X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fmatita%2Flibrary%2Fnat.ma;h=c125e6775b7a2f48604f5912dad0f7c2c5defde6;hb=12cc5b2b8e7f7bb0b5e315094b008a293a4df6b1;hp=114f8d1c16fe32a2a03442af6ebe0c3aa9227060;hpb=d1c92207efd70bed92a69014c0264bee717992ba;p=helm.git diff --git a/helm/matita/library/nat.ma b/helm/matita/library/nat.ma index 114f8d1c1..c125e6775 100644 --- a/helm/matita/library/nat.ma +++ b/helm/matita/library/nat.ma @@ -14,25 +14,10 @@ set "baseuri" "cic:/matita/nat/". -alias id "eq" = "cic:/matita/equality/eq.ind#xpointer(1/1)". -alias id "refl_equal" = "cic:/matita/equality/eq.ind#xpointer(1/1/1)". -alias id "sym_eq" = "cic:/matita/equality/sym_eq.con". -alias id "f_equal" = "cic:/matita/equality/f_equal.con". -alias id "Not" = "cic:/matita/logic/Not.con". -alias id "False" = "cic:/matita/logic/False.ind#xpointer(1/1)". -alias id "True" = "cic:/matita/logic/True.ind#xpointer(1/1)". -alias id "trans_eq" = "cic:/matita/equality/trans_eq.con". -alias id "I" = "cic:/matita/logic/True.ind#xpointer(1/1/1)". -alias id "f_equal2" = "cic:/matita/equality/f_equal2.con". -alias id "False_ind" = "cic:/matita/logic/False_ind.con". -alias id "false" = "cic:/matita/bool/bool.ind#xpointer(1/1/2)". -alias id "true" = "cic:/matita/bool/bool.ind#xpointer(1/1/1)". -alias id "if_then_else" = "cic:/matita/bool/if_then_else.con". -alias id "EQ" = "cic:/matita/compare/compare.ind#xpointer(1/1/2)". -alias id "GT" = "cic:/matita/compare/compare.ind#xpointer(1/1/3)". -alias id "LT" = "cic:/matita/compare/compare.ind#xpointer(1/1/1)". -alias id "compare" = "cic:/matita/compare/compare.ind#xpointer(1/1)". -alias id "compare_invert" = "cic:/matita/compare/compare_invert.con". +include "equality.ma". +include "logic.ma". +include "bool.ma". +include "compare.ma". inductive nat : Set \def | O : nat @@ -45,21 +30,21 @@ definition pred: nat \to nat \def theorem pred_Sn : \forall n:nat. (eq nat n (pred (S n))). -intros.reflexivity. +intros; reflexivity. qed. theorem injective_S : \forall n,m:nat. (eq nat (S n) (S m)) \to (eq nat n m). -intros. -rewrite > pred_Sn n. +intros; +rewrite > pred_Sn; rewrite > pred_Sn m. -apply f_equal. assumption. +apply f_equal; assumption. qed. theorem not_eq_S : \forall n,m:nat. Not (eq nat n m) \to Not (eq nat (S n) (S m)). -intros. simplify.intros. -apply H.apply injective_S.assumption. +intros; simplify; intros; +apply H; apply injective_S; assumption. qed. definition not_zero : nat \to Prop \def @@ -69,9 +54,8 @@ definition not_zero : nat \to Prop \def | (S p) \Rightarrow True ]. theorem O_S : \forall n:nat. Not (eq nat O (S n)). -intros.simplify.intros. -cut (not_zero O).exact Hcut.rewrite > H. -exact I. +intros; simplify; intros; +cut (not_zero O); [ exact Hcut | rewrite > H; exact I ]. qed. theorem n_Sn : \forall n:nat. Not (eq nat n (S n)). @@ -84,8 +68,9 @@ let rec plus n m \def | (S p) \Rightarrow S (plus p m) ]. theorem plus_n_O: \forall n:nat. eq nat n (plus n O). -intros.elim n.simplify.reflexivity. -simplify.apply f_equal.assumption. +intros;elim n; + [ simplify;reflexivity + | simplify;apply f_equal;assumption ]. qed. theorem plus_n_Sm : \forall n,m:nat. eq nat (S (plus n m)) (plus n (S m)). @@ -118,8 +103,8 @@ theorem times_n_Sm : \forall n,m:nat. eq nat (plus n (times n m)) (times n (S m)). intros.elim n.simplify.reflexivity. simplify.apply f_equal.rewrite < H. -transitivity (plus (plus e m) (times e m)).symmetry. -apply assoc_plus.transitivity (plus (plus m e) (times e m)). +transitivity (plus (plus e1 m) (times e1 m)).symmetry. +apply assoc_plus.transitivity (plus (plus m e1) (times e1 m)). apply f_equal2. apply sym_plus.reflexivity.apply assoc_plus. qed. @@ -127,7 +112,7 @@ qed. theorem sym_times : \forall n,m:nat. eq nat (times n m) (times m n). intros.elim n.simplify.apply times_n_O. -simplify.rewrite < sym_eq ? ? ? H.apply times_n_Sm. +simplify.rewrite > H.apply times_n_Sm. qed. let rec minus n m \def @@ -203,7 +188,7 @@ qed. theorem le_Sn_n : \forall n:nat. Not (le (S n) n). intros.elim n.apply le_Sn_O.simplify.intros. -cut le (S e) e.apply H.assumption.apply le_S_n.assumption. +cut le (S e1) e1.apply H.assumption.apply le_S_n.assumption. qed. theorem le_antisym : \forall n,m:nat. (le n m) \to (le m n) \to (eq nat n m).