X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fmatita%2Flibrary%2Fnat%2Fnth_prime.ma;h=84407538d2a89236188a3f5dab7e5f111f13338a;hb=8b55faddb06e3c4b0a13839210bb49170939b33e;hp=0b8f2bbe207f38580c466e45152f7cffc88cbbb2;hpb=b8c6dd0220fba9ebed2d51d5808790b5949177ea;p=helm.git diff --git a/helm/matita/library/nat/nth_prime.ma b/helm/matita/library/nat/nth_prime.ma index 0b8f2bbe2..84407538d 100644 --- a/helm/matita/library/nat/nth_prime.ma +++ b/helm/matita/library/nat/nth_prime.ma @@ -39,11 +39,11 @@ normalize.reflexivity. qed. *) theorem smallest_factor_fact: \forall n:nat. -n < smallest_factor (S (fact n)). +n < smallest_factor (S n!). intros. apply not_le_to_lt. -change with smallest_factor (S (fact n)) \le n \to False.intro. -apply not_divides_S_fact n (smallest_factor(S (fact n))). +change with smallest_factor (S n!) \le n \to False.intro. +apply not_divides_S_fact n (smallest_factor(S n!)). apply lt_SO_smallest_factor. simplify.apply le_S_S.apply le_SO_fact. assumption. @@ -51,21 +51,20 @@ apply divides_smallest_factor_n. simplify.apply le_S_S.apply le_O_n. qed. -(* mi sembra che il problem sia ex *) -theorem ex_prime: \forall n. (S O) \le n \to ex nat (\lambda m. -n < m \land m \le (S (fact n)) \land (prime m)). +theorem ex_prime: \forall n. (S O) \le n \to \exists m. +n < m \land m \le S n! \land (prime m). intros. elim H. apply ex_intro nat ? (S(S O)). split.split.apply le_n (S(S O)). apply le_n (S(S O)).apply primeb_to_Prop (S(S O)). -apply ex_intro nat ? (smallest_factor (S (fact (S n1)))). +apply ex_intro nat ? (smallest_factor (S (S n1)!)). split.split. apply smallest_factor_fact. apply le_smallest_factor_n. -(* ancora hint non lo trova *) +(* Andrea: ancora hint non lo trova *) apply prime_smallest_factor_n. -change with (S(S O)) \le S (fact (S n1)). +change with (S(S O)) \le S (S n1)!. apply le_S.apply le_SSO_fact. simplify.apply le_S_S.assumption. qed. @@ -75,7 +74,7 @@ match n with [ O \Rightarrow (S(S O)) | (S p) \Rightarrow let previous_prime \def (nth_prime p) in - let upper_bound \def S (fact previous_prime) in + let upper_bound \def S previous_prime! in min_aux (upper_bound - (S previous_prime)) upper_bound primeb]. (* it works, but nth_prime 4 takes already a few minutes - @@ -99,27 +98,25 @@ apply nat_case n. change with prime (S(S O)). apply primeb_to_Prop (S(S O)). intro. -(* ammirare la resa del letin !! *) change with let previous_prime \def (nth_prime m) in -let upper_bound \def S (fact previous_prime) in +let upper_bound \def S previous_prime! in prime (min_aux (upper_bound - (S previous_prime)) upper_bound primeb). apply primeb_true_to_prime. apply f_min_aux_true. -apply ex_intro nat ? (smallest_factor (S (fact (nth_prime m)))). +apply ex_intro nat ? (smallest_factor (S (nth_prime m)!)). split.split. -cut S (fact (nth_prime m))-(S (fact (nth_prime m)) - (S (nth_prime m))) = (S (nth_prime m)). +cut S (nth_prime m)!-(S (nth_prime m)! - (S (nth_prime m))) = (S (nth_prime m)). rewrite > Hcut.exact smallest_factor_fact (nth_prime m). (* maybe we could factorize this proof *) apply plus_to_minus. -apply le_minus_m. apply plus_minus_m_m. apply le_S_S. apply le_n_fact_n. apply le_smallest_factor_n. apply prime_to_primeb_true. apply prime_smallest_factor_n. -change with (S(S O)) \le S (fact (nth_prime m)). +change with (S(S O)) \le S (nth_prime m)!. apply le_S_S.apply le_SO_fact. qed. @@ -129,14 +126,13 @@ change with \forall n:nat. (nth_prime n) < (nth_prime (S n)). intros. change with let previous_prime \def (nth_prime n) in -let upper_bound \def S (fact previous_prime) in +let upper_bound \def S previous_prime! in (S previous_prime) \le min_aux (upper_bound - (S previous_prime)) upper_bound primeb. intros. cut upper_bound - (upper_bound -(S previous_prime)) = (S previous_prime). rewrite < Hcut in \vdash (? % ?). apply le_min_aux. apply plus_to_minus. -apply le_minus_m. apply plus_minus_m_m. apply le_S_S. apply le_n_fact_n. @@ -163,23 +159,22 @@ qed. theorem ex_m_le_n_nth_prime_m: \forall n: nat. nth_prime O \le n \to -ex nat (\lambda m. nth_prime m \le n \land n < nth_prime (S m)). +\exists m. nth_prime m \le n \land n < nth_prime (S m). intros. apply increasing_to_le2. exact lt_nth_prime_n_nth_prime_Sn.assumption. qed. theorem lt_nth_prime_to_not_prime: \forall n,m. nth_prime n < m \to m < nth_prime (S n) -\to \not (prime m). +\to \lnot (prime m). intros. apply primeb_false_to_not_prime. letin previous_prime \def nth_prime n. -letin upper_bound \def S (fact previous_prime). +letin upper_bound \def S previous_prime!. apply lt_min_aux_to_false primeb upper_bound (upper_bound - (S previous_prime)) m. -cut S (fact (nth_prime n))-(S (fact (nth_prime n)) - (S (nth_prime n))) = (S (nth_prime n)). +cut S (nth_prime n)!-(S (nth_prime n)! - (S (nth_prime n))) = (S (nth_prime n)). rewrite > Hcut.assumption. apply plus_to_minus. -apply le_minus_m. apply plus_minus_m_m. apply le_S_S. apply le_n_fact_n. @@ -188,9 +183,9 @@ qed. (* nth_prime enumerates all primes *) theorem prime_to_nth_prime : \forall p:nat. prime p \to -ex nat (\lambda i:nat. nth_prime i = p). +\exists i. nth_prime i = p. intros. -cut ex nat (\lambda m. nth_prime m \le p \land p < nth_prime (S m)). +cut \exists m. nth_prime m \le p \land p < nth_prime (S m). elim Hcut.elim H1. cut nth_prime a < p \lor nth_prime a = p. elim Hcut1.