X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fmatita%2Flibrary%2Fnat%2Fminus.ma;h=710418d72644022cb4d799fb95f67354da4af89b;hb=97c2d258a5c524eb5c4b85208899d80751a2c82f;hp=4fa85a6bb4f6c901a28fcafcff0ad68d5def0a48;hpb=244d65f63ca6a736b871f9f91328fe8c5524ff05;p=helm.git diff --git a/helm/matita/library/nat/minus.ma b/helm/matita/library/nat/minus.ma index 4fa85a6bb..710418d72 100644 --- a/helm/matita/library/nat/minus.ma +++ b/helm/matita/library/nat/minus.ma @@ -12,10 +12,11 @@ (* *) (**************************************************************************) -set "baseuri" "cic:/matita/nat/minus.ma". -include "nat/orders_op.ma". -include "nat/times.ma". +set "baseuri" "cic:/matita/nat/minus". + +include "nat/le_arith.ma". +include "nat/compare.ma". let rec minus n m \def match n with @@ -25,30 +26,31 @@ let rec minus n m \def [O \Rightarrow (S p) | (S q) \Rightarrow minus p q ]]. +(*CSC: the URI must disappear: there is a bug now *) +interpretation "natural minus" 'minus x y = (cic:/matita/nat/minus/minus.con x y). -theorem minus_n_O: \forall n:nat.eq nat n (minus n O). +theorem minus_n_O: \forall n:nat.n=n-O. intros.elim n.simplify.reflexivity. simplify.reflexivity. qed. -theorem minus_n_n: \forall n:nat.eq nat O (minus n n). +theorem minus_n_n: \forall n:nat.O=n-n. intros.elim n.simplify. reflexivity. simplify.apply H. qed. -theorem minus_Sn_n: \forall n:nat.eq nat (S O) (minus (S n) n). +theorem minus_Sn_n: \forall n:nat. S O = (S n)-n. intro.elim n. simplify.reflexivity. elim H.reflexivity. qed. -theorem minus_Sn_m: \forall n,m:nat. -le m n \to eq nat (minus (S n) m) (S (minus n m)). +theorem minus_Sn_m: \forall n,m:nat. m \leq n \to (S n)-m = S (n-m). intros 2. -apply nat_elim2 -(\lambda n,m.le m n \to eq nat (minus (S n) m) (S (minus n m))). -intros.apply le_n_O_elim n1 H. +apply (nat_elim2 +(\lambda n,m.m \leq n \to (S n)-m = S (n-m))). +intros.apply (le_n_O_elim n1 H). simplify.reflexivity. intros.simplify.reflexivity. intros.rewrite < H.reflexivity. @@ -56,21 +58,33 @@ apply le_S_S_to_le. assumption. qed. theorem plus_minus: -\forall n,m,p:nat. le m n \to eq nat (plus (minus n m) p) (minus (plus n p) m). +\forall n,m,p:nat. m \leq n \to (n-m)+p = (n+p)-m. intros 2. -apply nat_elim2 -(\lambda n,m.\forall p:nat.le m n \to eq nat (plus (minus n m) p) (minus (plus n p) m)). -intros.apply le_n_O_elim ? H. +apply (nat_elim2 +(\lambda n,m.\forall p:nat.m \leq n \to (n-m)+p = (n+p)-m)). +intros.apply (le_n_O_elim ? H). simplify.rewrite < minus_n_O.reflexivity. intros.simplify.reflexivity. intros.simplify.apply H.apply le_S_S_to_le.assumption. qed. +theorem minus_plus_m_m: \forall n,m:nat.n = (n+m)-m. +intros 2. +generalize in match n. +elim m. +rewrite < minus_n_O.apply plus_n_O. +elim n2.simplify. +apply minus_n_n. +rewrite < plus_n_Sm. +change with (S n3 = (S n3 + n1)-n1). +apply H. +qed. + theorem plus_minus_m_m: \forall n,m:nat. -le m n \to eq nat n (plus (minus n m) m). +m \leq n \to n = (n-m)+m. intros 2. -apply nat_elim2 (\lambda n,m.le m n \to eq nat n (plus (minus n m) m)). -intros.apply le_n_O_elim n1 H. +apply (nat_elim2 (\lambda n,m.m \leq n \to n = (n-m)+m)). +intros.apply (le_n_O_elim n1 H). reflexivity. intros.simplify.rewrite < plus_n_O.reflexivity. intros.simplify.rewrite < sym_plus.simplify. @@ -78,83 +92,209 @@ apply eq_f.rewrite < sym_plus.apply H. apply le_S_S_to_le.assumption. qed. -theorem minus_to_plus :\forall n,m,p:nat.le m n \to eq nat (minus n m) p \to -eq nat n (plus m p). -intros.apply trans_eq ? ? (plus (minus n m) m) ?. +theorem minus_to_plus :\forall n,m,p:nat.m \leq n \to n-m = p \to +n = m+p. +intros.apply (trans_eq ? ? ((n-m)+m)). apply plus_minus_m_m. apply H.elim H1. apply sym_plus. qed. -theorem plus_to_minus :\forall n,m,p:nat.le m n \to -eq nat n (plus m p) \to eq nat (minus n m) p. +theorem plus_to_minus :\forall n,m,p:nat. +n = m+p \to n-m = p. intros. -apply inj_plus_r m. -rewrite < H1. +apply (inj_plus_r m). +rewrite < H. rewrite < sym_plus. symmetry. -apply plus_minus_m_m.assumption. +apply plus_minus_m_m.rewrite > H. +rewrite > sym_plus. +apply le_plus_n. +qed. + +theorem minus_S_S : \forall n,m:nat. +eq nat (minus (S n) (S m)) (minus n m). +intros. +reflexivity. +qed. + +theorem minus_pred_pred : \forall n,m:nat. lt O n \to lt O m \to +eq nat (minus (pred n) (pred m)) (minus n m). +intros. +apply (lt_O_n_elim n H).intro. +apply (lt_O_n_elim m H1).intro. +simplify.reflexivity. qed. -theorem minus_ge_O: \forall n,m:nat. -le n m \to eq nat (minus n m) O. +theorem eq_minus_n_m_O: \forall n,m:nat. +n \leq m \to n-m = O. intros 2. -apply nat_elim2 (\lambda n,m.le n m \to eq nat (minus n m) O). +apply (nat_elim2 (\lambda n,m.n \leq m \to n-m = O)). intros.simplify.reflexivity. intros.apply False_ind. -(* ancora problemi con il not *) -apply not_le_Sn_O n1 H. +apply not_le_Sn_O. +goal 13.apply H. intros. simplify.apply H.apply le_S_S_to_le. apply H1. qed. -theorem le_SO_minus: \forall n,m:nat.le (S n) m \to le (S O) (minus m n). -intros.elim H.elim minus_Sn_n n.apply le_n. +theorem le_SO_minus: \forall n,m:nat.S n \leq m \to S O \leq m-n. +intros.elim H.elim (minus_Sn_n n).apply le_n. rewrite > minus_Sn_m. apply le_S.assumption. apply lt_to_le.assumption. qed. -(* -theorem le_plus_minus: \forall n,m,p. (le (plus n m) p) \to (le n (minus p m)). -intros 3. -elim p.simplify.apply trans_le ? (plus n m) ?. -elim sym_plus ? ?. -apply plus_le.assumption. -apply le_n_Sm_elim ? ? H1. +theorem minus_le_S_minus_S: \forall n,m:nat. m-n \leq S (m-(S n)). +intros.apply (nat_elim2 (\lambda n,m.m-n \leq S (m-(S n)))). +intro.elim n1.simplify.apply le_n_Sn. +simplify.rewrite < minus_n_O.apply le_n. +intros.simplify.apply le_n_Sn. +intros.simplify.apply H. +qed. + +theorem lt_minus_S_n_to_le_minus_n : \forall n,m,p:nat. m-(S n) < p \to m-n \leq p. +intros 3.simplify.intro. +apply (trans_le (m-n) (S (m-(S n))) p). +apply minus_le_S_minus_S. +assumption. +qed. + +theorem le_minus_m: \forall n,m:nat. n-m \leq n. +intros.apply (nat_elim2 (\lambda m,n. n-m \leq n)). +intros.rewrite < minus_n_O.apply le_n. +intros.simplify.apply le_n. +intros.simplify.apply le_S.assumption. +qed. + +theorem lt_minus_m: \forall n,m:nat. O < n \to O < m \to n-m \lt n. +intros.apply (lt_O_n_elim n H).intro. +apply (lt_O_n_elim m H1).intro. +simplify.unfold lt.apply le_S_S.apply le_minus_m. +qed. + +theorem minus_le_O_to_le: \forall n,m:nat. n-m \leq O \to n \leq m. +intros 2. +apply (nat_elim2 (\lambda n,m:nat.n-m \leq O \to n \leq m)). +intros.apply le_O_n. +simplify.intros. assumption. +simplify.intros.apply le_S_S.apply H.assumption. +qed. + +(* galois *) +theorem monotonic_le_minus_r: +\forall p,q,n:nat. q \leq p \to n-p \le n-q. +simplify.intros 2.apply (nat_elim2 +(\lambda p,q.\forall a.q \leq p \to a-p \leq a-q)). +intros.apply (le_n_O_elim n H).apply le_n. +intros.rewrite < minus_n_O. +apply le_minus_m. +intros.elim a.simplify.apply le_n. +simplify.apply H.apply le_S_S_to_le.assumption. +qed. + +theorem le_minus_to_plus: \forall n,m,p. (le (n-m) p) \to (le n (p+m)). +intros 2.apply (nat_elim2 (\lambda n,m.\forall p.(le (n-m) p) \to (le n (p+m)))). +intros.apply le_O_n. +simplify.intros.rewrite < plus_n_O.assumption. intros. -*) -check distributive. +rewrite < plus_n_Sm. +apply le_S_S.apply H. +exact H1. +qed. + +theorem le_plus_to_minus: \forall n,m,p. (le n (p+m)) \to (le (n-m) p). +intros 2.apply (nat_elim2 (\lambda n,m.\forall p.(le n (p+m)) \to (le (n-m) p))). +intros.simplify.apply le_O_n. +intros 2.rewrite < plus_n_O.intro.simplify.assumption. +intros.simplify.apply H. +apply le_S_S_to_le.rewrite > plus_n_Sm.assumption. +qed. + +(* the converse of le_plus_to_minus does not hold *) +theorem le_plus_to_minus_r: \forall n,m,p. (le (n+m) p) \to (le n (p-m)). +intros 3.apply (nat_elim2 (\lambda m,p.(le (n+m) p) \to (le n (p-m)))). +intro.rewrite < plus_n_O.rewrite < minus_n_O.intro.assumption. +intro.intro.cut (n=O).rewrite > Hcut.apply le_O_n. +apply sym_eq. apply le_n_O_to_eq. +apply (trans_le ? (n+(S n1))). +rewrite < sym_plus. +apply le_plus_n.assumption. +intros.simplify. +apply H.apply le_S_S_to_le. +rewrite > plus_n_Sm.assumption. +qed. + +(* minus and lt - to be completed *) +theorem lt_minus_to_plus: \forall n,m,p. (lt n (p-m)) \to (lt (n+m) p). +intros 3.apply (nat_elim2 (\lambda m,p.(lt n (p-m)) \to (lt (n+m) p))). +intro.rewrite < plus_n_O.rewrite < minus_n_O.intro.assumption. +simplify.intros.apply False_ind.apply (not_le_Sn_O n H). +simplify.intros.unfold lt. +apply le_S_S. +rewrite < plus_n_Sm. +apply H.apply H1. +qed. -theorem times_minus_distr: \forall n,m,p:nat. -eq nat (times n (minus m p)) (minus (times n m) (times n p)). +theorem distributive_times_minus: distributive nat times minus. +unfold distributive. intros. -apply (leb_ind p m).intro. -cut eq nat (plus (times n (minus m p)) (times n p)) (plus (minus (times n m) (times n p)) (times n p)). -apply plus_injective_right ? ? (times n p). -assumption. -apply trans_eq nat ? (times n m). -elim (times_plus_distr ? ? ?). -elim (minus_plus ? ? H).apply refl_equal. -elim (minus_plus ? ? ?).apply refl_equal. -apply times_le_monotony_left. -assumption. -intro. -elim sym_eq ? ? ? (minus_ge_O ? ? ?). -elim sym_eq ? ? ? (minus_ge_O ? ? ?). -elim (sym_times ? ?).simplify.apply refl_equal. -simplify. -apply times_le_monotony_left. -cut (lt m p) \to (le m p). -apply Hcut.simplify.apply not_le_lt ? ? H. -intro.apply lt_le.apply H1. -cut (lt m p) \to (le m p). -apply Hcut.simplify.apply not_le_lt ? ? H. -intro.apply lt_le.apply H1. -qed. - -theorem minus_le: \forall n,m:nat. le (minus n m) n. -intro.elim n.simplify.apply le_n. -elim m.simplify.apply le_n. -simplify.apply le_S.apply H. +apply ((leb_elim z y)). + intro.cut (x*(y-z)+x*z = (x*y-x*z)+x*z). + apply (inj_plus_l (x*z)).assumption. + apply (trans_eq nat ? (x*y)). + rewrite < distr_times_plus.rewrite < (plus_minus_m_m ? ? H).reflexivity. + rewrite < plus_minus_m_m. + reflexivity. + apply le_times_r.assumption. + intro.rewrite > eq_minus_n_m_O. + rewrite > (eq_minus_n_m_O (x*y)). + rewrite < sym_times.simplify.reflexivity. + apply le_times_r.apply lt_to_le.apply not_le_to_lt.assumption. + apply lt_to_le.apply not_le_to_lt.assumption. +qed. + +theorem distr_times_minus: \forall n,m,p:nat. n*(m-p) = n*m-n*p +\def distributive_times_minus. + +theorem eq_minus_plus_plus_minus: \forall n,m,p:nat. p \le m \to (n+m)-p = n+(m-p). +intros. +apply plus_to_minus. +rewrite > sym_plus in \vdash (? ? ? %). +rewrite > assoc_plus. +rewrite < plus_minus_m_m. +reflexivity.assumption. +qed. + +theorem eq_minus_minus_minus_plus: \forall n,m,p:nat. (n-m)-p = n-(m+p). +intros. +cut (m+p \le n \or m+p \nleq n). + elim Hcut. + symmetry.apply plus_to_minus. + rewrite > assoc_plus.rewrite > (sym_plus p).rewrite < plus_minus_m_m. + rewrite > sym_plus.rewrite < plus_minus_m_m. + reflexivity. + apply (trans_le ? (m+p)). + rewrite < sym_plus.apply le_plus_n. + assumption. + apply le_plus_to_minus_r.rewrite > sym_plus.assumption. + rewrite > (eq_minus_n_m_O n (m+p)). + rewrite > (eq_minus_n_m_O (n-m) p). + reflexivity. + apply le_plus_to_minus.apply lt_to_le. rewrite < sym_plus. + apply not_le_to_lt. assumption. + apply lt_to_le.apply not_le_to_lt.assumption. + apply (decidable_le (m+p) n). +qed. + +theorem eq_plus_minus_minus_minus: \forall n,m,p:nat. p \le m \to m \le n \to +p+(n-m) = n-(m-p). +intros. +apply sym_eq. +apply plus_to_minus. +rewrite < assoc_plus. +rewrite < plus_minus_m_m. +rewrite < sym_plus. +rewrite < plus_minus_m_m.reflexivity. +assumption.assumption. qed.