X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fmatita%2Flibrary%2Fnat%2Fprimes.ma;fp=helm%2Fmatita%2Flibrary%2Fnat%2Fprimes.ma;h=50b7d1221bfdca8211184a664add8c73aa392bd5;hb=792b5d29ebae8f917043d9dd226692919b5d6ca1;hp=0000000000000000000000000000000000000000;hpb=a14a8c7637fd0b95e9d4deccb20c6abc98e8f953;p=helm.git diff --git a/helm/matita/library/nat/primes.ma b/helm/matita/library/nat/primes.ma new file mode 100644 index 000000000..50b7d1221 --- /dev/null +++ b/helm/matita/library/nat/primes.ma @@ -0,0 +1,591 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| A.Asperti, C.Sacerdoti Coen, *) +(* ||A|| E.Tassi, S.Zacchiroli *) +(* \ / *) +(* \ / Matita is distributed under the terms of the *) +(* v GNU Lesser General Public License Version 2.1 *) +(* *) +(**************************************************************************) + +set "baseuri" "cic:/matita/nat/primes". + +include "nat/div_and_mod.ma". +include "nat/minimization.ma". +include "nat/sigma_and_pi.ma". +include "nat/factorial.ma". + +inductive divides (n,m:nat) : Prop \def +witness : \forall p:nat.m = times n p \to divides n m. + +interpretation "divides" 'divides n m = (cic:/matita/nat/primes/divides.ind#xpointer(1/1) n m). +interpretation "not divides" 'ndivides n m = + (cic:/matita/logic/connectives/Not.con (cic:/matita/nat/primes/divides.ind#xpointer(1/1) n m)). + +theorem reflexive_divides : reflexive nat divides. +unfold reflexive. +intros. +exact (witness x x (S O) (times_n_SO x)). +qed. + +theorem divides_to_div_mod_spec : +\forall n,m. O < n \to n \divides m \to div_mod_spec m n (m / n) O. +intros.elim H1.rewrite > H2. +constructor 1.assumption. +apply (lt_O_n_elim n H).intros. +rewrite < plus_n_O. +rewrite > div_times.apply sym_times. +qed. + +theorem div_mod_spec_to_divides : +\forall n,m,p. div_mod_spec m n p O \to n \divides m. +intros.elim H. +apply (witness n m p). +rewrite < sym_times. +rewrite > (plus_n_O (p*n)).assumption. +qed. + +theorem divides_to_mod_O: +\forall n,m. O < n \to n \divides m \to (m \mod n) = O. +intros.apply (div_mod_spec_to_eq2 m n (m / n) (m \mod n) (m / n) O). +apply div_mod_spec_div_mod.assumption. +apply divides_to_div_mod_spec.assumption.assumption. +qed. + +theorem mod_O_to_divides: +\forall n,m. O< n \to (m \mod n) = O \to n \divides m. +intros. +apply (witness n m (m / n)). +rewrite > (plus_n_O (n * (m / n))). +rewrite < H1. +rewrite < sym_times. +(* Andrea: perche' hint non lo trova ?*) +apply div_mod. +assumption. +qed. + +theorem divides_n_O: \forall n:nat. n \divides O. +intro. apply (witness n O O).apply times_n_O. +qed. + +theorem divides_n_n: \forall n:nat. n \divides n. +intro. apply (witness n n (S O)).apply times_n_SO. +qed. + +theorem divides_SO_n: \forall n:nat. (S O) \divides n. +intro. apply (witness (S O) n n). simplify.apply plus_n_O. +qed. + +theorem divides_plus: \forall n,p,q:nat. +n \divides p \to n \divides q \to n \divides p+q. +intros. +elim H.elim H1. apply (witness n (p+q) (n2+n1)). +rewrite > H2.rewrite > H3.apply sym_eq.apply distr_times_plus. +qed. + +theorem divides_minus: \forall n,p,q:nat. +divides n p \to divides n q \to divides n (p-q). +intros. +elim H.elim H1. apply (witness n (p-q) (n2-n1)). +rewrite > H2.rewrite > H3.apply sym_eq.apply distr_times_minus. +qed. + +theorem divides_times: \forall n,m,p,q:nat. +n \divides p \to m \divides q \to n*m \divides p*q. +intros. +elim H.elim H1. apply (witness (n*m) (p*q) (n2*n1)). +rewrite > H2.rewrite > H3. +apply (trans_eq nat ? (n*(m*(n2*n1)))). +apply (trans_eq nat ? (n*(n2*(m*n1)))). +apply assoc_times. +apply eq_f. +apply (trans_eq nat ? ((n2*m)*n1)). +apply sym_eq. apply assoc_times. +rewrite > (sym_times n2 m).apply assoc_times. +apply sym_eq. apply assoc_times. +qed. + +theorem transitive_divides: transitive ? divides. +unfold. +intros. +elim H.elim H1. apply (witness x z (n2*n)). +rewrite > H3.rewrite > H2. +apply assoc_times. +qed. + +variant trans_divides: \forall n,m,p. + n \divides m \to m \divides p \to n \divides p \def transitive_divides. + +theorem eq_mod_to_divides:\forall n,m,p. O< p \to +mod n p = mod m p \to divides p (n-m). +intros. +cut (n \le m \or \not n \le m). +elim Hcut. +cut (n-m=O). +rewrite > Hcut1. +apply (witness p O O). +apply times_n_O. +apply eq_minus_n_m_O. +assumption. +apply (witness p (n-m) ((div n p)-(div m p))). +rewrite > distr_times_minus. +rewrite > sym_times. +rewrite > (sym_times p). +cut ((div n p)*p = n - (mod n p)). +rewrite > Hcut1. +rewrite > eq_minus_minus_minus_plus. +rewrite > sym_plus. +rewrite > H1. +rewrite < div_mod.reflexivity. +assumption. +apply sym_eq. +apply plus_to_minus. +rewrite > sym_plus. +apply div_mod. +assumption. +apply (decidable_le n m). +qed. + +theorem antisymmetric_divides: antisymmetric nat divides. +unfold antisymmetric.intros.elim H. elim H1. +apply (nat_case1 n2).intro. +rewrite > H3.rewrite > H2.rewrite > H4. +rewrite < times_n_O.reflexivity. +intros. +apply (nat_case1 n).intro. +rewrite > H2.rewrite > H3.rewrite > H5. +rewrite < times_n_O.reflexivity. +intros. +apply antisymmetric_le. +rewrite > H2.rewrite > times_n_SO in \vdash (? % ?). +apply le_times_r.rewrite > H4.apply le_S_S.apply le_O_n. +rewrite > H3.rewrite > times_n_SO in \vdash (? % ?). +apply le_times_r.rewrite > H5.apply le_S_S.apply le_O_n. +qed. + +(* divides le *) +theorem divides_to_le : \forall n,m. O < m \to n \divides m \to n \le m. +intros. elim H1.rewrite > H2.cut (O < n2). +apply (lt_O_n_elim n2 Hcut).intro.rewrite < sym_times. +simplify.rewrite < sym_plus. +apply le_plus_n. +elim (le_to_or_lt_eq O n2). +assumption. +absurd (O H2.rewrite < H3.rewrite < times_n_O. +apply (not_le_Sn_n O). +apply le_O_n. +qed. + +theorem divides_to_lt_O : \forall n,m. O < m \to n \divides m \to O < n. +intros.elim H1. +elim (le_to_or_lt_eq O n (le_O_n n)). +assumption. +rewrite < H3.absurd (O < m).assumption. +rewrite > H2.rewrite < H3. +simplify.exact (not_le_Sn_n O). +qed. + +(* boolean divides *) +definition divides_b : nat \to nat \to bool \def +\lambda n,m :nat. (eqb (m \mod n) O). + +theorem divides_b_to_Prop : +\forall n,m:nat. O < n \to +match divides_b n m with +[ true \Rightarrow n \divides m +| false \Rightarrow n \ndivides m]. +intros. +change with +match eqb (m \mod n) O with +[ true \Rightarrow n \divides m +| false \Rightarrow n \ndivides m]. +apply eqb_elim. +intro.simplify.apply mod_O_to_divides.assumption.assumption. +intro.simplify.unfold Not.intro.apply H1.apply divides_to_mod_O.assumption.assumption. +qed. + +theorem divides_b_true_to_divides : +\forall n,m:nat. O < n \to +(divides_b n m = true ) \to n \divides m. +intros. +change with +match true with +[ true \Rightarrow n \divides m +| false \Rightarrow n \ndivides m]. +rewrite < H1.apply divides_b_to_Prop. +assumption. +qed. + +theorem divides_b_false_to_not_divides : +\forall n,m:nat. O < n \to +(divides_b n m = false ) \to n \ndivides m. +intros. +change with +match false with +[ true \Rightarrow n \divides m +| false \Rightarrow n \ndivides m]. +rewrite < H1.apply divides_b_to_Prop. +assumption. +qed. + +theorem decidable_divides: \forall n,m:nat.O < n \to +decidable (n \divides m). +intros.change with ((n \divides m) \lor n \ndivides m). +cut +(match divides_b n m with +[ true \Rightarrow n \divides m +| false \Rightarrow n \ndivides m] \to n \divides m \lor n \ndivides m). +apply Hcut.apply divides_b_to_Prop.assumption. +elim (divides_b n m).left.apply H1.right.apply H1. +qed. + +theorem divides_to_divides_b_true : \forall n,m:nat. O < n \to +n \divides m \to divides_b n m = true. +intros. +cut (match (divides_b n m) with +[ true \Rightarrow n \divides m +| false \Rightarrow n \ndivides m] \to ((divides_b n m) = true)). +apply Hcut.apply divides_b_to_Prop.assumption. +elim (divides_b n m).reflexivity. +absurd (n \divides m).assumption.assumption. +qed. + +theorem not_divides_to_divides_b_false: \forall n,m:nat. O < n \to +\lnot(n \divides m) \to (divides_b n m) = false. +intros. +cut (match (divides_b n m) with +[ true \Rightarrow n \divides m +| false \Rightarrow n \ndivides m] \to ((divides_b n m) = false)). +apply Hcut.apply divides_b_to_Prop.assumption. +elim (divides_b n m). +absurd (n \divides m).assumption.assumption. +reflexivity. +qed. + +(* divides and pi *) +theorem divides_f_pi_f : \forall f:nat \to nat.\forall n,m,i:nat. +m \le i \to i \le n+m \to f i \divides pi n f m. +intros 5.elim n.simplify. +cut (i = m).rewrite < Hcut.apply divides_n_n. +apply antisymmetric_le.assumption.assumption. +simplify. +cut (i < S n1+m \lor i = S n1 + m). +elim Hcut. +apply (transitive_divides ? (pi n1 f m)). +apply H1.apply le_S_S_to_le. assumption. +apply (witness ? ? (f (S n1+m))).apply sym_times. +rewrite > H3. +apply (witness ? ? (pi n1 f m)).reflexivity. +apply le_to_or_lt_eq.assumption. +qed. + +(* +theorem mod_S_pi: \forall f:nat \to nat.\forall n,i:nat. +i < n \to (S O) < (f i) \to (S (pi n f)) \mod (f i) = (S O). +intros.cut (pi n f) \mod (f i) = O. +rewrite < Hcut. +apply mod_S.apply trans_lt O (S O).apply le_n (S O).assumption. +rewrite > Hcut.assumption. +apply divides_to_mod_O.apply trans_lt O (S O).apply le_n (S O).assumption. +apply divides_f_pi_f.assumption. +qed. +*) + +(* divides and fact *) +theorem divides_fact : \forall n,i:nat. +O < i \to i \le n \to i \divides n!. +intros 3.elim n.absurd (O H3. +apply (witness ? ? n1!).reflexivity. +qed. + +theorem mod_S_fact: \forall n,i:nat. +(S O) < i \to i \le n \to (S n!) \mod i = (S O). +intros.cut (n! \mod i = O). +rewrite < Hcut. +apply mod_S.apply (trans_lt O (S O)).apply (le_n (S O)).assumption. +rewrite > Hcut.assumption. +apply divides_to_mod_O.apply (trans_lt O (S O)).apply (le_n (S O)).assumption. +apply divides_fact.apply (trans_lt O (S O)).apply (le_n (S O)).assumption. +assumption. +qed. + +theorem not_divides_S_fact: \forall n,i:nat. +(S O) < i \to i \le n \to i \ndivides S n!. +intros. +apply divides_b_false_to_not_divides. +apply (trans_lt O (S O)).apply (le_n (S O)).assumption. +change with ((eqb ((S n!) \mod i) O) = false). +rewrite > mod_S_fact.simplify.reflexivity. +assumption.assumption. +qed. + +(* prime *) +definition prime : nat \to Prop \def +\lambda n:nat. (S O) < n \land +(\forall m:nat. m \divides n \to (S O) < m \to m = n). + +theorem not_prime_O: \lnot (prime O). +unfold Not.unfold prime.intro.elim H.apply (not_le_Sn_O (S O) H1). +qed. + +theorem not_prime_SO: \lnot (prime (S O)). +unfold Not.unfold prime.intro.elim H.apply (not_le_Sn_n (S O) H1). +qed. + +(* smallest factor *) +definition smallest_factor : nat \to nat \def +\lambda n:nat. +match n with +[ O \Rightarrow O +| (S p) \Rightarrow + match p with + [ O \Rightarrow (S O) + | (S q) \Rightarrow min_aux q (S(S q)) (\lambda m.(eqb ((S(S q)) \mod m) O))]]. + +(* it works ! +theorem example1 : smallest_prime_factor (S(S(S O))) = (S(S(S O))). +normalize.reflexivity. +qed. + +theorem example2: smallest_prime_factor (S(S(S(S O)))) = (S(S O)). +normalize.reflexivity. +qed. + +theorem example3 : smallest_prime_factor (S(S(S(S(S(S(S O))))))) = (S(S(S(S(S(S(S O))))))). +simplify.reflexivity. +qed. *) + +theorem lt_SO_smallest_factor: +\forall n:nat. (S O) < n \to (S O) < (smallest_factor n). +intro. +apply (nat_case n).intro.apply False_ind.apply (not_le_Sn_O (S O) H). +intro.apply (nat_case m).intro. apply False_ind.apply (not_le_Sn_n (S O) H). +intros. +change with +(S O < min_aux m1 (S(S m1)) (\lambda m.(eqb ((S(S m1)) \mod m) O))). +apply (lt_to_le_to_lt ? (S (S O))). +apply (le_n (S(S O))). +cut ((S(S O)) = (S(S m1)) - m1). +rewrite > Hcut. +apply le_min_aux. +apply sym_eq.apply plus_to_minus. +rewrite < sym_plus.simplify.reflexivity. +qed. + +theorem lt_O_smallest_factor: \forall n:nat. O < n \to O < (smallest_factor n). +intro. +apply (nat_case n).intro.apply False_ind.apply (not_le_Sn_n O H). +intro.apply (nat_case m).intro. +simplify.unfold lt.apply le_n. +intros.apply (trans_lt ? (S O)). +unfold lt.apply le_n. +apply lt_SO_smallest_factor.unfold lt. apply le_S_S. +apply le_S_S.apply le_O_n. +qed. + +theorem divides_smallest_factor_n : +\forall n:nat. O < n \to smallest_factor n \divides n. +intro. +apply (nat_case n).intro.apply False_ind.apply (not_le_Sn_O O H). +intro.apply (nat_case m).intro. simplify. +apply (witness ? ? (S O)). simplify.reflexivity. +intros. +apply divides_b_true_to_divides. +apply (lt_O_smallest_factor ? H). +change with +(eqb ((S(S m1)) \mod (min_aux m1 (S(S m1)) + (\lambda m.(eqb ((S(S m1)) \mod m) O)))) O = true). +apply f_min_aux_true. +apply (ex_intro nat ? (S(S m1))). +split.split. +apply le_minus_m.apply le_n. +rewrite > mod_n_n.reflexivity. +apply (trans_lt ? (S O)).apply (le_n (S O)).unfold lt. +apply le_S_S.apply le_S_S.apply le_O_n. +qed. + +theorem le_smallest_factor_n : +\forall n:nat. smallest_factor n \le n. +intro.apply (nat_case n).simplify.reflexivity. +intro.apply (nat_case m).simplify.reflexivity. +intro.apply divides_to_le. +unfold lt.apply le_S_S.apply le_O_n. +apply divides_smallest_factor_n. +unfold lt.apply le_S_S.apply le_O_n. +qed. + +theorem lt_smallest_factor_to_not_divides: \forall n,i:nat. +(S O) < n \to (S O) < i \to i < (smallest_factor n) \to i \ndivides n. +intros 2. +apply (nat_case n).intro.apply False_ind.apply (not_le_Sn_O (S O) H). +intro.apply (nat_case m).intro. apply False_ind.apply (not_le_Sn_n (S O) H). +intros. +apply divides_b_false_to_not_divides. +apply (trans_lt O (S O)).apply (le_n (S O)).assumption. +change with ((eqb ((S(S m1)) \mod i) O) = false). +apply (lt_min_aux_to_false +(\lambda i:nat.eqb ((S(S m1)) \mod i) O) (S(S m1)) m1 i). +cut ((S(S O)) = (S(S m1)-m1)). +rewrite < Hcut.exact H1. +apply sym_eq. apply plus_to_minus. +rewrite < sym_plus.simplify.reflexivity. +exact H2. +qed. + +theorem prime_smallest_factor_n : +\forall n:nat. (S O) < n \to prime (smallest_factor n). +intro. change with ((S(S O)) \le n \to (S O) < (smallest_factor n) \land +(\forall m:nat. m \divides smallest_factor n \to (S O) < m \to m = (smallest_factor n))). +intro.split. +apply lt_SO_smallest_factor.assumption. +intros. +cut (le m (smallest_factor n)). +elim (le_to_or_lt_eq m (smallest_factor n) Hcut). +absurd (m \divides n). +apply (transitive_divides m (smallest_factor n)). +assumption. +apply divides_smallest_factor_n. +apply (trans_lt ? (S O)). unfold lt. apply le_n. exact H. +apply lt_smallest_factor_to_not_divides. +exact H.assumption.assumption.assumption. +apply divides_to_le. +apply (trans_lt O (S O)). +apply (le_n (S O)). +apply lt_SO_smallest_factor. +exact H. +assumption. +qed. + +theorem prime_to_smallest_factor: \forall n. prime n \to +smallest_factor n = n. +intro.apply (nat_case n).intro.apply False_ind.apply (not_prime_O H). +intro.apply (nat_case m).intro.apply False_ind.apply (not_prime_SO H). +intro. +change with +((S O) < (S(S m1)) \land +(\forall m:nat. m \divides S(S m1) \to (S O) < m \to m = (S(S m1))) \to +smallest_factor (S(S m1)) = (S(S m1))). +intro.elim H.apply H2. +apply divides_smallest_factor_n. +apply (trans_lt ? (S O)).unfold lt. apply le_n.assumption. +apply lt_SO_smallest_factor. +assumption. +qed. + +(* a number n > O is prime iff its smallest factor is n *) +definition primeb \def \lambda n:nat. +match n with +[ O \Rightarrow false +| (S p) \Rightarrow + match p with + [ O \Rightarrow false + | (S q) \Rightarrow eqb (smallest_factor (S(S q))) (S(S q))]]. + +(* it works! +theorem example4 : primeb (S(S(S O))) = true. +normalize.reflexivity. +qed. + +theorem example5 : primeb (S(S(S(S(S(S O)))))) = false. +normalize.reflexivity. +qed. + +theorem example6 : primeb (S(S(S(S((S(S(S(S(S(S(S O)))))))))))) = true. +normalize.reflexivity. +qed. + +theorem example7 : primeb (S(S(S(S(S(S((S(S(S(S((S(S(S(S(S(S(S O))))))))))))))))))) = true. +normalize.reflexivity. +qed. *) + +theorem primeb_to_Prop: \forall n. +match primeb n with +[ true \Rightarrow prime n +| false \Rightarrow \lnot (prime n)]. +intro. +apply (nat_case n).simplify.unfold Not.unfold prime.intro.elim H.apply (not_le_Sn_O (S O) H1). +intro.apply (nat_case m).simplify.unfold Not.unfold prime.intro.elim H.apply (not_le_Sn_n (S O) H1). +intro. +change with +match eqb (smallest_factor (S(S m1))) (S(S m1)) with +[ true \Rightarrow prime (S(S m1)) +| false \Rightarrow \lnot (prime (S(S m1)))]. +apply (eqb_elim (smallest_factor (S(S m1))) (S(S m1))). +intro.change with (prime (S(S m1))). +rewrite < H. +apply prime_smallest_factor_n. +unfold lt.apply le_S_S.apply le_S_S.apply le_O_n. +intro.change with (\lnot (prime (S(S m1)))). +change with (prime (S(S m1)) \to False). +intro.apply H. +apply prime_to_smallest_factor. +assumption. +qed. + +theorem primeb_true_to_prime : \forall n:nat. +primeb n = true \to prime n. +intros.change with +match true with +[ true \Rightarrow prime n +| false \Rightarrow \lnot (prime n)]. +rewrite < H. +apply primeb_to_Prop. +qed. + +theorem primeb_false_to_not_prime : \forall n:nat. +primeb n = false \to \lnot (prime n). +intros.change with +match false with +[ true \Rightarrow prime n +| false \Rightarrow \lnot (prime n)]. +rewrite < H. +apply primeb_to_Prop. +qed. + +theorem decidable_prime : \forall n:nat.decidable (prime n). +intro.change with ((prime n) \lor \lnot (prime n)). +cut +(match primeb n with +[ true \Rightarrow prime n +| false \Rightarrow \lnot (prime n)] \to (prime n) \lor \lnot (prime n)). +apply Hcut.apply primeb_to_Prop. +elim (primeb n).left.apply H.right.apply H. +qed. + +theorem prime_to_primeb_true: \forall n:nat. +prime n \to primeb n = true. +intros. +cut (match (primeb n) with +[ true \Rightarrow prime n +| false \Rightarrow \lnot (prime n)] \to ((primeb n) = true)). +apply Hcut.apply primeb_to_Prop. +elim (primeb n).reflexivity. +absurd (prime n).assumption.assumption. +qed. + +theorem not_prime_to_primeb_false: \forall n:nat. +\lnot(prime n) \to primeb n = false. +intros. +cut (match (primeb n) with +[ true \Rightarrow prime n +| false \Rightarrow \lnot (prime n)] \to ((primeb n) = false)). +apply Hcut.apply primeb_to_Prop. +elim (primeb n). +absurd (prime n).assumption.assumption. +reflexivity. +qed. +