X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fmatita%2Flibrary%2Fnat%2Fminimization.ma;h=0abed5ad354319674d89e049ca833f804cdaaeec;hb=97c2d258a5c524eb5c4b85208899d80751a2c82f;hp=748399fbcc699f20c308228bc8e600e64fc2a4d5;hpb=78044035b4419e569df0d7f6a7f96fa32d21a19d;p=helm.git diff --git a/helm/matita/library/nat/minimization.ma b/helm/matita/library/nat/minimization.ma index 748399fbc..0abed5ad3 100644 --- a/helm/matita/library/nat/minimization.ma +++ b/helm/matita/library/nat/minimization.ma @@ -26,7 +26,7 @@ let rec max i f \def theorem max_O_f : \forall f: nat \to bool. max O f = O. intro. simplify. -elim f O. +elim (f O). simplify.reflexivity. simplify.reflexivity. qed. @@ -50,9 +50,9 @@ theorem le_to_le_max : \forall f: nat \to bool. \forall n,m:nat. n\le m \to max n f \le max m f. intros.elim H. apply le_n. -apply trans_le ? (max n1 f).apply H2. -cut (f (S n1) = true \land max (S n1) f = (S n1)) \lor -(f (S n1) = false \land max (S n1) f = max n1 f). +apply (trans_le ? (max n1 f)).apply H2. +cut ((f (S n1) = true \land max (S n1) f = (S n1)) \lor +(f (S n1) = false \land max (S n1) f = max n1 f)). elim Hcut.elim H3. rewrite > H5. apply le_S.apply le_max_n. @@ -62,39 +62,40 @@ qed. theorem f_m_to_le_max: \forall f: nat \to bool. \forall n,m:nat. m\le n \to f m = true \to m \le max n f. -intros 3.elim n.apply le_n_O_elim m H. +intros 3.elim n.apply (le_n_O_elim m H). apply le_O_n. -apply le_n_Sm_elim m n1 H1. -intro.apply trans_le ? (max n1 f). +apply (le_n_Sm_elim m n1 H1). +intro.apply (trans_le ? (max n1 f)). apply H.apply le_S_S_to_le.assumption.assumption. apply le_to_le_max.apply le_n_Sn. intro.simplify.rewrite < H3. rewrite > H2.simplify.apply le_n. qed. + definition max_spec \def \lambda f:nat \to bool.\lambda n: nat. -ex nat (\lambda i:nat. (le i n) \land (f i = true)) \to +\exists i. (le i n) \land (f i = true) \to (f n) = true \land (\forall i. i < n \to (f i = false)). theorem f_max_true : \forall f:nat \to bool. \forall n:nat. -ex nat (\lambda i:nat. (le i n) \land (f i = true)) \to f (max n f) = true. +(\exists i:nat. le i n \land f i = true) \to f (max n f) = true. intros 2. elim n.elim H.elim H1.generalize in match H3. -apply le_n_O_elim a H2.intro.simplify.rewrite > H4. +apply (le_n_O_elim a H2).intro.simplify.rewrite > H4. simplify.assumption. simplify. -apply bool_ind (\lambda b:bool. -(f (S n1) = b) \to (f ([\lambda b:bool.nat] match b in bool with +apply (bool_ind (\lambda b:bool. +(f (S n1) = b) \to (f (match b in bool with [ true \Rightarrow (S n1) -| false \Rightarrow (max n1 f)])) = true) ? ? ?. +| false \Rightarrow (max n1 f)])) = true)). simplify.intro.assumption. simplify.intro.apply H. elim H1.elim H3.generalize in match H5. -apply le_n_Sm_elim a n1 H4. +apply (le_n_Sm_elim a n1 H4). intros. -apply ex_intro nat ? a. +apply (ex_intro nat ? a). split.apply le_S_S_to_le.assumption.assumption. -intros.apply False_ind.apply not_eq_true_false ?. +intros.apply False_ind.apply not_eq_true_false. rewrite < H2.rewrite < H7.rewrite > H6. reflexivity. reflexivity. qed. @@ -102,17 +103,16 @@ qed. theorem lt_max_to_false : \forall f:nat \to bool. \forall n,m:nat. (max n f) < m \to m \leq n \to f m = false. intros 2. -elim n.absurd le m O.assumption. -cut O < m.apply lt_O_n_elim m Hcut.exact not_le_Sn_O. -rewrite < max_O_f f.assumption. +elim n.absurd (le m O).assumption. +cut (O < m).apply (lt_O_n_elim m Hcut).exact not_le_Sn_O. +rewrite < (max_O_f f).assumption. generalize in match H1. -(* ?? non posso generalizzare su un goal implicativo ?? *) -elim max_S_max f n1. +elim (max_S_max f n1). elim H3. -absurd m \le S n1.assumption. +absurd (m \le S n1).assumption. apply lt_to_not_le.rewrite < H6.assumption. elim H3. -apply le_n_Sm_elim m n1 H2. +apply (le_n_Sm_elim m n1 H2). intro. apply H.rewrite < H6.assumption. apply le_S_S_to_le.assumption. @@ -133,14 +133,13 @@ definition min : nat \to (nat \to bool) \to nat \def theorem min_aux_O_f: \forall f:nat \to bool. \forall i :nat. min_aux O i f = i. intros.simplify.rewrite < minus_n_O. -elim f i. -simplify.reflexivity. +elim (f i).reflexivity. simplify.reflexivity. qed. theorem min_O_f : \forall f:nat \to bool. min O f = O. -intro.apply min_aux_O_f f O. +intro.apply (min_aux_O_f f O). qed. theorem min_aux_S : \forall f: nat \to bool. \forall i,n:nat. @@ -152,27 +151,27 @@ simplify.right.split.reflexivity.reflexivity. qed. theorem f_min_aux_true: \forall f:nat \to bool. \forall off,m:nat. -ex nat (\lambda i:nat. (le (m-off) i) \land (le i m) \land (f i = true)) \to +(\exists i. le (m-off) i \land le i m \land f i = true) \to f (min_aux off m f) = true. intros 2. elim off.elim H.elim H1.elim H2. -cut a = m. -rewrite > min_aux_O_f f.rewrite < Hcut.assumption. -apply antisym_le a m .assumption.rewrite > minus_n_O m.assumption. +cut (a = m). +rewrite > (min_aux_O_f f).rewrite < Hcut.assumption. +apply (antisym_le a m).assumption.rewrite > (minus_n_O m).assumption. simplify. -apply bool_ind (\lambda b:bool. -(f (m-(S n)) = b) \to (f ([\lambda b:bool.nat] match b in bool with +apply (bool_ind (\lambda b:bool. +(f (m-(S n)) = b) \to (f (match b in bool with [ true \Rightarrow m-(S n) -| false \Rightarrow (min_aux n m f)])) = true) ? ? ?. +| false \Rightarrow (min_aux n m f)])) = true)). simplify.intro.assumption. simplify.intro.apply H. elim H1.elim H3.elim H4. elim (le_to_or_lt_eq (m-(S n)) a H6). -apply ex_intro nat ? a. +apply (ex_intro nat ? a). split.split. apply lt_minus_S_n_to_le_minus_n.assumption. assumption.assumption. -absurd f a = false.rewrite < H8.assumption. +absurd (f a = false).rewrite < H8.assumption. rewrite > H5. apply not_eq_true_false. reflexivity. @@ -181,15 +180,15 @@ qed. theorem lt_min_aux_to_false : \forall f:nat \to bool. \forall n,off,m:nat. (n-off) \leq m \to m < (min_aux off n f) \to f m = false. intros 3. -elim off.absurd le n m.rewrite > minus_n_O.assumption. -apply lt_to_not_le.rewrite < min_aux_O_f f n.assumption. +elim off.absurd (le n m).rewrite > minus_n_O.assumption. +apply lt_to_not_le.rewrite < (min_aux_O_f f n).assumption. generalize in match H1. -elim min_aux_S f n1 n. +elim (min_aux_S f n1 n). elim H3. -absurd n - S n1 \le m.assumption. +absurd (n - S n1 \le m).assumption. apply lt_to_not_le.rewrite < H6.assumption. elim H3. -elim le_to_or_lt_eq (n -(S n1)) m. +elim (le_to_or_lt_eq (n -(S n1)) m). apply H.apply lt_minus_S_n_to_le_minus_n.assumption. rewrite < H6.assumption. rewrite < H7.assumption. @@ -200,13 +199,24 @@ theorem le_min_aux : \forall f:nat \to bool. \forall n,off:nat. (n-off) \leq (min_aux off n f). intros 3. elim off.rewrite < minus_n_O. -rewrite > min_aux_O_f f n.apply le_n. -elim min_aux_S f n1 n. +rewrite > (min_aux_O_f f n).apply le_n. +elim (min_aux_S f n1 n). elim H1.rewrite > H3.apply le_n. elim H1.rewrite > H3. -apply trans_le (n-(S n1)) (n-n1) ?. +apply (trans_le (n-(S n1)) (n-n1)). apply monotonic_le_minus_r. apply le_n_Sn. assumption. qed. +theorem le_min_aux_r : \forall f:nat \to bool. +\forall n,off:nat. (min_aux off n f) \le n. +intros. +elim off.simplify.rewrite < minus_n_O. +elim (f n).simplify.apply le_n. +simplify.apply le_n. +simplify.elim (f (n -(S n1))). +simplify.apply le_plus_to_minus. +rewrite < sym_plus.apply le_plus_n. +simplify.assumption. +qed.