X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Focaml%2Fcic_omdoc%2Feta_fixing.ml;fp=helm%2Focaml%2Fcic_omdoc%2Feta_fixing.ml;h=0000000000000000000000000000000000000000;hb=c7514aaa249a96c5fdd39b1123fbdb38d92f20b6;hp=8407f8357e04d3f7f8603759cbeb7432060d58b3;hpb=1c7fb836e2af4f2f3d18afd0396701f2094265ff;p=helm.git diff --git a/helm/ocaml/cic_omdoc/eta_fixing.ml b/helm/ocaml/cic_omdoc/eta_fixing.ml deleted file mode 100644 index 8407f8357..000000000 --- a/helm/ocaml/cic_omdoc/eta_fixing.ml +++ /dev/null @@ -1,252 +0,0 @@ -(* Copyright (C) 2000, HELM Team. - * - * This file is part of HELM, an Hypertextual, Electronic - * Library of Mathematics, developed at the Computer Science - * Department, University of Bologna, Italy. - * - * HELM is free software; you can redistribute it and/or - * modify it under the terms of the GNU General Public License - * as published by the Free Software Foundation; either version 2 - * of the License, or (at your option) any later version. - * - * HELM is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with HELM; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place - Suite 330, Boston, - * MA 02111-1307, USA. - * - * For details, see the HELM World-Wide-Web page, - * http://cs.unibo.it/helm/. - *) - -exception ReferenceToVariable;; -exception RferenceToCurrentProof;; -exception ReferenceToInductiveDefinition;; - -(* -let rec fix_lambdas_wrt_type ty te = - let module C = Cic in - let module S = CicSubstitution in -(* prerr_endline ("entering fix_lambdas: type=" ^ CicPp.ppterm ty ^ "term=" ^ CicPp.ppterm te); *) - match ty with - C.Prod (_,_,ty') -> - (match CicReduction.whd [] te with - C.Lambda (n,s,te') -> - C.Lambda (n,s,fix_lambdas_wrt_type ty' te') - | t -> - let rec get_sources = - function - C.Prod (_,s,ty) -> s::(get_sources ty) - | _ -> [] in - let sources = get_sources ty in - let no_sources = List.length sources in - let rec mk_rels n shift = - if n = 0 then [] - else (C.Rel (n + shift))::(mk_rels (n - 1) shift) in - let t' = S.lift no_sources t in - let t2 = - match t' with - C.Appl l -> - C.LetIn - (C.Name "w",t',C.Appl ((C.Rel 1)::(mk_rels no_sources 1))) - | _ -> - C.Appl (t'::(mk_rels no_sources 0)) in - List.fold_right - (fun source t -> C.Lambda (C.Name "y",source,t)) - sources t2) - | _ -> te -;; *) - -let rec fix_lambdas_wrt_type ty te = - let module C = Cic in - let module S = CicSubstitution in -(* prerr_endline ("entering fix_lambdas: type=" ^ CicPp.ppterm ty ^ "term=" ^ CicPp.ppterm te); *) - match ty,te with - C.Prod (_,_,ty'), C.Lambda (n,s,te') -> - C.Lambda (n,s,fix_lambdas_wrt_type ty' te') - | C.Prod (_,s,ty'), t -> - let rec get_sources = - function - C.Prod (_,s,ty) -> s::(get_sources ty) - | _ -> [] in - let sources = get_sources ty in - let no_sources = List.length sources in - let rec mk_rels n shift = - if n = 0 then [] - else (C.Rel (n + shift))::(mk_rels (n - 1) shift) in - let t' = S.lift no_sources t in - let t2 = - match t' with - C.Appl l -> - C.LetIn (C.Name "w",t',C.Appl ((C.Rel 1)::(mk_rels no_sources 1))) - | _ -> C.Appl (t'::(mk_rels no_sources 0)) in - List.fold_right - (fun source t -> C.Lambda (C.Name "y",CicReduction.whd [] source,t)) sources t2 - | _, _ -> te -;; - -(* -let rec fix_lambdas_wrt_type ty te = - let module C = Cic in - let module S = CicSubstitution in -(* prerr_endline ("entering fix_lambdas: type=" ^ CicPp.ppterm ty ^ "term=" ^ CicPp.ppterm te); *) - match ty,te with - C.Prod (_,_,ty'), C.Lambda (n,s,te') -> - C.Lambda (n,s,fix_lambdas_wrt_type ty' te') - | C.Prod (_,s,ty'), ((C.Appl (C.Const _ ::_)) as t) -> - (* const have a fixed arity *) - (* prerr_endline ("******** fl - eta expansion 0: type=" ^ CicPp.ppterm ty ^ "term=" ^ CicPp.ppterm te); *) - let t' = S.lift 1 t in - C.Lambda (C.Name "x",s, - C.LetIn - (C.Name "H", fix_lambdas_wrt_type ty' t', - C.Appl [C.Rel 1;C.Rel 2])) - | C.Prod (_,s,ty'), C.Appl l -> - (* prerr_endline ("******** fl - eta expansion 1: type=" ^ CicPp.ppterm ty ^ "term=" ^ CicPp.ppterm te); *) - let l' = List.map (S.lift 1) l in - C.Lambda (C.Name "x",s, - fix_lambdas_wrt_type ty' (C.Appl (l'@[C.Rel 1]))) - | C.Prod (_,s,ty'), _ -> - (* prerr_endline ("******** fl - eta expansion 2: type=" ^ CicPp.ppterm ty ^ "term=" ^ CicPp.ppterm te); *) - flush stderr ; - let te' = S.lift 1 te in - C.Lambda (C.Name "x",s, - fix_lambdas_wrt_type ty' (C.Appl [te';C.Rel 1])) - | _, _ -> te -;;*) - -let fix_according_to_type ty hd tl = - let module C = Cic in - let module S = CicSubstitution in - let rec count_prods = - function - C.Prod (_,_,t) -> 1 + (count_prods t) - | _ -> 0 in - let expected_arity = count_prods ty in - let rec aux n ty tl res = - if n = 0 then - (match tl with - [] -> C.Appl res - | _ -> - match res with - [] -> assert false - | [a] -> C.Appl (a::tl) - | _ -> - (* prerr_endline ("******* too many args: type=" ^ CicPp.ppterm ty ^ "term=" ^ CicPp.ppterm (C.Appl res)); *) - C.LetIn - (C.Name "H", - C.Appl res, C.Appl (C.Rel 1::(List.map (S.lift 1) tl)))) - else - let name,source,target = - (match ty with - C.Prod (C.Name _ as n,s,t) -> n,s,t - | C.Prod (C.Anonymous, s,t) -> C.Name "z",s,t - | _ -> (* prods number may only increase for substitution *) - assert false) in - match tl with - [] -> - (* prerr_endline ("******* too few args: type=" ^ CicPp.ppterm ty ^ "term=" ^ CicPp.ppterm (C.Appl res)); *) - let res' = List.map (S.lift 1) res in - C.Lambda - (name, source, aux (n-1) target [] (res'@[C.Rel 1])) - | hd::tl' -> - let hd' = fix_lambdas_wrt_type source hd in - (* (prerr_endline ("++++++prima :" ^(CicPp.ppterm hd)); - prerr_endline ("++++++dopo :" ^(CicPp.ppterm hd'))); *) - aux (n-1) (S.subst hd' target) tl' (res@[hd']) in - aux expected_arity ty tl [hd] -;; - -let eta_fix metasenv t = - let rec eta_fix' t = -(* prerr_endline ("entering aux with: term=" ^ CicPp.ppterm t); - flush stderr ; *) - let module C = Cic in - match t with - C.Rel n -> C.Rel n - | C.Var (uri,exp_named_subst) -> - let exp_named_subst' = - List.map - (function i,t -> i, (eta_fix' t)) exp_named_subst - in - C.Var (uri,exp_named_subst') - | C.Meta (n,l) -> - let (_,canonical_context,_) = - List.find (function (m,_,_) -> n = m) metasenv - in - let l' = - List.map2 - (fun ct t -> - match (ct, t) with - None, _ -> None - | _, Some t -> Some (eta_fix' t) - | Some _, None -> assert false (* due to typing rules *)) - canonical_context l - in - C.Meta (n,l') - | C.Sort s -> C.Sort s - | C.Implicit -> C.Implicit - | C.Cast (v,t) -> C.Cast (eta_fix' v, eta_fix' t) - | C.Prod (n,s,t) -> C.Prod (n, eta_fix' s, eta_fix' t) - | C.Lambda (n,s,t) -> C.Lambda (n, eta_fix' s, eta_fix' t) - | C.LetIn (n,s,t) -> C.LetIn (n, eta_fix' s, eta_fix' t) - | C.Appl l as appl -> - let l' = List.map eta_fix' l - in - (match l' with - C.Const(uri,exp_named_subst)::l'' -> - let constant_type = - (match CicEnvironment.get_obj uri with - C.Constant (_,_,ty,_) -> ty - | C.Variable _ -> raise ReferenceToVariable - | C.CurrentProof (_,_,_,_,params) -> raise RferenceToCurrentProof - | C.InductiveDefinition _ -> raise ReferenceToInductiveDefinition - ) - in - let result = fix_according_to_type constant_type (C.Const(uri,exp_named_subst)) l'' in - if not (CicReduction.are_convertible [] appl result) then - (prerr_endline ("prima :" ^(CicPp.ppterm appl)); - prerr_endline ("dopo :" ^(CicPp.ppterm result))); - result - | _ -> C.Appl l' ) - | C.Const (uri,exp_named_subst) -> - let exp_named_subst' = - List.map - (function i,t -> i, (eta_fix' t)) exp_named_subst - in - C.Const (uri,exp_named_subst') - | C.MutInd (uri,tyno,exp_named_subst) -> - let exp_named_subst' = - List.map - (function i,t -> i, (eta_fix' t)) exp_named_subst - in - C.MutInd (uri, tyno, exp_named_subst') - | C.MutConstruct (uri,tyno,consno,exp_named_subst) -> - let exp_named_subst' = - List.map - (function i,t -> i, (eta_fix' t)) exp_named_subst - in - C.MutConstruct (uri, tyno, consno, exp_named_subst') - | C.MutCase (uri, tyno, outty, term, patterns) -> - C.MutCase (uri, tyno, eta_fix' outty, - eta_fix' term, List.map eta_fix' patterns) - | C.Fix (funno, funs) -> - C.Fix (funno, - List.map - (fun (name, no, ty, bo) -> - (name, no, eta_fix' ty, eta_fix' bo)) funs) - | C.CoFix (funno, funs) -> - C.CoFix (funno, - List.map - (fun (name, ty, bo) -> - (name, eta_fix' ty, eta_fix' bo)) funs) - in - eta_fix' t -;; - - -