X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Fmatita%2Ftests%2Ffguidi.ma;h=274cda0275df683d226652489060d790a4d1da56;hb=b84c60ff48a21a62a08e636f32cf0df46dfbe45a;hp=27e51e69c1a6a58de495f5af6b0386195b850e2a;hpb=feac5909f11bc7cf2e2d57f4bb7a5729784be483;p=helm.git diff --git a/helm/matita/tests/fguidi.ma b/helm/matita/tests/fguidi.ma index 27e51e69c..274cda027 100644 --- a/helm/matita/tests/fguidi.ma +++ b/helm/matita/tests/fguidi.ma @@ -1,3 +1,5 @@ +set "baseuri" "cic:/matita/tests/fguidi/". + alias id "O" = "cic:/Coq/Init/Datatypes/nat.ind#xpointer(1/1/1)". alias id "nat" = "cic:/Coq/Init/Datatypes/nat.ind#xpointer(1/1)". alias id "S" = "cic:/Coq/Init/Datatypes/nat.ind#xpointer(1/1/2)". @@ -5,12 +7,12 @@ alias id "le" = "cic:/matita/fguidi/le.ind#xpointer(1/1)". alias id "False_ind" = "cic:/Coq/Init/Logic/False_ind.con". alias id "I" = "cic:/Coq/Init/Logic/True.ind#xpointer(1/1/1)". alias id "ex_intro" = "cic:/Coq/Init/Logic/ex.ind#xpointer(1/1/1)". +alias id "False" = "cic:/Coq/Init/Logic/False.ind#xpointer(1/1)". +alias id "True" = "cic:/Coq/Init/Logic/True.ind#xpointer(1/1)". alias symbol "and" (instance 0) = "logical and". alias symbol "eq" (instance 0) = "leibnitz's equality". alias symbol "exists" (instance 0) = "exists". -alias id "False" = "cic:/Coq/Init/Logic/False.ind#xpointer(1/1)". -alias id "True" = "cic:/Coq/Init/Logic/True.ind#xpointer(1/1)". definition is_S: nat \to Prop \def \lambda n. match n with @@ -80,25 +82,17 @@ intros. elim H. elim H1. cut (S x1) = x. elim Hcut. auto. elim H2. auto. qed. theorem le_gen_S_S: \forall m,n. (le (S m) (S n)) \to (le m n). -intros. cut (\exists p. (S n) = (S p) \land (le m p)). -elim Hcut. elim H1. cut x = n. -elim Hcut1. auto. symmetry. auto. auto. +intros. +lapply le_gen_S_x to H using H0. elim H0. elim H1. +lapply eq_gen_S_S to H2 using H4. rewrite > H4. assumption. qed. theorem le_gen_S_S_cc: \forall m,n. (le m n) \to (le (S m) (S n)). intros. auto. qed. - -theorem le_gen_S_x_2: \forall m,x. (le (S m) x) \to - \exists n. x = (S n) \land (le m n). -intros. -lapply le_gen_S_x to H using H0. elim H0. elim H1. -exists. exact x1. auto. -qed. - -(* proof of le_gen_S_S with lapply *) -theorem le_gen_S_S_2: \forall m,n. (le (S m) (S n)) \to (le m n). -intros. -lapply le_gen_S_x_2 to H using H0. elim H0. elim H1. -lapply eq_gen_S_S to H2 using H4. rewrite left H4. assumption. -qed. +(* +theorem le_trans: \forall x,y. (le x y) \to \forall z. (le y z) \to (le x z). +intros 1. elim x. +clear H. auto. +clear H. fwd H1 [H]. decompose H. +*) \ No newline at end of file