X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fmatita%2Flibrary%2Fnat.ma;h=066018d9e0defaa009cb7ea7c359a7b4b3bf1689;hb=e7916b85dd9dab26b628ace838c683beb31db9c1;hp=b58004b5a2fd789c05770fc6d53971eb14f98676;hpb=109ddb8c437013d6d86e1564d5df3f8b089b9700;p=helm.git diff --git a/helm/matita/library/nat.ma b/helm/matita/library/nat.ma index b58004b5a..066018d9e 100644 --- a/helm/matita/library/nat.ma +++ b/helm/matita/library/nat.ma @@ -14,25 +14,10 @@ set "baseuri" "cic:/matita/nat/". -alias id "eq" = "cic:/matita/equality/eq.ind#xpointer(1/1)". -alias id "refl_equal" = "cic:/matita/equality/eq.ind#xpointer(1/1/1)". -alias id "sym_eq" = "cic:/matita/equality/sym_eq.con". -alias id "f_equal" = "cic:/matita/equality/f_equal.con". -alias id "Not" = "cic:/matita/logic/Not.con". -alias id "False" = "cic:/matita/logic/False.ind#xpointer(1/1)". -alias id "True" = "cic:/matita/logic/True.ind#xpointer(1/1)". -alias id "trans_eq" = "cic:/matita/equality/trans_eq.con". -alias id "I" = "cic:/matita/logic/True.ind#xpointer(1/1/1)". -alias id "f_equal2" = "cic:/matita/equality/f_equal2.con". -alias id "False_ind" = "cic:/matita/logic/False_ind.con". -alias id "false" = "cic:/matita/bool/bool.ind#xpointer(1/1/2)". -alias id "true" = "cic:/matita/bool/bool.ind#xpointer(1/1/1)". -alias id "if_then_else" = "cic:/matita/bool/if_then_else.con". -alias id "EQ" = "cic:/matita/compare/compare.ind#xpointer(1/1/2)". -alias id "GT" = "cic:/matita/compare/compare.ind#xpointer(1/1/3)". -alias id "LT" = "cic:/matita/compare/compare.ind#xpointer(1/1/1)". -alias id "compare" = "cic:/matita/compare/compare.ind#xpointer(1/1)". -alias id "compare_invert" = "cic:/matita/compare/compare_invert.con". +include "equality.ma". +include "logic.ma". +include "bool.ma". +include "compare.ma". inductive nat : Set \def | O : nat @@ -45,14 +30,14 @@ definition pred: nat \to nat \def theorem pred_Sn : \forall n:nat. (eq nat n (pred (S n))). -intros. -apply refl_equal. +intros.reflexivity. qed. theorem injective_S : \forall n,m:nat. (eq nat (S n) (S m)) \to (eq nat n m). intros. -(elim (sym_eq ? ? ? (pred_Sn n))).(elim (sym_eq ? ? ? (pred_Sn m))). +rewrite > pred_Sn n. +rewrite > pred_Sn m. apply f_equal. assumption. qed. @@ -70,7 +55,7 @@ definition not_zero : nat \to Prop \def theorem O_S : \forall n:nat. Not (eq nat O (S n)). intros.simplify.intros. -cut (not_zero O).exact Hcut.elim (sym_eq ? ? ? H). +cut (not_zero O).exact Hcut.rewrite > H. exact I. qed. @@ -78,28 +63,30 @@ theorem n_Sn : \forall n:nat. Not (eq nat n (S n)). intros.elim n.apply O_S.apply not_eq_S.assumption. qed. - let rec plus n m \def match n with [ O \Rightarrow m | (S p) \Rightarrow S (plus p m) ]. theorem plus_n_O: \forall n:nat. eq nat n (plus n O). -intros.elim n.simplify.apply refl_equal.simplify.apply f_equal.assumption. +intros.elim n.simplify.reflexivity. +simplify.apply f_equal.assumption. qed. theorem plus_n_Sm : \forall n,m:nat. eq nat (S (plus n m)) (plus n (S m)). -intros.elim n.simplify.apply refl_equal.simplify.apply f_equal.assumption. +intros.elim n.simplify.reflexivity. +simplify.apply f_equal.assumption. qed. theorem sym_plus: \forall n,m:nat. eq nat (plus n m) (plus m n). intros.elim n.simplify.apply plus_n_O. -simplify.elim (sym_eq ? ? ? H).apply plus_n_Sm. +simplify.rewrite > H.apply plus_n_Sm. qed. theorem assoc_plus: \forall n,m,p:nat. eq nat (plus (plus n m) p) (plus n (plus m p)). -intros.elim n.simplify.apply refl_equal.simplify.apply f_equal.assumption. +intros.elim n.simplify.reflexivity. +simplify.apply f_equal.assumption. qed. let rec times n m \def @@ -108,23 +95,24 @@ let rec times n m \def | (S p) \Rightarrow (plus m (times p m)) ]. theorem times_n_O: \forall n:nat. eq nat O (times n O). -intros.elim n.simplify.apply refl_equal.simplify.assumption. +intros.elim n.simplify.reflexivity. +simplify.assumption. qed. theorem times_n_Sm : \forall n,m:nat. eq nat (plus n (times n m)) (times n (S m)). -intros.elim n.simplify.apply refl_equal. -simplify.apply f_equal.elim H. -apply trans_eq ? ? (plus (plus e m) (times e m)).apply sym_eq. -apply assoc_plus.apply trans_eq ? ? (plus (plus m e) (times e m)). +intros.elim n.simplify.reflexivity. +simplify.apply f_equal.rewrite < H. +transitivity (plus (plus e m) (times e m)).symmetry. +apply assoc_plus.transitivity (plus (plus m e) (times e m)). apply f_equal2. -apply sym_plus.apply refl_equal.apply assoc_plus. +apply sym_plus.reflexivity.apply assoc_plus. qed. theorem sym_times : \forall n,m:nat. eq nat (times n m) (times m n). intros.elim n.simplify.apply times_n_O. -simplify.elim (sym_eq ? ? ? H).apply times_n_Sm. +simplify.rewrite < sym_eq ? ? ? H.apply times_n_Sm. qed. let rec minus n m \def @@ -146,8 +134,8 @@ theorem nat_double_ind : (\forall n:nat. R O n) \to (\forall n:nat. R (S n) O) \to (\forall n,m:nat. R n m \to R (S n) (S m)) \to \forall n,m:nat. R n m. -intros.cut \forall m:nat.R n m.apply Hcut.elim n.apply H. -apply nat_case m1.apply H1.intros.apply H2. apply H3. +intros 5.elim n.apply H. +apply nat_case m.apply H1.intros.apply H2. apply H3. qed. inductive le (n:nat) : nat \to Prop \def @@ -188,12 +176,12 @@ qed. theorem le_n_O_eq : \forall n:nat. (le n O) \to (eq nat O n). intros.cut (le n O) \to (eq nat O n).apply Hcut. assumption. -elim n.apply refl_equal. +elim n.reflexivity. apply False_ind.apply (le_Sn_O ? H2). qed. theorem le_S_n : \forall n,m:nat. le (S n) (S m) \to le n m. -intros.cut le (pred (S n)) (pred (S m)).exact Hcut. +intros.change with le (pred (S n)) (pred (S m)). elim H.apply le_n.apply trans_le ? (pred x).assumption. apply le_pred_n. qed. @@ -208,8 +196,8 @@ intros.cut (le n m) \to (le m n) \to (eq nat n m).exact Hcut H H1. apply nat_double_ind (\lambda n,m.((le n m) \to (le m n) \to eq nat n m)). intros.whd.intros. apply le_n_O_eq.assumption. -intros.whd.intros.apply sym_eq.apply le_n_O_eq.assumption. -intros.whd.intros.apply f_equal.apply H2. +intros.symmetry.apply le_n_O_eq.assumption. +intros.apply f_equal.apply H2. apply le_S_n.assumption. apply le_S_n.assumption. qed. @@ -248,10 +236,10 @@ theorem nat_compare_invert: \forall n,m:nat. eq compare (nat_compare n m) (compare_invert (nat_compare m n)). intros. apply nat_double_ind (\lambda n,m.eq compare (nat_compare n m) (compare_invert (nat_compare m n))). -intros.elim n1.simplify.apply refl_equal. -simplify.apply refl_equal. -intro.elim n1.simplify.apply refl_equal. -simplify.apply refl_equal. -intros.simplify.elim H.apply refl_equal. +intros.elim n1.simplify.reflexivity. +simplify.reflexivity. +intro.elim n1.simplify.reflexivity. +simplify.reflexivity. +intros.simplify.elim H.simplify.reflexivity. qed.