X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fmatita%2Flibrary%2Fnat%2Fminus.ma;h=8302f7ce5873aee8dc6f7893065068e0fb38feb7;hb=7273c698dd60c1a8a0f35b44376acb548c6a4a33;hp=e725185e004bfaedb6ed3dbbea63720bd91ab4ba;hpb=71590f4a0cb620a5e98fee3e8d65670271234532;p=helm.git diff --git a/helm/matita/library/nat/minus.ma b/helm/matita/library/nat/minus.ma index e725185e0..8302f7ce5 100644 --- a/helm/matita/library/nat/minus.ma +++ b/helm/matita/library/nat/minus.ma @@ -15,7 +15,7 @@ set "baseuri" "cic:/matita/nat/minus". -include "nat/orders_op.ma". +include "nat/le_arith.ma". include "nat/compare.ma". let rec minus n m \def @@ -82,20 +82,36 @@ qed. theorem minus_to_plus :\forall n,m,p:nat.m \leq n \to n-m = p \to n = m+p. -intros.apply trans_eq ? ? ((n-m)+m) ?. +intros.apply trans_eq ? ? ((n-m)+m). apply plus_minus_m_m. apply H.elim H1. apply sym_plus. qed. -theorem plus_to_minus :\forall n,m,p:nat.m \leq n \to +theorem plus_to_minus :\forall n,m,p:nat. n = m+p \to n-m = p. intros. apply inj_plus_r m. -rewrite < H1. +rewrite < H. rewrite < sym_plus. symmetry. -apply plus_minus_m_m.assumption. +apply plus_minus_m_m.rewrite > H. +rewrite > sym_plus. +apply le_plus_n. +qed. + +theorem minus_S_S : \forall n,m:nat. +eq nat (minus (S n) (S m)) (minus n m). +intros. +reflexivity. +qed. + +theorem minus_pred_pred : \forall n,m:nat. lt O n \to lt O m \to +eq nat (minus (pred n) (pred m)) (minus n m). +intros. +apply lt_O_n_elim n H.intro. +apply lt_O_n_elim m H1.intro. +simplify.reflexivity. qed. theorem eq_minus_n_m_O: \forall n,m:nat. @@ -104,8 +120,8 @@ intros 2. apply nat_elim2 (\lambda n,m.n \leq m \to n-m = O). intros.simplify.reflexivity. intros.apply False_ind. -(* ancora problemi con il not *) -apply not_le_Sn_O n1 H. +apply not_le_Sn_O. +goal 13.apply H. intros. simplify.apply H.apply le_S_S_to_le. apply H1. qed. @@ -117,44 +133,137 @@ apply le_S.assumption. apply lt_to_le.assumption. qed. -(* -theorem le_plus_minus: \forall n,m,p. n+m \leq p \to n \leq p-m. -intros 3. -elim p.simplify.apply trans_le ? (n+m) ?. -elim sym_plus ? ?. -apply plus_le.assumption. -apply le_n_Sm_elim ? ? H1. +theorem minus_le_S_minus_S: \forall n,m:nat. m-n \leq S (m-(S n)). +intros.apply nat_elim2 (\lambda n,m.m-n \leq S (m-(S n))). +intro.elim n1.simplify.apply le_n_Sn. +simplify.rewrite < minus_n_O.apply le_n. +intros.simplify.apply le_n_Sn. +intros.simplify.apply H. +qed. + +theorem lt_minus_S_n_to_le_minus_n : \forall n,m,p:nat. m-(S n) < p \to m-n \leq p. +intros 3.simplify.intro. +apply trans_le (m-n) (S (m-(S n))) p. +apply minus_le_S_minus_S. +assumption. +qed. + +theorem le_minus_m: \forall n,m:nat. n-m \leq n. +intros.apply nat_elim2 (\lambda m,n. n-m \leq n). +intros.rewrite < minus_n_O.apply le_n. +intros.simplify.apply le_n. +intros.simplify.apply le_S.assumption. +qed. + +theorem lt_minus_m: \forall n,m:nat. O < n \to O < m \to n-m \lt n. +intros.apply lt_O_n_elim n H.intro. +apply lt_O_n_elim m H1.intro. +simplify.apply le_S_S.apply le_minus_m. +qed. + +theorem minus_le_O_to_le: \forall n,m:nat. n-m \leq O \to n \leq m. +intros 2. +apply nat_elim2 (\lambda n,m:nat.n-m \leq O \to n \leq m). +intros.apply le_O_n. +simplify.intros. assumption. +simplify.intros.apply le_S_S.apply H.assumption. +qed. + +(* galois *) +theorem monotonic_le_minus_r: +\forall p,q,n:nat. q \leq p \to n-p \le n-q. +simplify.intros 2.apply nat_elim2 +(\lambda p,q.\forall a.q \leq p \to a-p \leq a-q). +intros.apply le_n_O_elim n H.apply le_n. +intros.rewrite < minus_n_O. +apply le_minus_m. +intros.elim a.simplify.apply le_n. +simplify.apply H.apply le_S_S_to_le.assumption. +qed. + +theorem le_minus_to_plus: \forall n,m,p. (le (n-m) p) \to (le n (p+m)). +intros 2.apply nat_elim2 (\lambda n,m.\forall p.(le (n-m) p) \to (le n (p+m))). +intros.apply le_O_n. +simplify.intros.rewrite < plus_n_O.assumption. intros. -*) +rewrite < plus_n_Sm. +apply le_S_S.apply H. +exact H1. +qed. + +theorem le_plus_to_minus: \forall n,m,p. (le n (p+m)) \to (le (n-m) p). +intros 2.apply nat_elim2 (\lambda n,m.\forall p.(le n (p+m)) \to (le (n-m) p)). +intros.simplify.apply le_O_n. +intros 2.rewrite < plus_n_O.intro.simplify.assumption. +intros.simplify.apply H. +apply le_S_S_to_le.rewrite > plus_n_Sm.assumption. +qed. + +(* the converse of le_plus_to_minus does not hold *) +theorem le_plus_to_minus_r: \forall n,m,p. (le (n+m) p) \to (le n (p-m)). +intros 3.apply nat_elim2 (\lambda m,p.(le (n+m) p) \to (le n (p-m))). +intro.rewrite < plus_n_O.rewrite < minus_n_O.intro.assumption. +intro.intro.cut n=O.rewrite > Hcut.apply le_O_n. +apply sym_eq. apply le_n_O_to_eq. +apply trans_le ? (n+(S n1)). +rewrite < sym_plus. +apply le_plus_n.assumption. +intros.simplify. +apply H.apply le_S_S_to_le. +rewrite > plus_n_Sm.assumption. +qed. + theorem distributive_times_minus: distributive nat times minus. simplify. intros. -apply (leb_elim z y).intro. -cut x*(y-z)+x*z = (x*y-x*z)+x*z. -apply inj_plus_l (x*z). -assumption. -apply trans_eq nat ? (x*y). -rewrite < times_plus_distr. -rewrite < plus_minus_m_m ? ? H.reflexivity. -rewrite < plus_minus_m_m ? ? ?.reflexivity. -apply le_times_r. -assumption. -intro. -rewrite > eq_minus_n_m_O. -rewrite > eq_minus_n_m_O (x*y). -rewrite < sym_times.simplify.reflexivity. -apply lt_to_le. -apply not_le_to_lt.assumption. -apply le_times_r.apply lt_to_le. -apply not_le_to_lt.assumption. +apply (leb_elim z y). + intro.cut x*(y-z)+x*z = (x*y-x*z)+x*z. + apply inj_plus_l (x*z).assumption. + apply trans_eq nat ? (x*y). + rewrite < distr_times_plus.rewrite < plus_minus_m_m ? ? H.reflexivity. + rewrite < plus_minus_m_m. + reflexivity. + apply le_times_r.assumption. + intro.rewrite > eq_minus_n_m_O. + rewrite > eq_minus_n_m_O (x*y). + rewrite < sym_times.simplify.reflexivity. + apply le_times_r.apply lt_to_le.apply not_le_to_lt.assumption. + apply lt_to_le.apply not_le_to_lt.assumption. qed. theorem distr_times_minus: \forall n,m,p:nat. n*(m-p) = n*m-n*p \def distributive_times_minus. -theorem le_minus_m: \forall n,m:nat. n-m \leq n. -intro.elim n.simplify.apply le_n. -elim m.simplify.apply le_n. -simplify.apply le_S.apply H. +theorem eq_minus_minus_minus_plus: \forall n,m,p:nat. (n-m)-p = n-(m+p). +intros. +cut m+p \le n \or m+p \nleq n. + elim Hcut. + symmetry.apply plus_to_minus. + rewrite > assoc_plus.rewrite > sym_plus p.rewrite < plus_minus_m_m. + rewrite > sym_plus.rewrite < plus_minus_m_m. + reflexivity. + apply trans_le ? (m+p). + rewrite < sym_plus.apply le_plus_n. + assumption. + apply le_plus_to_minus_r.rewrite > sym_plus.assumption. + rewrite > eq_minus_n_m_O n (m+p). + rewrite > eq_minus_n_m_O (n-m) p. + reflexivity. + apply le_plus_to_minus.apply lt_to_le. rewrite < sym_plus. + apply not_le_to_lt. assumption. + apply lt_to_le.apply not_le_to_lt.assumption. + apply decidable_le (m+p) n. +qed. + +theorem eq_plus_minus_minus_minus: \forall n,m,p:nat. p \le m \to m \le n \to +p+(n-m) = n-(m-p). +intros. +apply sym_eq. +apply plus_to_minus. +rewrite < assoc_plus. +rewrite < plus_minus_m_m. +rewrite < sym_plus. +rewrite < plus_minus_m_m.reflexivity. +assumption.assumption. qed.