X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Focaml%2Fcic_omdoc%2Fcic2content.ml;h=49e2e23ad11e738442faa10d8dca38c597ba937a;hb=5325734bc2e4927ed7ec146e35a6f0f2b49f50c1;hp=0295daac326659968bb6d8637ad9956583e90afa;hpb=60f8a4de1287ea04ee5722460bdc6ff16a3eb4be;p=helm.git diff --git a/helm/ocaml/cic_omdoc/cic2content.ml b/helm/ocaml/cic_omdoc/cic2content.ml index 0295daac3..49e2e23ad 100644 --- a/helm/ocaml/cic_omdoc/cic2content.ml +++ b/helm/ocaml/cic_omdoc/cic2content.ml @@ -28,16 +28,26 @@ (* PROJECT HELM *) (* *) (* Andrea Asperti *) -(* 16/62003 *) +(* 16/6/2003 *) (* *) (**************************************************************************) +let object_prefix = "obj:";; +let declaration_prefix = "decl:";; +let definition_prefix = "def:";; +let inductive_prefix = "ind:";; +let joint_prefix = "joint:";; +let proof_prefix = "proof:";; +let conclude_prefix = "concl:";; +let premise_prefix = "prem:";; +let lemma_prefix = "lemma:";; + (* e se mettessi la conversione di BY nell'apply_context ? *) (* sarebbe carino avere l'invariante che la proof2pres generasse sempre prove con contesto vuoto *) -let gen_id seed = - let res = "p" ^ string_of_int !seed in +let gen_id prefix seed = + let res = prefix ^ string_of_int !seed in incr seed ; res ;; @@ -60,7 +70,7 @@ let rec occur uri = | C.Var _ -> false | C.Meta _ -> false | C.Sort _ -> false - | C.Implicit -> raise NotImplemented + | C.Implicit _ -> assert false | C.Prod (_,s,t) -> (occur uri s) or (occur uri t) | C.Cast (te,ty) -> (occur uri te) | C.Lambda (_,s,t) -> (occur uri s) or (occur uri t) (* or false ?? *) @@ -166,47 +176,6 @@ let test_for_lifting ~ids_to_inner_types ~ids_to_inner_sorts= with Not_found -> false) ;; -(* -let build_args seed l subproofs ~ids_to_inner_types ~ids_to_inner_sorts = - let module C = Cic in - let module K = Content in - let rec aux l subproofs = - match l with - [] -> [] - | t::l1 -> - if (test_for_lifting t ~ids_to_inner_types) then - (match subproofs with - [] -> assert false - | p::tl -> - let new_arg = - K.Premise - { K.premise_id = gen_id seed; - K.premise_xref = p.K.proof_id; - K.premise_binder = p.K.proof_name; - K.premise_n = None - } - in new_arg::(aux l1 tl)) - else - let hd = - (match t with - C.ARel (idr,idref,n,b) -> - let sort = - (try Hashtbl.find ids_to_inner_sorts idr - with Not_found -> "Type") in - if sort ="Prop" then - K.Premise - { K.premise_id = gen_id seed; - K.premise_xref = idr; - K.premise_binder = Some b; - K.premise_n = Some n - } - else (K.Term t) - | _ -> (K.Term t)) in - hd::(aux l1 subproofs) - in aux l subproofs -;; -*) - (* transform a proof p into a proof list, concatenating the last conclude element to the apply_context list, in case context is empty. Otherwise, it just returns [p] *) @@ -244,11 +213,11 @@ let generate_conversion seed top_down id inner_proof ~ids_to_inner_types = | Some expty -> if inner_proof.K.proof_conclude.K.conclude_method = "Intros+LetTac" then { K.proof_name = inner_proof.K.proof_name; - K.proof_id = gen_id seed; + K.proof_id = gen_id proof_prefix seed; K.proof_context = [] ; K.proof_apply_context = []; K.proof_conclude = - { K.conclude_id = gen_id seed; + { K.conclude_id = gen_id conclude_prefix seed; K.conclude_aref = id; K.conclude_method = "TD_Conversion"; K.conclude_args = @@ -258,16 +227,16 @@ let generate_conversion seed top_down id inner_proof ~ids_to_inner_types = } else { K.proof_name = inner_proof.K.proof_name; - K.proof_id = gen_id seed; + K.proof_id = gen_id proof_prefix seed; K.proof_context = [] ; K.proof_apply_context = [{inner_proof with K.proof_name = None}]; K.proof_conclude = - { K.conclude_id = gen_id seed; + { K.conclude_id = gen_id conclude_prefix seed; K.conclude_aref = id; K.conclude_method = "BU_Conversion"; K.conclude_args = [K.Premise - { K.premise_id = gen_id seed; + { K.premise_id = gen_id premise_prefix seed; K.premise_xref = inner_proof.K.proof_id; K.premise_binder = None; K.premise_n = None @@ -282,11 +251,11 @@ let generate_exact seed t id name ~ids_to_inner_types = let module C2A = Cic2acic in let module K = Content in { K.proof_name = name; - K.proof_id = id ; + K.proof_id = gen_id proof_prefix seed ; K.proof_context = [] ; K.proof_apply_context = []; K.proof_conclude = - { K.conclude_id = gen_id seed; + { K.conclude_id = gen_id conclude_prefix seed; K.conclude_aref = id; K.conclude_method = "Exact"; K.conclude_args = [K.Term t]; @@ -302,11 +271,11 @@ let generate_intros_let_tac seed id n s is_intro inner_proof name ~ids_to_inner_ let module C = Cic in let module K = Content in { K.proof_name = name; - K.proof_id = id ; + K.proof_id = gen_id proof_prefix seed ; K.proof_context = [] ; K.proof_apply_context = []; K.proof_conclude = - { K.conclude_id = gen_id seed; + { K.conclude_id = gen_id conclude_prefix seed; K.conclude_aref = id; K.conclude_method = "Intros+LetTac"; K.conclude_args = [K.ArgProof inner_proof]; @@ -330,7 +299,7 @@ let build_decl_item seed id n s ~ids_to_inner_sorts = if sort = "Prop" then `Hypothesis { K.dec_name = name_of n; - K.dec_id = gen_id seed; + K.dec_id = gen_id declaration_prefix seed; K.dec_inductive = false; K.dec_aref = id; K.dec_type = s @@ -338,7 +307,7 @@ let build_decl_item seed id n s ~ids_to_inner_sorts = else `Declaration { K.dec_name = name_of n; - K.dec_id = gen_id seed; + K.dec_id = gen_id declaration_prefix seed; K.dec_inductive = false; K.dec_aref = id; K.dec_type = s @@ -361,7 +330,7 @@ let rec build_subproofs_and_args seed l ~ids_to_inner_types ~ids_to_inner_sorts seed ~name:"H" ~ids_to_inner_types ~ids_to_inner_sorts t in let new_arg = K.Premise - { K.premise_id = gen_id seed; + { K.premise_id = gen_id premise_prefix seed; K.premise_xref = new_subproof.K.proof_id; K.premise_binder = new_subproof.K.proof_name; K.premise_n = None @@ -376,7 +345,7 @@ let rec build_subproofs_and_args seed l ~ids_to_inner_types ~ids_to_inner_sorts with Not_found -> "Type") in if sort ="Prop" then K.Premise - { K.premise_id = gen_id seed; + { K.premise_id = gen_id premise_prefix seed; K.premise_xref = idr; K.premise_binder = Some b; K.premise_n = Some n @@ -388,7 +357,7 @@ let rec build_subproofs_and_args seed l ~ids_to_inner_types ~ids_to_inner_sorts with Not_found -> "Type") in if sort ="Prop" then K.Lemma - { K.lemma_id = gen_id seed; + { K.lemma_id = gen_id lemma_prefix seed; K.lemma_name = UriManager.name_of_uri uri; K.lemma_uri = UriManager.string_of_uri uri } @@ -409,7 +378,7 @@ let rec build_subproofs_and_args seed l ~ids_to_inner_types ~ids_to_inner_sorts List.nth inductive_types tyno in let name,_ = List.nth constructors (consno - 1) in K.Lemma - { K.lemma_id = gen_id seed; + { K.lemma_id = gen_id lemma_prefix seed; K.lemma_name = name; K.lemma_uri = UriManager.string_of_uri uri ^ "#xpointer(1/" ^ @@ -436,27 +405,18 @@ build_def_item seed id n t ~ids_to_inner_sorts ~ids_to_inner_types = let module K = Content in try let sort = Hashtbl.find ids_to_inner_sorts id in - (match name_of n with - Some "w" -> prerr_endline ("build_def: " ^ sort ); - | _ -> ()); if sort = "Prop" then - (prerr_endline ("entro"); - let p = + (let p = (acic2content seed ?name:(name_of n) ~ids_to_inner_sorts ~ids_to_inner_types t) in - (match p.K.proof_name with - Some "w" -> prerr_endline ("TUTTO BENE:"); - | Some s -> prerr_endline ("mi chiamo " ^ s); - | _ -> prerr_endline ("ho perso il nome");); - prerr_endline ("esco"); `Proof p;) + `Proof p;) else - (prerr_endline ("siamo qui???"); `Definition { K.def_name = name_of n; - K.def_id = gen_id seed; + K.def_id = gen_id definition_prefix seed; K.def_aref = id; K.def_term = t - }) + } with Not_found -> assert false @@ -551,11 +511,11 @@ and acic2content seed ?name ~ids_to_inner_sorts ~ids_to_inner_types t = let args = build_args seed li subproofs ~ids_to_inner_types ~ids_to_inner_sorts in *) { K.proof_name = name; - K.proof_id = gen_id seed; + K.proof_id = gen_id proof_prefix seed; K.proof_context = []; K.proof_apply_context = serialize seed subproofs; K.proof_conclude = - { K.conclude_id = gen_id seed; + { K.conclude_id = gen_id conclude_prefix seed; K.conclude_aref = id; K.conclude_method = "Apply"; K.conclude_args = args; @@ -577,18 +537,37 @@ and acic2content seed ?name ~ids_to_inner_sorts ~ids_to_inner_types t = generate_exact seed t id name ~ids_to_inner_types else raise Not_a_proof | C.AMutCase (id,uri,typeno,ty,te,patterns) -> - let inductive_types = + let inductive_types,noparams = (match CicEnvironment.get_obj uri with Cic.Constant _ -> assert false | Cic.Variable _ -> assert false | Cic.CurrentProof _ -> assert false - | Cic.InductiveDefinition (l,_,_) -> l + | Cic.InductiveDefinition (l,_,n) -> l,n ) in - let (_,_,_,constructors) = List.nth inductive_types typeno in + let (_,_,_,constructors) = List.nth inductive_types typeno in + let name_and_arities = + let rec count_prods = + function + C.Prod (_,_,t) -> 1 + count_prods t + | _ -> 0 in + List.map + (function (n,t) -> Some n,((count_prods t) - noparams)) constructors in + let pp = + let build_proof p (name,arity) = + let rec make_context_and_body c p n = + if n = 0 then c,(aux p) + else + (match p with + Cic.ALambda(idl,vname,s1,t1) -> + let ce = + build_decl_item seed idl vname s1 ~ids_to_inner_sorts in + make_context_and_body (ce::c) t1 (n-1) + | _ -> assert false) in + let context,body = make_context_and_body [] p arity in + K.ArgProof + {body with K.proof_name = name; K.proof_context=context} in + List.map2 build_proof patterns name_and_arities in let teid = get_id te in - let pp = List.map2 - (fun p (name,_) -> (K.ArgProof (aux ~name p))) - patterns constructors in let context,term = (match build_subproofs_and_args @@ -597,11 +576,11 @@ and acic2content seed ?name ~ids_to_inner_sorts ~ids_to_inner_types t = l,[t] -> l,t | _ -> assert false) in { K.proof_name = name; - K.proof_id = gen_id seed; + K.proof_id = gen_id proof_prefix seed; K.proof_context = []; K.proof_apply_context = serialize seed context; K.proof_conclude = - { K.conclude_id = gen_id seed; + { K.conclude_id = gen_id conclude_prefix seed; K.conclude_aref = id; K.conclude_method = "Case"; K.conclude_args = @@ -620,22 +599,22 @@ and acic2content seed ?name ~ids_to_inner_sorts ~ids_to_inner_types t = let decreasing_args = List.map (function (_,_,n,_,_) -> n) funs in let jo = - { K.joint_id = gen_id seed; + { K.joint_id = gen_id joint_prefix seed; K.joint_kind = `Recursive decreasing_args; K.joint_defs = proofs } in { K.proof_name = name; - K.proof_id = gen_id seed; + K.proof_id = gen_id proof_prefix seed; K.proof_context = [`Joint jo]; K.proof_apply_context = []; K.proof_conclude = - { K.conclude_id = gen_id seed; + { K.conclude_id = gen_id conclude_prefix seed; K.conclude_aref = id; K.conclude_method = "Exact"; K.conclude_args = [ K.Premise - { K.premise_id = gen_id seed; + { K.premise_id = gen_id premise_prefix seed; K.premise_xref = jo.K.joint_id; K.premise_binder = Some "tiralo fuori"; K.premise_n = Some no; @@ -652,22 +631,22 @@ and acic2content seed ?name ~ids_to_inner_sorts ~ids_to_inner_types t = List.map (function (_,name,_,bo) -> `Proof (aux ~name bo)) funs in let jo = - { K.joint_id = gen_id seed; + { K.joint_id = gen_id joint_prefix seed; K.joint_kind = `CoRecursive; K.joint_defs = proofs } in { K.proof_name = name; - K.proof_id = gen_id seed; + K.proof_id = gen_id proof_prefix seed; K.proof_context = [`Joint jo]; K.proof_apply_context = []; K.proof_conclude = - { K.conclude_id = gen_id seed; + { K.conclude_id = gen_id conclude_prefix seed; K.conclude_aref = id; K.conclude_method = "Exact"; K.conclude_args = [ K.Premise - { K.premise_id = gen_id seed; + { K.premise_id = gen_id premise_prefix seed; K.premise_xref = jo.K.joint_id; K.premise_binder = Some "tiralo fuori"; K.premise_n = Some no; @@ -699,9 +678,9 @@ and inductive seed name id li ~ids_to_inner_types ~ids_to_inner_sorts = if n<0 then raise NotApplicable else let method_name = - if (uri_str = "cic:/Coq/Init/Logic_Type/exT_ind.con" or - uri_str = "cic:/Coq/Init/Logic/ex_ind.con") then "Exists" - else if uri_str = "cic:/Coq/Init/Logic/and_ind.con" then "AndInd" + if UriManager.eq uri HelmLibraryObjects.Logic.ex_ind_URI then "Exists" + else if UriManager.eq uri HelmLibraryObjects.Logic.and_ind_URI then "AndInd" + else if UriManager.eq uri HelmLibraryObjects.Logic.false_ind_URI then "FalseInd" else "ByInduction" in let prefix = String.sub uri_str 0 n in let ind_str = (prefix ^ ".ind") in @@ -718,9 +697,6 @@ and inductive seed name id li ~ids_to_inner_types ~ids_to_inner_sorts = let p,a = split (n-1) (List.tl l) in ((List.hd l::p),a) in let params_and_IP,tail_args = split (noparams+1) args in - if method_name = "Exists" then - (prerr_endline ("+++++args++++:" ^ string_of_int (List.length args)); - prerr_endline ("+++++tail++++:" ^ string_of_int (List.length tail_args))); let constructors = (match inductive_types with [(_,_,_,l)] -> l @@ -738,7 +714,6 @@ and inductive seed name id li ~ids_to_inner_types ~ids_to_inner_sorts = let subproofs,other_method_args = build_subproofs_and_args seed other_args ~ids_to_inner_types ~ids_to_inner_sorts in - prerr_endline "****** end other *******"; flush stderr; let method_args= let rec build_method_args = function @@ -758,13 +733,13 @@ and inductive seed name id li ~ids_to_inner_types ~ids_to_inner_sorts = build_decl_item seed idl n s1 ~ids_to_inner_sorts in if (occur ind_uri s) then - ( prerr_endline ("inductive:" ^ (UriManager.string_of_uri ind_uri) ^ (CicPp.ppterm s)); flush stderr; - match t1 with + ( match t1 with Cic.ALambda(id2,n2,s2,t2) -> let inductive_hyp = `Hypothesis { K.dec_name = name_of n2; - K.dec_id = gen_id seed; + K.dec_id = + gen_id declaration_prefix seed; K.dec_inductive = true; K.dec_aref = id2; K.dec_type = s2 @@ -773,7 +748,7 @@ and inductive seed name id li ~ids_to_inner_types ~ids_to_inner_sorts = (ce::inductive_hyp::context,body) | _ -> assert false) else - ( prerr_endline ("no inductive:" ^ (UriManager.string_of_uri ind_uri) ^ (CicPp.ppterm s)); flush stderr; + ( let (context,body) = bc (t,t1) in (ce::context,body)) | _ , t -> ([],aux t) in @@ -788,16 +763,16 @@ and inductive seed name id li ~ids_to_inner_types ~ids_to_inner_sorts = | _ -> assert false in build_method_args (constructors1,args_for_cases) in { K.proof_name = name; - K.proof_id = gen_id seed; + K.proof_id = gen_id proof_prefix seed; K.proof_context = []; K.proof_apply_context = serialize seed subproofs; K.proof_conclude = - { K.conclude_id = gen_id seed; + { K.conclude_id = gen_id conclude_prefix seed; K.conclude_aref = id; K.conclude_method = method_name; K.conclude_args = K.Aux (string_of_int no_constructors) - ::K.Term (C.AAppl id ((C.AConst(idc,uri,exp_named_subst))::params_and_IP)) + ::K.Term (C.AAppl(id,((C.AConst(idc,uri,exp_named_subst))::params_and_IP))) ::method_args@other_method_args; K.conclude_conclusion = try Some @@ -814,9 +789,8 @@ and rewrite seed name id li ~ids_to_inner_types ~ids_to_inner_sorts = let module C = Cic in match li with C.AConst (sid,uri,exp_named_subst)::args -> - let uri_str = UriManager.string_of_uri uri in - if uri_str = "cic:/Coq/Init/Logic/eq_ind.con" or - uri_str = "cic:/Coq/Init/Logic/eq_ind_r.con" then + if UriManager.eq uri HelmLibraryObjects.Logic.eq_ind_URI or + UriManager.eq uri HelmLibraryObjects.Logic.eq_ind_r_URI then let subproofs,arg = (match build_subproofs_and_args @@ -840,11 +814,11 @@ and rewrite seed name id li ~ids_to_inner_types ~ids_to_inner_sorts = hd::(ma_aux (n-1) tl) in (ma_aux 3 args) in { K.proof_name = name; - K.proof_id = gen_id seed; + K.proof_id = gen_id proof_prefix seed; K.proof_context = []; K.proof_apply_context = serialize seed subproofs; K.proof_conclude = - { K.conclude_id = gen_id seed; + { K.conclude_id = gen_id conclude_prefix seed; K.conclude_aref = id; K.conclude_method = "Rewrite"; K.conclude_args = @@ -866,30 +840,64 @@ let map_conjectures let context' = List.map (function - (id,None) as item -> item + (id,None) -> None | (id,Some (name,Cic.ADecl t)) -> - id, - Some - (* We should call build_decl_item, but we have not computed *) - (* the inner-types ==> we always produce a declaration *) - (`Declaration - { K.dec_name = name_of name; - K.dec_id = gen_id seed; - K.dec_inductive = false; - K.dec_aref = get_id t; - K.dec_type = t + Some + (* We should call build_decl_item, but we have not computed *) + (* the inner-types ==> we always produce a declaration *) + (`Declaration + { K.dec_name = name_of name; + K.dec_id = gen_id declaration_prefix seed; + K.dec_inductive = false; + K.dec_aref = get_id t; + K.dec_type = t + }) + | (id,Some (name,Cic.ADef t)) -> + Some + (* We should call build_def_item, but we have not computed *) + (* the inner-types ==> we always produce a declaration *) + (`Definition + { K.def_name = name_of name; + K.def_id = gen_id definition_prefix seed; + K.def_aref = get_id t; + K.def_term = t }) + ) context + in + (id,n,context',ty) +;; + +(* map_sequent is similar to map_conjectures, but the for the hid +of the hypothesis, which are preserved instead of generating +fresh ones. We shall have to adopt a uniform policy, soon or later *) + +let map_sequent ((id,n,context,ty):Cic.annconjecture) = + let module K = Content in + let context' = + List.map + (function + (id,None) -> None + | (id,Some (name,Cic.ADecl t)) -> + Some + (* We should call build_decl_item, but we have not computed *) + (* the inner-types ==> we always produce a declaration *) + (`Declaration + { K.dec_name = name_of name; + K.dec_id = id; + K.dec_inductive = false; + K.dec_aref = get_id t; + K.dec_type = t + }) | (id,Some (name,Cic.ADef t)) -> - id, - Some - (* We should call build_def_item, but we have not computed *) - (* the inner-types ==> we always produce a declaration *) - (`Definition - { K.def_name = name_of name; - K.def_id = gen_id seed; - K.def_aref = get_id t; - K.def_term = t - }) + Some + (* We should call build_def_item, but we have not computed *) + (* the inner-types ==> we always produce a declaration *) + (`Definition + { K.def_name = name_of name; + K.def_id = id; + K.def_aref = get_id t; + K.def_term = t + }) ) context in (id,n,context',ty) @@ -902,7 +910,7 @@ let rec annobj2content ~ids_to_inner_sorts ~ids_to_inner_types = let seed = ref 0 in function C.ACurrentProof (_,_,n,conjectures,bo,ty,params) -> - (gen_id seed, params, + (gen_id object_prefix seed, params, Some (List.map (map_conjectures seed ~ids_to_inner_sorts ~ids_to_inner_types) @@ -911,29 +919,29 @@ let rec annobj2content ~ids_to_inner_sorts ~ids_to_inner_types = build_def_item seed (get_id bo) (C.Name n) bo ~ids_to_inner_sorts ~ids_to_inner_types)) | C.AConstant (_,_,n,Some bo,ty,params) -> - (gen_id seed, params, None, + (gen_id object_prefix seed, params, None, `Def (K.Const,ty, build_def_item seed (get_id bo) (C.Name n) bo ~ids_to_inner_sorts ~ids_to_inner_types)) | C.AConstant (id,_,n,None,ty,params) -> - (gen_id seed, params, None, + (gen_id object_prefix seed, params, None, `Decl (K.Const, build_decl_item seed id (C.Name n) ty ~ids_to_inner_sorts)) | C.AVariable (_,n,Some bo,ty,params) -> - (gen_id seed, params, None, + (gen_id object_prefix seed, params, None, `Def (K.Var,ty, build_def_item seed (get_id bo) (C.Name n) bo ~ids_to_inner_sorts ~ids_to_inner_types)) | C.AVariable (id,n,None,ty,params) -> - (gen_id seed, params, None, + (gen_id object_prefix seed, params, None, `Decl (K.Var, build_decl_item seed id (C.Name n) ty ~ids_to_inner_sorts)) | C.AInductiveDefinition (id,l,params,nparams) -> - (gen_id seed, params, None, + (gen_id object_prefix seed, params, None, `Joint - { K.joint_id = gen_id seed; + { K.joint_id = gen_id joint_prefix seed; K.joint_kind = `Inductive nparams; K.joint_defs = List.map (build_inductive seed) l }) @@ -943,7 +951,7 @@ and let module K = Content in fun (_,n,b,ty,l) -> `Inductive - { K.inductive_id = gen_id seed; + { K.inductive_id = gen_id inductive_prefix seed; K.inductive_kind = b; K.inductive_type = ty; K.inductive_constructors = build_constructors seed l @@ -955,7 +963,7 @@ and List.map (fun (n,t) -> { K.dec_name = Some n; - K.dec_id = gen_id seed; + K.dec_id = gen_id declaration_prefix seed; K.dec_inductive = false; K.dec_aref = ""; K.dec_type = t