X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fmatita%2Flibrary%2Fnat%2Fgcd.ma;h=eb1053feb78cb5e88a70a9154ff9af271f15e08b;hb=7273c698dd60c1a8a0f35b44376acb548c6a4a33;hp=5a2fd4647e80bf342b650e0825c3333568b55047;hpb=da83446deba30fbe32b9bf617d83bd22cc9c9770;p=helm.git diff --git a/helm/matita/library/nat/gcd.ma b/helm/matita/library/nat/gcd.ma index 5a2fd4647..eb1053feb 100644 --- a/helm/matita/library/nat/gcd.ma +++ b/helm/matita/library/nat/gcd.ma @@ -15,7 +15,6 @@ set "baseuri" "cic:/matita/nat/gcd". include "nat/primes.ma". -include "higher_order_defs/functions.ma". let rec gcd_aux p m n: nat \def match divides_b n m with @@ -23,7 +22,7 @@ match divides_b n m with | false \Rightarrow match p with [O \Rightarrow n - |(S q) \Rightarrow gcd_aux q n (mod m n)]]. + |(S q) \Rightarrow gcd_aux q n (m \mod n)]]. definition gcd : nat \to nat \to nat \def \lambda n,m:nat. @@ -37,28 +36,25 @@ definition gcd : nat \to nat \to nat \def [ O \Rightarrow n | (S p) \Rightarrow gcd_aux (S p) n (S p) ]]. -theorem divides_mod: \forall p,m,n:nat. O < n \to divides p m \to divides p n \to -divides p (mod m n). +theorem divides_mod: \forall p,m,n:nat. O < n \to p \divides m \to p \divides n \to +p \divides (m \mod n). intros.elim H1.elim H2. -apply witness ? ? (n2 - n1*(div m n)). +apply witness ? ? (n2 - n1*(m / n)). rewrite > distr_times_minus. rewrite < H3. rewrite < assoc_times. rewrite < H4. apply sym_eq. apply plus_to_minus. -rewrite > div_mod m n in \vdash (? ? %). rewrite > sym_times. -apply eq_plus_to_le ? ? (mod m n). -reflexivity. -rewrite > sym_times. -apply div_mod.assumption. assumption. +apply div_mod. +assumption. qed. theorem divides_mod_to_divides: \forall p,m,n:nat. O < n \to -divides p (mod m n) \to divides p n \to divides p m. +p \divides (m \mod n) \to p \divides n \to p \divides m. intros.elim H1.elim H2. -apply witness p m ((n1*(div m n))+n2). +apply witness p m ((n1*(m / n))+n2). rewrite > distr_times_plus. rewrite < H3. rewrite < assoc_times. @@ -67,33 +63,32 @@ apply div_mod.assumption. qed. theorem divides_gcd_aux_mn: \forall p,m,n. O < n \to n \le m \to n \le p \to -divides (gcd_aux p m n) m \land divides (gcd_aux p m n) n. +gcd_aux p m n \divides m \land gcd_aux p m n \divides n. intro.elim p. absurd O < n.assumption.apply le_to_not_lt.assumption. -cut (divides n1 m) \lor \not (divides n1 m). +cut (n1 \divides m) \lor (n1 \ndivides m). change with -(divides (match divides_b n1 m with [ true \Rightarrow n1 -| false \Rightarrow gcd_aux n n1 (mod m n1)]) m) \land -(divides +| false \Rightarrow gcd_aux n n1 (m \mod n1)]) \divides m \land (match divides_b n1 m with [ true \Rightarrow n1 -| false \Rightarrow gcd_aux n n1 (mod m n1)]) n1). +| false \Rightarrow gcd_aux n n1 (m \mod n1)]) \divides n1. elim Hcut.rewrite > divides_to_divides_b_true. simplify. split.assumption.apply witness n1 n1 (S O).apply times_n_SO. +assumption.assumption. rewrite > not_divides_to_divides_b_false. change with -(divides (gcd_aux n n1 (mod m n1)) m) \land -(divides (gcd_aux n n1 (mod m n1)) n1). -cut (divides (gcd_aux n n1 (mod m n1)) n1) \land -(divides (gcd_aux n n1 (mod m n1)) (mod m n1)). +gcd_aux n n1 (m \mod n1) \divides m \land +gcd_aux n n1 (m \mod n1) \divides n1. +cut gcd_aux n n1 (m \mod n1) \divides n1 \land +gcd_aux n n1 (m \mod n1) \divides mod m n1. elim Hcut1. split.apply divides_mod_to_divides ? ? n1. assumption.assumption.assumption.assumption. apply H. -cut O \lt mod m n1 \lor O = mod m n1. +cut O \lt m \mod n1 \lor O = mod m n1. elim Hcut1.assumption. apply False_ind.apply H4.apply mod_O_to_divides. assumption.apply sym_eq.assumption. @@ -102,20 +97,17 @@ apply lt_to_le. apply lt_mod_m_m.assumption. apply le_S_S_to_le. apply trans_le ? n1. -change with mod m n1 < n1. +change with m \mod n1 < n1. apply lt_mod_m_m.assumption.assumption. -apply decidable_divides n1 m.assumption. -apply lt_to_le_to_lt ? n1.assumption.reflexivity. -assumption. assumption.assumption. +apply decidable_divides n1 m.assumption. qed. theorem divides_gcd_nm: \forall n,m. -divides (gcd n m) m \land divides (gcd n m) n. +gcd n m \divides m \land gcd n m \divides n. intros. change with -divides -(match leb n m with +match leb n m with [ true \Rightarrow match n with [ O \Rightarrow m @@ -123,10 +115,9 @@ divides | false \Rightarrow match m with [ O \Rightarrow n - | (S p) \Rightarrow gcd_aux (S p) n (S p) ]]) m + | (S p) \Rightarrow gcd_aux (S p) n (S p) ]] \divides m \land - divides -(match leb n m with +match leb n m with [ true \Rightarrow match n with [ O \Rightarrow m @@ -134,16 +125,16 @@ divides | false \Rightarrow match m with [ O \Rightarrow n - | (S p) \Rightarrow gcd_aux (S p) n (S p) ]]) n. + | (S p) \Rightarrow gcd_aux (S p) n (S p) ]] \divides n. apply leb_elim n m. apply nat_case1 n. simplify.intros.split. apply witness m m (S O).apply times_n_SO. apply witness m O O.apply times_n_O. intros.change with -divides (gcd_aux (S m1) m (S m1)) m +gcd_aux (S m1) m (S m1) \divides m \land -divides (gcd_aux (S m1) m (S m1)) (S m1). +gcd_aux (S m1) m (S m1) \divides (S m1). apply divides_gcd_aux_mn. simplify.apply le_S_S.apply le_O_n. assumption.apply le_n. @@ -153,12 +144,12 @@ simplify.intros.split. apply witness n O O.apply times_n_O. apply witness n n (S O).apply times_n_SO. intros.change with -divides (gcd_aux (S m1) n (S m1)) (S m1) +gcd_aux (S m1) n (S m1) \divides (S m1) \land -divides (gcd_aux (S m1) n (S m1)) n. -cut divides (gcd_aux (S m1) n (S m1)) n +gcd_aux (S m1) n (S m1) \divides n. +cut gcd_aux (S m1) n (S m1) \divides n \land -divides (gcd_aux (S m1) n (S m1)) (S m1). +gcd_aux (S m1) n (S m1) \divides S m1. elim Hcut.split.assumption.assumption. apply divides_gcd_aux_mn. simplify.apply le_S_S.apply le_O_n. @@ -167,57 +158,55 @@ rewrite > H1.apply trans_le ? (S n). apply le_n_Sn.assumption.apply le_n. qed. -theorem divides_gcd_n: \forall n,m. -divides (gcd n m) n. +theorem divides_gcd_n: \forall n,m. gcd n m \divides n. intros. exact proj2 ? ? (divides_gcd_nm n m). qed. -theorem divides_gcd_m: \forall n,m. -divides (gcd n m) m. +theorem divides_gcd_m: \forall n,m. gcd n m \divides m. intros. exact proj1 ? ? (divides_gcd_nm n m). qed. theorem divides_gcd_aux: \forall p,m,n,d. O < n \to n \le m \to n \le p \to -divides d m \to divides d n \to divides d (gcd_aux p m n). +d \divides m \to d \divides n \to d \divides gcd_aux p m n. intro.elim p. absurd O < n.assumption.apply le_to_not_lt.assumption. change with -divides d +d \divides (match divides_b n1 m with [ true \Rightarrow n1 -| false \Rightarrow gcd_aux n n1 (mod m n1)]). -cut divides n1 m \lor \not (divides n1 m). +| false \Rightarrow gcd_aux n n1 (m \mod n1)]). +cut n1 \divides m \lor n1 \ndivides m. elim Hcut. rewrite > divides_to_divides_b_true. simplify.assumption. +assumption.assumption. rewrite > not_divides_to_divides_b_false. -change with divides d (gcd_aux n n1 (mod m n1)). +change with d \divides gcd_aux n n1 (m \mod n1). apply H. -cut O \lt mod m n1 \lor O = mod m n1. +cut O \lt m \mod n1 \lor O = m \mod n1. elim Hcut1.assumption. -absurd divides n1 m.apply mod_O_to_divides. +absurd n1 \divides m.apply mod_O_to_divides. assumption.apply sym_eq.assumption.assumption. apply le_to_or_lt_eq.apply le_O_n. apply lt_to_le. apply lt_mod_m_m.assumption. apply le_S_S_to_le. apply trans_le ? n1. -change with mod m n1 < n1. +change with m \mod n1 < n1. apply lt_mod_m_m.assumption.assumption. assumption. apply divides_mod.assumption.assumption.assumption. +assumption.assumption. apply decidable_divides n1 m.assumption. -apply lt_to_le_to_lt ? n1.assumption.reflexivity. -assumption.assumption.assumption. qed. theorem divides_d_gcd: \forall m,n,d. -divides d m \to divides d n \to divides d (gcd n m). +d \divides m \to d \divides n \to d \divides gcd n m. intros. change with -divides d ( +d \divides match leb n m with [ true \Rightarrow match n with @@ -226,17 +215,17 @@ match leb n m with | false \Rightarrow match m with [ O \Rightarrow n - | (S p) \Rightarrow gcd_aux (S p) n (S p) ]]). + | (S p) \Rightarrow gcd_aux (S p) n (S p) ]]. apply leb_elim n m. apply nat_case1 n.simplify.intros.assumption. intros. -change with divides d (gcd_aux (S m1) m (S m1)). +change with d \divides gcd_aux (S m1) m (S m1). apply divides_gcd_aux. simplify.apply le_S_S.apply le_O_n.assumption.apply le_n.assumption. rewrite < H2.assumption. apply nat_case1 m.simplify.intros.assumption. intros. -change with divides d (gcd_aux (S m1) n (S m1)). +change with d \divides gcd_aux (S m1) n (S m1). apply divides_gcd_aux. simplify.apply le_S_S.apply le_O_n. apply lt_to_le.apply not_le_to_lt.assumption.apply le_n.assumption. @@ -244,22 +233,21 @@ rewrite < H2.assumption. qed. theorem eq_minus_gcd_aux: \forall p,m,n.O < n \to n \le m \to n \le p \to -ex nat (\lambda a. ex nat (\lambda b. -a*n - b*m = (gcd_aux p m n) \lor b*m - a*n = (gcd_aux p m n))). +\exists a,b. a*n - b*m = gcd_aux p m n \lor b*m - a*n = gcd_aux p m n. intro. elim p. absurd O < n.assumption.apply le_to_not_lt.assumption. cut O < m. -cut (divides n1 m) \lor \not (divides n1 m). +cut n1 \divides m \lor n1 \ndivides m. change with -ex nat (\lambda a. ex nat (\lambda b. +\exists a,b. a*n1 - b*m = match divides_b n1 m with [ true \Rightarrow n1 -| false \Rightarrow gcd_aux n n1 (mod m n1)] +| false \Rightarrow gcd_aux n n1 (m \mod n1)] \lor b*m - a*n1 = match divides_b n1 m with [ true \Rightarrow n1 -| false \Rightarrow gcd_aux n n1 (mod m n1)])). +| false \Rightarrow gcd_aux n n1 (m \mod n1)]. elim Hcut1. rewrite > divides_to_divides_b_true. simplify. @@ -267,21 +255,22 @@ apply ex_intro ? ? (S O). apply ex_intro ? ? O. left.simplify.rewrite < plus_n_O. apply sym_eq.apply minus_n_O. +assumption.assumption. rewrite > not_divides_to_divides_b_false. change with -ex nat (\lambda a. ex nat (\lambda b. -a*n1 - b*m = gcd_aux n n1 (mod m n1) +\exists a,b. +a*n1 - b*m = gcd_aux n n1 (m \mod n1) \lor -b*m - a*n1 = gcd_aux n n1 (mod m n1))). +b*m - a*n1 = gcd_aux n n1 (m \mod n1). cut -ex nat (\lambda a. ex nat (\lambda b. -a*(mod m n1) - b*n1= gcd_aux n n1 (mod m n1) +\exists a,b. +a*(m \mod n1) - b*n1= gcd_aux n n1 (m \mod n1) \lor -b*n1 - a*(mod m n1) = gcd_aux n n1 (mod m n1))). +b*n1 - a*(m \mod n1) = gcd_aux n n1 (m \mod n1). elim Hcut2.elim H5.elim H6. (* first case *) rewrite < H7. -apply ex_intro ? ? (a1+a*(div m n1)). +apply ex_intro ? ? (a1+a*(m / n1)). apply ex_intro ? ? a. right. rewrite < sym_plus. @@ -297,11 +286,14 @@ rewrite < eq_minus_minus_minus_plus. rewrite < sym_plus. rewrite < plus_minus. rewrite < minus_n_n.reflexivity. +apply le_n. +assumption. (* second case *) rewrite < H7. -apply ex_intro ? ? (a1+a*(div m n1)). +apply ex_intro ? ? (a1+a*(m / n1)). apply ex_intro ? ? a. left. +(* clear Hcut2.clear H5.clear H6.clear H. *) rewrite > sym_times. rewrite > distr_times_plus. rewrite > sym_times. @@ -313,54 +305,30 @@ rewrite < eq_minus_minus_minus_plus. rewrite < sym_plus. rewrite < plus_minus. rewrite < minus_n_n.reflexivity. -(* end second case *) -apply H n1 (mod m n1). -(* a lot of trivialities left *) -cut O \lt mod m n1 \lor O = mod m n1. -elim Hcut2.assumption. -absurd divides n1 m.apply mod_O_to_divides. -assumption.apply sym_eq.assumption.assumption. +apply le_n. +assumption. +apply H n1 (m \mod n1). +cut O \lt m \mod n1 \lor O = m \mod n1. +elim Hcut2.assumption. +absurd n1 \divides m.apply mod_O_to_divides. +assumption. +symmetry.assumption.assumption. apply le_to_or_lt_eq.apply le_O_n. apply lt_to_le. apply lt_mod_m_m.assumption. apply le_S_S_to_le. apply trans_le ? n1. -change with mod m n1 < n1. -apply lt_mod_m_m.assumption.assumption. +change with m \mod n1 < n1. +apply lt_mod_m_m. +assumption.assumption.assumption.assumption. apply decidable_divides n1 m.assumption. apply lt_to_le_to_lt ? n1.assumption.assumption. -assumption.assumption.assumption.assumption.assumption. -apply le_n.assumption. -apply le_n. qed. -theorem eq_minus_gcd: \forall m,n. -ex nat (\lambda a. ex nat (\lambda b. -a*n - b*m = (gcd n m) \lor b*m - a*n = (gcd n m))). +theorem eq_minus_gcd: + \forall m,n.\exists a,b.a*n - b*m = (gcd n m) \lor b*m - a*n = (gcd n m). intros. -change with -ex nat (\lambda a. ex nat (\lambda b. -a*n - b*m = -match leb n m with - [ true \Rightarrow - match n with - [ O \Rightarrow m - | (S p) \Rightarrow gcd_aux (S p) m (S p) ] - | false \Rightarrow - match m with - [ O \Rightarrow n - | (S p) \Rightarrow gcd_aux (S p) n (S p) ]] -\lor b*m - a*n = -match leb n m with - [ true \Rightarrow - match n with - [ O \Rightarrow m - | (S p) \Rightarrow gcd_aux (S p) m (S p) ] - | false \Rightarrow - match m with - [ O \Rightarrow n - | (S p) \Rightarrow gcd_aux (S p) n (S p) ]] -)). +unfold gcd. apply leb_elim n m. apply nat_case1 n. simplify.intros. @@ -371,9 +339,9 @@ rewrite < plus_n_O. apply sym_eq.apply minus_n_O. intros. change with -ex nat (\lambda a. ex nat (\lambda b. +\exists a,b. a*(S m1) - b*m = (gcd_aux (S m1) m (S m1)) -\lor b*m - a*(S m1) = (gcd_aux (S m1) m (S m1)))). +\lor b*m - a*(S m1) = (gcd_aux (S m1) m (S m1)). apply eq_minus_gcd_aux. simplify. apply le_S_S.apply le_O_n. assumption.apply le_n. @@ -386,14 +354,14 @@ rewrite < plus_n_O. apply sym_eq.apply minus_n_O. intros. change with -ex nat (\lambda a. ex nat (\lambda b. +\exists a,b. a*n - b*(S m1) = (gcd_aux (S m1) n (S m1)) -\lor b*(S m1) - a*n = (gcd_aux (S m1) n (S m1)))). +\lor b*(S m1) - a*n = (gcd_aux (S m1) n (S m1)). cut -ex nat (\lambda a. ex nat (\lambda b. +\exists a,b. a*(S m1) - b*n = (gcd_aux (S m1) n (S m1)) \lor -b*n - a*(S m1) = (gcd_aux (S m1) n (S m1)))). +b*n - a*(S m1) = (gcd_aux (S m1) n (S m1)). elim Hcut.elim H2.elim H3. apply ex_intro ? ? a1. apply ex_intro ? ? a. @@ -415,7 +383,7 @@ qed. theorem gcd_O_to_eq_O:\forall m,n:nat. (gcd m n) = O \to m = O \land n = O. -intros.cut divides O n \land divides O m. +intros.cut O \divides n \land O \divides m. elim Hcut.elim H2.split. assumption.elim H1.assumption. rewrite < H. @@ -464,7 +432,7 @@ apply gcd_O_to_eq_O.apply sym_eq.assumption. apply le_to_or_lt_eq.apply le_O_n. qed. -theorem prime_to_gcd_SO: \forall n,m:nat. prime n \to \not (divides n m) \to +theorem prime_to_gcd_SO: \forall n,m:nat. prime n \to n \ndivides m \to gcd n m = (S O). intros.simplify in H.change with gcd n m = (S O). elim H. @@ -473,6 +441,7 @@ apply not_lt_to_le. change with (S (S O)) \le gcd n m \to False.intro. apply H1.rewrite < H3 (gcd n m). apply divides_gcd_m. +apply divides_gcd_n.assumption. cut O < gcd n m \lor O = gcd n m. elim Hcut.assumption. apply False_ind. @@ -481,30 +450,16 @@ cut n=O \land m=O. elim Hcut1.rewrite < H5 in \vdash (? ? %).assumption. apply gcd_O_to_eq_O.apply sym_eq.assumption. apply le_to_or_lt_eq.apply le_O_n. -apply divides_gcd_n.assumption. qed. -(* esempio di sfarfallalmento !!! *) -(* -theorem bad: \forall n,p,q:nat.prime n \to divides n (p*q) \to -divides n p \lor divides n q. +theorem divides_times_to_divides: \forall n,p,q:nat.prime n \to n \divides p*q \to +n \divides p \lor n \divides q. intros. -cut divides n p \lor \not (divides n p). -elim Hcut.left.assumption. -right. -cut ex nat (\lambda a. ex nat (\lambda b. -a*n - b*p = (S O) \lor b*p - a*n = (S O))). -elim Hcut1.elim H3.*) - -theorem divides_times_to_divides: \forall n,p,q:nat.prime n \to divides n (p*q) \to -divides n p \lor divides n q. -intros. -cut divides n p \lor \not (divides n p). +cut n \divides p \lor n \ndivides p. elim Hcut. left.assumption. right. -cut ex nat (\lambda a. ex nat (\lambda b. -a*n - b*p = (S O) \lor b*p - a*n = (S O))). +cut \exists a,b. a*n - b*p = (S O) \lor b*p - a*n = (S O). elim Hcut1.elim H3.elim H4. (* first case *) rewrite > times_n_SO q.rewrite < H5. @@ -532,8 +487,8 @@ apply witness ? ? (n2*a1-q*a).reflexivity. (* end second case *) rewrite < prime_to_gcd_SO n p. apply eq_minus_gcd. +assumption.assumption. apply decidable_divides n p. apply trans_lt ? (S O).simplify.apply le_n. simplify in H.elim H. assumption. -assumption.assumption. qed.