lt_eq.apply le_O_n. qed. -theorem divides_times_to_divides: \forall n,p,q:nat.prime n \to divides n (p*q) \to -divides n p \lor divides n q. +theorem divides_times_to_divides: \forall n,p,q:nat.prime n \to n \divides p*q \to +n \divides p \lor n \divides q. intros. -cut divides n p \lor \not (divides n p). +cut n \divides p \lor n \ndivides p. elim Hcut. left.assumption. right.