X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fmatita%2Flibrary%2Fnat%2Fnth_prime.ma;fp=helm%2Fmatita%2Flibrary%2Fnat%2Fnth_prime.ma;h=f165705ac42e04a6a88168149ad0bfd580af239b;hb=373b88228a8f9a6b4b4dcf781bc166865f89f43d;hp=200ccba5a9086b0ca2a940c7f19ae0964bb8402c;hpb=b75631eb92b06591c86cd4563d753cd8ed7e11b7;p=helm.git diff --git a/helm/matita/library/nat/nth_prime.ma b/helm/matita/library/nat/nth_prime.ma index 200ccba5a..f165705ac 100644 --- a/helm/matita/library/nat/nth_prime.ma +++ b/helm/matita/library/nat/nth_prime.ma @@ -39,11 +39,11 @@ normalize.reflexivity. qed. *) theorem smallest_factor_fact: \forall n:nat. -n < smallest_factor (S (fact n)). +n < smallest_factor (S (n !)). intros. apply not_le_to_lt. -change with smallest_factor (S (fact n)) \le n \to False.intro. -apply not_divides_S_fact n (smallest_factor(S (fact n))). +change with smallest_factor (S (n !)) \le n \to False.intro. +apply not_divides_S_fact n (smallest_factor(S (n !))). apply lt_SO_smallest_factor. simplify.apply le_S_S.apply le_SO_fact. assumption. @@ -52,19 +52,19 @@ simplify.apply le_S_S.apply le_O_n. qed. theorem ex_prime: \forall n. (S O) \le n \to \exists m. -n < m \land m \le (S (fact n)) \land (prime m). +n < m \land m \le (S (n !)) \land (prime m). intros. elim H. apply ex_intro nat ? (S(S O)). split.split.apply le_n (S(S O)). apply le_n (S(S O)).apply primeb_to_Prop (S(S O)). -apply ex_intro nat ? (smallest_factor (S (fact (S n1)))). +apply ex_intro nat ? (smallest_factor (S ((S n1) !))). split.split. apply smallest_factor_fact. apply le_smallest_factor_n. (* Andrea: ancora hint non lo trova *) apply prime_smallest_factor_n. -change with (S(S O)) \le S (fact (S n1)). +change with (S(S O)) \le S ((S n1) !). apply le_S.apply le_SSO_fact. simplify.apply le_S_S.assumption. qed. @@ -74,7 +74,7 @@ match n with [ O \Rightarrow (S(S O)) | (S p) \Rightarrow let previous_prime \def (nth_prime p) in - let upper_bound \def S (fact previous_prime) in + let upper_bound \def S (previous_prime !) in min_aux (upper_bound - (S previous_prime)) upper_bound primeb]. (* it works, but nth_prime 4 takes already a few minutes - @@ -100,13 +100,13 @@ apply primeb_to_Prop (S(S O)). intro. change with let previous_prime \def (nth_prime m) in -let upper_bound \def S (fact previous_prime) in +let upper_bound \def S (previous_prime !) in prime (min_aux (upper_bound - (S previous_prime)) upper_bound primeb). apply primeb_true_to_prime. apply f_min_aux_true. -apply ex_intro nat ? (smallest_factor (S (fact (nth_prime m)))). +apply ex_intro nat ? (smallest_factor (S ((nth_prime m) !))). split.split. -cut S (fact (nth_prime m))-(S (fact (nth_prime m)) - (S (nth_prime m))) = (S (nth_prime m)). +cut S ((nth_prime m) !)-(S ((nth_prime m) !) - (S (nth_prime m))) = (S (nth_prime m)). rewrite > Hcut.exact smallest_factor_fact (nth_prime m). (* maybe we could factorize this proof *) apply plus_to_minus. @@ -117,7 +117,7 @@ apply le_n_fact_n. apply le_smallest_factor_n. apply prime_to_primeb_true. apply prime_smallest_factor_n. -change with (S(S O)) \le S (fact (nth_prime m)). +change with (S(S O)) \le S ((nth_prime m) !). apply le_S_S.apply le_SO_fact. qed. @@ -127,7 +127,7 @@ change with \forall n:nat. (nth_prime n) < (nth_prime (S n)). intros. change with let previous_prime \def (nth_prime n) in -let upper_bound \def S (fact previous_prime) in +let upper_bound \def S (previous_prime !) in (S previous_prime) \le min_aux (upper_bound - (S previous_prime)) upper_bound primeb. intros. cut upper_bound - (upper_bound -(S previous_prime)) = (S previous_prime). @@ -172,9 +172,9 @@ theorem lt_nth_prime_to_not_prime: \forall n,m. nth_prime n < m \to m < nth_prim intros. apply primeb_false_to_not_prime. letin previous_prime \def nth_prime n. -letin upper_bound \def S (fact previous_prime). +letin upper_bound \def S (previous_prime !). apply lt_min_aux_to_false primeb upper_bound (upper_bound - (S previous_prime)) m. -cut S (fact (nth_prime n))-(S (fact (nth_prime n)) - (S (nth_prime n))) = (S (nth_prime n)). +cut S ((nth_prime n) !)-(S ((nth_prime n) !) - (S (nth_prime n))) = (S (nth_prime n)). rewrite > Hcut.assumption. apply plus_to_minus. apply le_minus_m.