X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fmatita%2Flibrary%2Fnat%2Fprimes.ma;h=6913562439f6e0f45d195241fa7fcecd8d3bc353;hb=aeb7f0539398561dc84cadf38df14a051dd1ba75;hp=644cae978f58a419e9d2d53ca2188b7fbcbe1322;hpb=78044035b4419e569df0d7f6a7f96fa32d21a19d;p=helm.git diff --git a/helm/matita/library/nat/primes.ma b/helm/matita/library/nat/primes.ma index 644cae978..691356243 100644 --- a/helm/matita/library/nat/primes.ma +++ b/helm/matita/library/nat/primes.ma @@ -22,6 +22,10 @@ include "nat/factorial.ma". inductive divides (n,m:nat) : Prop \def witness : \forall p:nat.m = times n p \to divides n m. +interpretation "divides" 'divides n m = (cic:/matita/nat/primes/divides.ind#xpointer(1/1) n m). +interpretation "not divides" 'ndivides n m = + (cic:/matita/logic/connectives/Not.con (cic:/matita/nat/primes/divides.ind#xpointer(1/1) n m)). + theorem reflexive_divides : reflexive nat divides. simplify. intros. @@ -29,7 +33,7 @@ exact witness x x (S O) (times_n_SO x). qed. theorem divides_to_div_mod_spec : -\forall n,m. O < n \to divides n m \to div_mod_spec m n (div m n) O. +\forall n,m. O < n \to n \divides m \to div_mod_spec m n (m / n) O. intros.elim H1.rewrite > H2. constructor 1.assumption. apply lt_O_n_elim n H.intros. @@ -37,8 +41,8 @@ rewrite < plus_n_O. rewrite > div_times.apply sym_times. qed. -theorem div_mod_spec_to_div : -\forall n,m,p. div_mod_spec m n p O \to divides n m. +theorem div_mod_spec_to_divides : +\forall n,m,p. div_mod_spec m n p O \to n \divides m. intros.elim H. apply witness n m p. rewrite < sym_times. @@ -46,34 +50,38 @@ rewrite > plus_n_O (p*n).assumption. qed. theorem divides_to_mod_O: -\forall n,m. O < n \to divides n m \to (mod m n) = O. -intros.apply div_mod_spec_to_eq2 m n (div m n) (mod m n) (div m n) O. +\forall n,m. O < n \to n \divides m \to (m \mod n) = O. +intros.apply div_mod_spec_to_eq2 m n (m / n) (m \mod n) (m / n) O. apply div_mod_spec_div_mod.assumption. apply divides_to_div_mod_spec.assumption.assumption. qed. theorem mod_O_to_divides: -\forall n,m. O< n \to (mod m n) = O \to divides n m. +\forall n,m. O< n \to (m \mod n) = O \to n \divides m. intros. -apply witness n m (div m n). -rewrite > plus_n_O (n*div m n). +apply witness n m (m / n). +rewrite > plus_n_O (n * (m / n)). rewrite < H1. rewrite < sym_times. -(* perche' hint non lo trova ?*) +(* Andrea: perche' hint non lo trova ?*) apply div_mod. assumption. qed. -theorem divides_n_O: \forall n:nat. divides n O. +theorem divides_n_O: \forall n:nat. n \divides O. intro. apply witness n O O.apply times_n_O. qed. -theorem divides_SO_n: \forall n:nat. divides (S O) n. +theorem divides_n_n: \forall n:nat. n \divides n. +intro. apply witness n n (S O).apply times_n_SO. +qed. + +theorem divides_SO_n: \forall n:nat. (S O) \divides n. intro. apply witness (S O) n n. simplify.apply plus_n_O. qed. theorem divides_plus: \forall n,p,q:nat. -divides n p \to divides n q \to divides n (p+q). +n \divides p \to n \divides q \to n \divides p+q. intros. elim H.elim H1. apply witness n (p+q) (n2+n1). rewrite > H2.rewrite > H3.apply sym_eq.apply distr_times_plus. @@ -87,7 +95,7 @@ rewrite > H2.rewrite > H3.apply sym_eq.apply distr_times_minus. qed. theorem divides_times: \forall n,m,p,q:nat. -divides n p \to divides m q \to divides (n*m) (p*q). +n \divides p \to m \divides q \to n*m \divides p*q. intros. elim H.elim H1. apply witness (n*m) (p*q) (n2*n1). rewrite > H2.rewrite > H3. @@ -101,16 +109,49 @@ rewrite > sym_times n2 m.apply assoc_times. apply sym_eq. apply assoc_times. qed. -theorem transitive_divides: \forall n,m,p. -divides n m \to divides m p \to divides n p. +theorem transitive_divides: transitive ? divides. +unfold. intros. -elim H.elim H1. apply witness n p (n2*n1). +elim H.elim H1. apply witness x z (n2*n). rewrite > H3.rewrite > H2. apply assoc_times. qed. +variant trans_divides: \forall n,m,p. + n \divides m \to m \divides p \to n \divides p \def transitive_divides. + +theorem eq_mod_to_divides:\forall n,m,p. O< p \to +mod n p = mod m p \to divides p (n-m). +intros. +cut n \le m \or \not n \le m. +elim Hcut. +cut n-m=O. +rewrite > Hcut1. +apply witness p O O. +apply times_n_O. +apply eq_minus_n_m_O. +assumption. +apply witness p (n-m) ((div n p)-(div m p)). +rewrite > distr_times_minus. +rewrite > sym_times. +rewrite > sym_times p. +cut (div n p)*p = n - (mod n p). +rewrite > Hcut1. +rewrite > eq_minus_minus_minus_plus. +rewrite > sym_plus. +rewrite > H1. +rewrite < div_mod.reflexivity. +assumption. +apply sym_eq. +apply plus_to_minus. +rewrite > sym_plus. +apply div_mod. +assumption. +apply decidable_le n m. +qed. + (* divides le *) -theorem divides_to_le : \forall n,m. O < m \to divides n m \to n \le m. +theorem divides_to_le : \forall n,m. O < m \to n \divides m \to n \le m. intros. elim H1.rewrite > H2.cut O < n2. apply lt_O_n_elim n2 Hcut.intro.rewrite < sym_times. simplify.rewrite < sym_plus. @@ -123,7 +164,7 @@ apply not_le_Sn_n O. apply le_O_n. qed. -theorem divides_to_lt_O : \forall n,m. O < m \to divides n m \to O < n. +theorem divides_to_lt_O : \forall n,m. O < m \to n \divides m \to O < n. intros.elim H1. elim le_to_or_lt_eq O n (le_O_n n). assumption. @@ -134,18 +175,18 @@ qed. (* boolean divides *) definition divides_b : nat \to nat \to bool \def -\lambda n,m :nat. (eqb (mod m n) O). +\lambda n,m :nat. (eqb (m \mod n) O). theorem divides_b_to_Prop : \forall n,m:nat. O < n \to match divides_b n m with -[ true \Rightarrow divides n m -| false \Rightarrow \lnot (divides n m)]. +[ true \Rightarrow n \divides m +| false \Rightarrow n \ndivides m]. intros. change with -match eqb (mod m n) O with -[ true \Rightarrow divides n m -| false \Rightarrow \lnot (divides n m)]. +match eqb (m \mod n) O with +[ true \Rightarrow n \divides m +| false \Rightarrow n \ndivides m]. apply eqb_elim. intro.simplify.apply mod_O_to_divides.assumption.assumption. intro.simplify.intro.apply H1.apply divides_to_mod_O.assumption.assumption. @@ -153,107 +194,110 @@ qed. theorem divides_b_true_to_divides : \forall n,m:nat. O < n \to -(divides_b n m = true ) \to divides n m. +(divides_b n m = true ) \to n \divides m. intros. change with match true with -[ true \Rightarrow divides n m -| false \Rightarrow \lnot (divides n m)]. +[ true \Rightarrow n \divides m +| false \Rightarrow n \ndivides m]. rewrite < H1.apply divides_b_to_Prop. assumption. qed. theorem divides_b_false_to_not_divides : \forall n,m:nat. O < n \to -(divides_b n m = false ) \to \lnot (divides n m). +(divides_b n m = false ) \to n \ndivides m. intros. change with match false with -[ true \Rightarrow divides n m -| false \Rightarrow \lnot (divides n m)]. +[ true \Rightarrow n \divides m +| false \Rightarrow n \ndivides m]. rewrite < H1.apply divides_b_to_Prop. assumption. qed. theorem decidable_divides: \forall n,m:nat.O < n \to -decidable (divides n m). -intros.change with (divides n m) \lor \not (divides n m). +decidable (n \divides m). +intros.change with (n \divides m) \lor n \ndivides m. cut match divides_b n m with -[ true \Rightarrow divides n m -| false \Rightarrow \not (divides n m)] \to (divides n m) \lor \not (divides n m). +[ true \Rightarrow n \divides m +| false \Rightarrow n \ndivides m] \to n \divides m \lor n \ndivides m. apply Hcut.apply divides_b_to_Prop.assumption. elim (divides_b n m).left.apply H1.right.apply H1. qed. theorem divides_to_divides_b_true : \forall n,m:nat. O < n \to -divides n m \to divides_b n m = true. +n \divides m \to divides_b n m = true. intros. cut match (divides_b n m) with -[ true \Rightarrow (divides n m) -| false \Rightarrow \not (divides n m)] \to ((divides_b n m) = true). +[ true \Rightarrow n \divides m +| false \Rightarrow n \ndivides m] \to ((divides_b n m) = true). apply Hcut.apply divides_b_to_Prop.assumption. elim divides_b n m.reflexivity. -absurd (divides n m).assumption.assumption. +absurd (n \divides m).assumption.assumption. qed. theorem not_divides_to_divides_b_false: \forall n,m:nat. O < n \to -\not(divides n m) \to (divides_b n m) = false. +\lnot(n \divides m) \to (divides_b n m) = false. intros. cut match (divides_b n m) with -[ true \Rightarrow (divides n m) -| false \Rightarrow \not (divides n m)] \to ((divides_b n m) = false). +[ true \Rightarrow n \divides m +| false \Rightarrow n \ndivides m] \to ((divides_b n m) = false). apply Hcut.apply divides_b_to_Prop.assumption. elim divides_b n m. -absurd (divides n m).assumption.assumption. +absurd (n \divides m).assumption.assumption. reflexivity. qed. (* divides and pi *) -theorem divides_f_pi_f : \forall f:nat \to nat.\forall n,i:nat. -i < n \to divides (f i) (pi n f). -intros 3.elim n.apply False_ind.apply not_le_Sn_O i H. +theorem divides_f_pi_f : \forall f:nat \to nat.\forall n,m,i:nat. +m \le i \to i \le n+m \to f i \divides pi n f m. +intros 5.elim n.simplify. +cut i = m.rewrite < Hcut.apply divides_n_n. +apply antisymmetric_le.assumption.assumption. simplify. -apply le_n_Sm_elim (S i) n1 H1. -intro. -apply transitive_divides ? (pi n1 f). -apply H.simplify.apply le_S_S_to_le. assumption. -apply witness ? ? (f n1).apply sym_times. -intro.cut i = n1. -rewrite > Hcut. -apply witness ? ? (pi n1 f).reflexivity. -apply inj_S.assumption. +cut i < S n1+m \lor i = S n1 + m. +elim Hcut. +apply transitive_divides ? (pi n1 f m). +apply H1.apply le_S_S_to_le. assumption. +apply witness ? ? (f (S n1+m)).apply sym_times. +rewrite > H3. +apply witness ? ? (pi n1 f m).reflexivity. +apply le_to_or_lt_eq.assumption. qed. +(* theorem mod_S_pi: \forall f:nat \to nat.\forall n,i:nat. -i < n \to (S O) < (f i) \to mod (S (pi n f)) (f i) = (S O). -intros.cut mod (pi n f) (f i) = O. +i < n \to (S O) < (f i) \to (S (pi n f)) \mod (f i) = (S O). +intros.cut (pi n f) \mod (f i) = O. rewrite < Hcut. apply mod_S.apply trans_lt O (S O).apply le_n (S O).assumption. rewrite > Hcut.assumption. apply divides_to_mod_O.apply trans_lt O (S O).apply le_n (S O).assumption. apply divides_f_pi_f.assumption. qed. +*) (* divides and fact *) theorem divides_fact : \forall n,i:nat. -O < i \to i \le n \to divides i (fact n). +O < i \to i \le n \to i \divides n!. intros 3.elim n.absurd O H3. -apply witness ? ? (fact n1).reflexivity. +apply witness ? ? n1!.reflexivity. qed. theorem mod_S_fact: \forall n,i:nat. -(S O) < i \to i \le n \to mod (S (fact n)) i = (S O). -intros.cut mod (fact n) i = O. +(S O) < i \to i \le n \to (S n!) \mod i = (S O). +intros.cut n! \mod i = O. rewrite < Hcut. apply mod_S.apply trans_lt O (S O).apply le_n (S O).assumption. rewrite > Hcut.assumption. @@ -263,11 +307,11 @@ assumption. qed. theorem not_divides_S_fact: \forall n,i:nat. -(S O) < i \to i \le n \to \not (divides i (S (fact n))). +(S O) < i \to i \le n \to i \ndivides S n!. intros. apply divides_b_false_to_not_divides. apply trans_lt O (S O).apply le_n (S O).assumption. -change with (eqb (mod (S (fact n)) i) O) = false. +change with (eqb ((S n!) \mod i) O) = false. rewrite > mod_S_fact.simplify.reflexivity. assumption.assumption. qed. @@ -275,7 +319,7 @@ qed. (* prime *) definition prime : nat \to Prop \def \lambda n:nat. (S O) < n \land -(\forall m:nat. divides m n \to (S O) < m \to m = n). +(\forall m:nat. m \divides n \to (S O) < m \to m = n). theorem not_prime_O: \lnot (prime O). simplify.intro.elim H.apply not_le_Sn_O (S O) H1. @@ -293,7 +337,7 @@ match n with | (S p) \Rightarrow match p with [ O \Rightarrow (S O) - | (S q) \Rightarrow min_aux q (S(S q)) (\lambda m.(eqb (mod (S(S q)) m) O))]]. + | (S q) \Rightarrow min_aux q (S(S q)) (\lambda m.(eqb ((S(S q)) \mod m) O))]]. (* it works ! theorem example1 : smallest_prime_factor (S(S(S O))) = (S(S(S O))). @@ -315,13 +359,13 @@ apply nat_case n.intro.apply False_ind.apply not_le_Sn_O (S O) H. intro.apply nat_case m.intro. apply False_ind.apply not_le_Sn_n (S O) H. intros. change with -S O < min_aux m1 (S(S m1)) (\lambda m.(eqb (mod (S(S m1)) m) O)). +S O < min_aux m1 (S(S m1)) (\lambda m.(eqb ((S(S m1)) \mod m) O)). apply lt_to_le_to_lt ? (S (S O)). apply le_n (S(S O)). cut (S(S O)) = (S(S m1)) - m1. rewrite > Hcut. apply le_min_aux. -apply sym_eq.apply plus_to_minus.apply le_S.apply le_n_Sn. +apply sym_eq.apply plus_to_minus. rewrite < sym_plus.simplify.reflexivity. qed. @@ -337,7 +381,7 @@ apply le_S_S.apply le_O_n. qed. theorem divides_smallest_factor_n : -\forall n:nat. O < n \to divides (smallest_factor n) n. +\forall n:nat. O < n \to smallest_factor n \divides n. intro. apply nat_case n.intro.apply False_ind.apply not_le_Sn_O O H. intro.apply nat_case m.intro. simplify. @@ -346,8 +390,8 @@ intros. apply divides_b_true_to_divides. apply lt_O_smallest_factor ? H. change with -eqb (mod (S(S m1)) (min_aux m1 (S(S m1)) - (\lambda m.(eqb (mod (S(S m1)) m) O)))) O = true. +eqb ((S(S m1)) \mod (min_aux m1 (S(S m1)) + (\lambda m.(eqb ((S(S m1)) \mod m) O)))) O = true. apply f_min_aux_true. apply ex_intro nat ? (S(S m1)). split.split. @@ -368,20 +412,19 @@ simplify.apply le_S_S.apply le_O_n. qed. theorem lt_smallest_factor_to_not_divides: \forall n,i:nat. -(S O) < n \to (S O) < i \to i < (smallest_factor n) \to \lnot (divides i n). +(S O) < n \to (S O) < i \to i < (smallest_factor n) \to i \ndivides n. intros 2. apply nat_case n.intro.apply False_ind.apply not_le_Sn_O (S O) H. intro.apply nat_case m.intro. apply False_ind.apply not_le_Sn_n (S O) H. intros. apply divides_b_false_to_not_divides. apply trans_lt O (S O).apply le_n (S O).assumption. -change with (eqb (mod (S(S m1)) i) O) = false. +change with (eqb ((S(S m1)) \mod i) O) = false. apply lt_min_aux_to_false -(\lambda i:nat.eqb (mod (S(S m1)) i) O) (S(S m1)) m1 i. +(\lambda i:nat.eqb ((S(S m1)) \mod i) O) (S(S m1)) m1 i. cut (S(S O)) = (S(S m1)-m1). rewrite < Hcut.exact H1. apply sym_eq. apply plus_to_minus. -apply le_S.apply le_n_Sn. rewrite < sym_plus.simplify.reflexivity. exact H2. qed. @@ -389,13 +432,13 @@ qed. theorem prime_smallest_factor_n : \forall n:nat. (S O) < n \to prime (smallest_factor n). intro. change with (S(S O)) \le n \to (S O) < (smallest_factor n) \land -(\forall m:nat. divides m (smallest_factor n) \to (S O) < m \to m = (smallest_factor n)). +(\forall m:nat. m \divides smallest_factor n \to (S O) < m \to m = (smallest_factor n)). intro.split. apply lt_SO_smallest_factor.assumption. intros. cut le m (smallest_factor n). elim le_to_or_lt_eq m (smallest_factor n) Hcut. -absurd divides m n. +absurd m \divides n. apply transitive_divides m (smallest_factor n). assumption. apply divides_smallest_factor_n. @@ -417,7 +460,7 @@ intro.apply nat_case m.intro.apply False_ind.apply not_prime_SO H. intro. change with (S O) < (S(S m1)) \land -(\forall m:nat. divides m (S(S m1)) \to (S O) < m \to m = (S(S m1))) \to +(\forall m:nat. m \divides S(S m1) \to (S O) < m \to m = (S(S m1))) \to smallest_factor (S(S m1)) = (S(S m1)). intro.elim H.apply H2. apply divides_smallest_factor_n. @@ -455,7 +498,7 @@ qed. *) theorem primeb_to_Prop: \forall n. match primeb n with [ true \Rightarrow prime n -| false \Rightarrow \not (prime n)]. +| false \Rightarrow \lnot (prime n)]. intro. apply nat_case n.simplify.intro.elim H.apply not_le_Sn_O (S O) H1. intro.apply nat_case m.simplify.intro.elim H.apply not_le_Sn_n (S O) H1. @@ -463,13 +506,13 @@ intro. change with match eqb (smallest_factor (S(S m1))) (S(S m1)) with [ true \Rightarrow prime (S(S m1)) -| false \Rightarrow \not (prime (S(S m1)))]. +| false \Rightarrow \lnot (prime (S(S m1)))]. apply eqb_elim (smallest_factor (S(S m1))) (S(S m1)). intro.change with prime (S(S m1)). rewrite < H. apply prime_smallest_factor_n. simplify.apply le_S_S.apply le_S_S.apply le_O_n. -intro.change with \not (prime (S(S m1))). +intro.change with \lnot (prime (S(S m1))). change with prime (S(S m1)) \to False. intro.apply H. apply prime_to_smallest_factor. @@ -481,27 +524,27 @@ primeb n = true \to prime n. intros.change with match true with [ true \Rightarrow prime n -| false \Rightarrow \not (prime n)]. +| false \Rightarrow \lnot (prime n)]. rewrite < H. apply primeb_to_Prop. qed. theorem primeb_false_to_not_prime : \forall n:nat. -primeb n = false \to \not (prime n). +primeb n = false \to \lnot (prime n). intros.change with match false with [ true \Rightarrow prime n -| false \Rightarrow \not (prime n)]. +| false \Rightarrow \lnot (prime n)]. rewrite < H. apply primeb_to_Prop. qed. theorem decidable_prime : \forall n:nat.decidable (prime n). -intro.change with (prime n) \lor \not (prime n). +intro.change with (prime n) \lor \lnot (prime n). cut match primeb n with [ true \Rightarrow prime n -| false \Rightarrow \not (prime n)] \to (prime n) \lor \not (prime n). +| false \Rightarrow \lnot (prime n)] \to (prime n) \lor \lnot (prime n). apply Hcut.apply primeb_to_Prop. elim (primeb n).left.apply H.right.apply H. qed. @@ -511,18 +554,18 @@ prime n \to primeb n = true. intros. cut match (primeb n) with [ true \Rightarrow prime n -| false \Rightarrow \not (prime n)] \to ((primeb n) = true). +| false \Rightarrow \lnot (prime n)] \to ((primeb n) = true). apply Hcut.apply primeb_to_Prop. elim primeb n.reflexivity. absurd (prime n).assumption.assumption. qed. theorem not_prime_to_primeb_false: \forall n:nat. -\not(prime n) \to primeb n = false. +\lnot(prime n) \to primeb n = false. intros. cut match (primeb n) with [ true \Rightarrow prime n -| false \Rightarrow \not (prime n)] \to ((primeb n) = false). +| false \Rightarrow \lnot (prime n)] \to ((primeb n) = false). apply Hcut.apply primeb_to_Prop. elim primeb n. absurd (prime n).assumption.assumption.