X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fmatita%2Flibrary%2Fnat%2Fminimization.ma;fp=helm%2Fmatita%2Flibrary%2Fnat%2Fminimization.ma;h=0abed5ad354319674d89e049ca833f804cdaaeec;hb=792b5d29ebae8f917043d9dd226692919b5d6ca1;hp=0000000000000000000000000000000000000000;hpb=a14a8c7637fd0b95e9d4deccb20c6abc98e8f953;p=helm.git diff --git a/helm/matita/library/nat/minimization.ma b/helm/matita/library/nat/minimization.ma new file mode 100644 index 000000000..0abed5ad3 --- /dev/null +++ b/helm/matita/library/nat/minimization.ma @@ -0,0 +1,222 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| A.Asperti, C.Sacerdoti Coen, *) +(* ||A|| E.Tassi, S.Zacchiroli *) +(* \ / *) +(* \ / Matita is distributed under the terms of the *) +(* v GNU Lesser General Public License Version 2.1 *) +(* *) +(**************************************************************************) + +set "baseuri" "cic:/matita/nat/minimization". + +include "nat/minus.ma". + +let rec max i f \def + match (f i) with + [ true \Rightarrow i + | false \Rightarrow + match i with + [ O \Rightarrow O + | (S j) \Rightarrow max j f ]]. + +theorem max_O_f : \forall f: nat \to bool. max O f = O. +intro. simplify. +elim (f O). +simplify.reflexivity. +simplify.reflexivity. +qed. + +theorem max_S_max : \forall f: nat \to bool. \forall n:nat. +(f (S n) = true \land max (S n) f = (S n)) \lor +(f (S n) = false \land max (S n) f = max n f). +intros.simplify.elim (f (S n)). +simplify.left.split.reflexivity.reflexivity. +simplify.right.split.reflexivity.reflexivity. +qed. + +theorem le_max_n : \forall f: nat \to bool. \forall n:nat. +max n f \le n. +intros.elim n.rewrite > max_O_f.apply le_n. +simplify.elim (f (S n1)).simplify.apply le_n. +simplify.apply le_S.assumption. +qed. + +theorem le_to_le_max : \forall f: nat \to bool. \forall n,m:nat. +n\le m \to max n f \le max m f. +intros.elim H. +apply le_n. +apply (trans_le ? (max n1 f)).apply H2. +cut ((f (S n1) = true \land max (S n1) f = (S n1)) \lor +(f (S n1) = false \land max (S n1) f = max n1 f)). +elim Hcut.elim H3. +rewrite > H5. +apply le_S.apply le_max_n. +elim H3.rewrite > H5.apply le_n. +apply max_S_max. +qed. + +theorem f_m_to_le_max: \forall f: nat \to bool. \forall n,m:nat. +m\le n \to f m = true \to m \le max n f. +intros 3.elim n.apply (le_n_O_elim m H). +apply le_O_n. +apply (le_n_Sm_elim m n1 H1). +intro.apply (trans_le ? (max n1 f)). +apply H.apply le_S_S_to_le.assumption.assumption. +apply le_to_le_max.apply le_n_Sn. +intro.simplify.rewrite < H3. +rewrite > H2.simplify.apply le_n. +qed. + + +definition max_spec \def \lambda f:nat \to bool.\lambda n: nat. +\exists i. (le i n) \land (f i = true) \to +(f n) = true \land (\forall i. i < n \to (f i = false)). + +theorem f_max_true : \forall f:nat \to bool. \forall n:nat. +(\exists i:nat. le i n \land f i = true) \to f (max n f) = true. +intros 2. +elim n.elim H.elim H1.generalize in match H3. +apply (le_n_O_elim a H2).intro.simplify.rewrite > H4. +simplify.assumption. +simplify. +apply (bool_ind (\lambda b:bool. +(f (S n1) = b) \to (f (match b in bool with +[ true \Rightarrow (S n1) +| false \Rightarrow (max n1 f)])) = true)). +simplify.intro.assumption. +simplify.intro.apply H. +elim H1.elim H3.generalize in match H5. +apply (le_n_Sm_elim a n1 H4). +intros. +apply (ex_intro nat ? a). +split.apply le_S_S_to_le.assumption.assumption. +intros.apply False_ind.apply not_eq_true_false. +rewrite < H2.rewrite < H7.rewrite > H6. reflexivity. +reflexivity. +qed. + +theorem lt_max_to_false : \forall f:nat \to bool. +\forall n,m:nat. (max n f) < m \to m \leq n \to f m = false. +intros 2. +elim n.absurd (le m O).assumption. +cut (O < m).apply (lt_O_n_elim m Hcut).exact not_le_Sn_O. +rewrite < (max_O_f f).assumption. +generalize in match H1. +elim (max_S_max f n1). +elim H3. +absurd (m \le S n1).assumption. +apply lt_to_not_le.rewrite < H6.assumption. +elim H3. +apply (le_n_Sm_elim m n1 H2). +intro. +apply H.rewrite < H6.assumption. +apply le_S_S_to_le.assumption. +intro.rewrite > H7.assumption. +qed. + +let rec min_aux off n f \def + match f (n-off) with + [ true \Rightarrow (n-off) + | false \Rightarrow + match off with + [ O \Rightarrow n + | (S p) \Rightarrow min_aux p n f]]. + +definition min : nat \to (nat \to bool) \to nat \def +\lambda n.\lambda f. min_aux n n f. + +theorem min_aux_O_f: \forall f:nat \to bool. \forall i :nat. +min_aux O i f = i. +intros.simplify.rewrite < minus_n_O. +elim (f i).reflexivity. +simplify.reflexivity. +qed. + +theorem min_O_f : \forall f:nat \to bool. +min O f = O. +intro.apply (min_aux_O_f f O). +qed. + +theorem min_aux_S : \forall f: nat \to bool. \forall i,n:nat. +(f (n -(S i)) = true \land min_aux (S i) n f = (n - (S i))) \lor +(f (n -(S i)) = false \land min_aux (S i) n f = min_aux i n f). +intros.simplify.elim (f (n - (S i))). +simplify.left.split.reflexivity.reflexivity. +simplify.right.split.reflexivity.reflexivity. +qed. + +theorem f_min_aux_true: \forall f:nat \to bool. \forall off,m:nat. +(\exists i. le (m-off) i \land le i m \land f i = true) \to +f (min_aux off m f) = true. +intros 2. +elim off.elim H.elim H1.elim H2. +cut (a = m). +rewrite > (min_aux_O_f f).rewrite < Hcut.assumption. +apply (antisym_le a m).assumption.rewrite > (minus_n_O m).assumption. +simplify. +apply (bool_ind (\lambda b:bool. +(f (m-(S n)) = b) \to (f (match b in bool with +[ true \Rightarrow m-(S n) +| false \Rightarrow (min_aux n m f)])) = true)). +simplify.intro.assumption. +simplify.intro.apply H. +elim H1.elim H3.elim H4. +elim (le_to_or_lt_eq (m-(S n)) a H6). +apply (ex_intro nat ? a). +split.split. +apply lt_minus_S_n_to_le_minus_n.assumption. +assumption.assumption. +absurd (f a = false).rewrite < H8.assumption. +rewrite > H5. +apply not_eq_true_false. +reflexivity. +qed. + +theorem lt_min_aux_to_false : \forall f:nat \to bool. +\forall n,off,m:nat. (n-off) \leq m \to m < (min_aux off n f) \to f m = false. +intros 3. +elim off.absurd (le n m).rewrite > minus_n_O.assumption. +apply lt_to_not_le.rewrite < (min_aux_O_f f n).assumption. +generalize in match H1. +elim (min_aux_S f n1 n). +elim H3. +absurd (n - S n1 \le m).assumption. +apply lt_to_not_le.rewrite < H6.assumption. +elim H3. +elim (le_to_or_lt_eq (n -(S n1)) m). +apply H.apply lt_minus_S_n_to_le_minus_n.assumption. +rewrite < H6.assumption. +rewrite < H7.assumption. +assumption. +qed. + +theorem le_min_aux : \forall f:nat \to bool. +\forall n,off:nat. (n-off) \leq (min_aux off n f). +intros 3. +elim off.rewrite < minus_n_O. +rewrite > (min_aux_O_f f n).apply le_n. +elim (min_aux_S f n1 n). +elim H1.rewrite > H3.apply le_n. +elim H1.rewrite > H3. +apply (trans_le (n-(S n1)) (n-n1)). +apply monotonic_le_minus_r. +apply le_n_Sn. +assumption. +qed. + +theorem le_min_aux_r : \forall f:nat \to bool. +\forall n,off:nat. (min_aux off n f) \le n. +intros. +elim off.simplify.rewrite < minus_n_O. +elim (f n).simplify.apply le_n. +simplify.apply le_n. +simplify.elim (f (n -(S n1))). +simplify.apply le_plus_to_minus. +rewrite < sym_plus.apply le_plus_n. +simplify.assumption. +qed.