X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Focaml%2Fcic_proof_checking%2FcicElim.ml;h=c668d1c9be33420a1b9222a8646c8c3408b7a436;hb=4167cea65ca58897d1a3dbb81ff95de5074700cc;hp=93d64a12ced47376d61198db42edefb7fb656257;hpb=cbd78f48f8aa055e2d66922291717842d84383d1;p=helm.git diff --git a/helm/ocaml/cic_proof_checking/cicElim.ml b/helm/ocaml/cic_proof_checking/cicElim.ml index 93d64a12c..c668d1c9b 100644 --- a/helm/ocaml/cic_proof_checking/cicElim.ml +++ b/helm/ocaml/cic_proof_checking/cicElim.ml @@ -23,125 +23,393 @@ * http://helm.cs.unibo.it/ *) -let fresh_binder = - let counter = ref ~-1 in - fun () -> - incr counter; - "elim" ^ string_of_int !counter - - (** verifies if a given uri occurs in a term in target position *) -let rec recursive uri = function - | Cic.Prod (_, _, target) -> recursive uri target - | Cic.MutInd (uri', _, _) - | Cic.Appl [ Cic.MutInd (uri', _, _); _ ] -> UriManager.eq uri uri' +open Printf + +exception Elim_failure of string Lazy.t +exception Can_t_eliminate + +let debug_print = fun _ -> () +(*let debug_print s = prerr_endline (Lazy.force s) *) + +let counter = ref ~-1 ;; + +let fresh_binder () = Cic.Name "matita_dummy" +(* + incr counter; + Cic.Name ("e" ^ string_of_int !counter) *) + + (** verifies if a given inductive type occurs in a term in target position *) +let rec recursive uri typeno = function + | Cic.Prod (_, _, target) -> recursive uri typeno target + | Cic.MutInd (uri', typeno', []) + | Cic.Appl (Cic.MutInd (uri', typeno', []) :: _) -> + UriManager.eq uri uri' && typeno = typeno' | _ -> false + (** given a list of constructor types, return true if at least one of them is + * recursive, false otherwise *) +let recursive_type uri typeno constructors = + let rec aux = function + | Cic.Prod (_, src, tgt) -> recursive uri typeno src || aux tgt + | _ -> false + in + List.exists (fun (_, ty) -> aux ty) constructors + let unfold_appl = function | Cic.Appl ((Cic.Appl args) :: tl) -> Cic.Appl (args @ tl) | t -> t +let rec split l n = + match (l,n) with + (l,0) -> ([], l) + | (he::tl, n) -> let (l1,l2) = split tl (n-1) in (he::l1,l2) + | (_,_) -> assert false + (** build elimination principle part related to a single constructor - * @param strip number of Prod to ignore in this constructor (i.e. number of - * inductive parameters) *) -let rec delta (uri, typeno, subst) strip consno t p args = - assert (subst = []); + * @param paramsno number of Prod to ignore in this constructor (i.e. number of + * inductive parameters) + * @param dependent true if we are in the dependent case (i.e. sort <> Prop) *) +let rec delta (uri, typeno) dependent paramsno consno t p args = match t with - | Cic.MutInd (uri', typeno', subst') - | Cic.Appl (Cic.MutInd (uri', typeno', subst') :: _) when - UriManager.eq uri uri' && typeno = typeno' && subst = subst' -> - (match args with - | [] -> assert false - | [arg] -> unfold_appl (Cic.Appl [p; arg]) - | _ -> unfold_appl (Cic.Appl [p; unfold_appl (Cic.Appl args)])) -(* - | Cic.Appl (Cic.MutInd (uri', typeno', subst') :: _) when - UriManager.eq uri uri' && typeno = typeno' && subst = subst' -> - Cic.Appl (Cic.Rel p_rel :: args) -*) - | Cic.Prod (binder, src, tgt) when strip = 0 -> - if recursive uri src then + | Cic.MutInd (uri', typeno', []) when + UriManager.eq uri uri' && typeno = typeno' -> + if dependent then + (match args with + | [] -> assert false + | [arg] -> unfold_appl (Cic.Appl [p; arg]) + | _ -> unfold_appl (Cic.Appl [p; unfold_appl (Cic.Appl args)])) + else + p + | Cic.Appl (Cic.MutInd (uri', typeno', []) :: tl) when + UriManager.eq uri uri' && typeno = typeno' -> + let (lparams, rparams) = split tl paramsno in + if dependent then + (match args with + | [] -> assert false + | [arg] -> unfold_appl (Cic.Appl (p :: rparams @ [arg])) + | _ -> + unfold_appl (Cic.Appl (p :: + rparams @ [unfold_appl (Cic.Appl args)]))) + else (* non dependent *) + (match rparams with + | [] -> p + | _ -> Cic.Appl (p :: rparams)) + | Cic.Prod (binder, src, tgt) -> + if recursive uri typeno src then let args = List.map (CicSubstitution.lift 2) args in let phi = - (delta (uri, typeno, subst) strip consno src - (CicSubstitution.lift 1 p) [Cic.Rel 1]) + let src = CicSubstitution.lift 1 src in + delta (uri, typeno) dependent paramsno consno src + (CicSubstitution.lift 1 p) [Cic.Rel 1] in - Cic.Prod (Cic.Name (fresh_binder ()), src, + let tgt = CicSubstitution.lift 1 tgt in + Cic.Prod (fresh_binder (), src, Cic.Prod (Cic.Anonymous, phi, - delta (uri, typeno, subst) strip consno tgt + delta (uri, typeno) dependent paramsno consno tgt (CicSubstitution.lift 2 p) (args @ [Cic.Rel 2]))) else (* non recursive *) let args = List.map (CicSubstitution.lift 1) args in - Cic.Prod (Cic.Name (fresh_binder ()), src, - delta (uri, typeno, subst) strip consno tgt (CicSubstitution.lift 1 p) - (args @ [Cic.Rel 1])) - | Cic.Prod (_, _, tgt) (* when strip > 0 *) -> - (* after stripping the parameters we lift of 1 since P has been inserted - * in the way *) - let tgt = - if strip = 1 then CicSubstitution.lift consno tgt else tgt - in - delta (uri, typeno, subst) (strip - 1) consno tgt p args + Cic.Prod (fresh_binder (), src, + delta (uri, typeno) dependent paramsno consno tgt + (CicSubstitution.lift 1 p) (args @ [Cic.Rel 1])) | _ -> assert false -let rec add_params indno ty eliminator = +let rec strip_left_params consno leftno = function + | t when leftno = 0 -> t (* no need to lift, the term is (hopefully) closed *) + | Cic.Prod (_, _, tgt) (* when leftno > 0 *) -> + (* after stripping the parameters we lift of consno. consno is 1 based so, + * the first constructor will be lifted by 1 (for P), the second by 2 (1 + * for P and 1 for the 1st constructor), and so on *) + if leftno = 1 then + CicSubstitution.lift consno tgt + else + strip_left_params consno (leftno - 1) tgt + | _ -> assert false + +let delta (ury, typeno) dependent paramsno consno t p args = + let t = strip_left_params consno paramsno t in + delta (ury, typeno) dependent paramsno consno t p args + +let rec add_params binder indno ty eliminator = if indno = 0 then eliminator else match ty with - | Cic.Prod (binder, src, tgt) -> - Cic.Prod (binder, src, add_params (indno - 1) tgt eliminator) + | Cic.Prod (name, src, tgt) -> + let name = + match name with + Cic.Name _ -> name + | Cic.Anonymous -> fresh_binder () + in + binder name src (add_params binder (indno - 1) tgt eliminator) | _ -> assert false let rec mk_rels consno = function | 0 -> [] | n -> Cic.Rel (n+consno) :: mk_rels consno (n-1) -let elim_of uri typeno = - let (obj, univ) = (CicEnvironment.get_obj uri CicUniv.empty_ugraph) in - let subst = [] in +let rec strip_pi = function + | Cic.Prod (_, _, tgt) -> strip_pi tgt + | t -> t + +let rec count_pi = function + | Cic.Prod (_, _, tgt) -> count_pi tgt + 1 + | t -> 0 + +let rec type_of_p sort dependent leftno indty = function + | Cic.Prod (n, src, tgt) when leftno = 0 -> + let n = + if dependent then + match n with + Cic.Name _ -> n + | Cic.Anonymous -> fresh_binder () + else + n + in + Cic.Prod (n, src, type_of_p sort dependent leftno indty tgt) + | Cic.Prod (_, _, tgt) -> type_of_p sort dependent (leftno - 1) indty tgt + | t -> + if dependent then + Cic.Prod (Cic.Anonymous, indty, Cic.Sort sort) + else + Cic.Sort sort + +let rec add_right_pi dependent strip liftno liftfrom rightno indty = function + | Cic.Prod (_, src, tgt) when strip = 0 -> + Cic.Prod (fresh_binder (), + CicSubstitution.lift_from liftfrom liftno src, + add_right_pi dependent strip liftno (liftfrom + 1) rightno indty tgt) + | Cic.Prod (_, _, tgt) -> + add_right_pi dependent (strip - 1) liftno liftfrom rightno indty tgt + | t -> + if dependent then + Cic.Prod (fresh_binder (), + CicSubstitution.lift_from (rightno + 1) liftno indty, + Cic.Appl (Cic.Rel (1 + liftno + rightno) :: mk_rels 0 (rightno + 1))) + else + Cic.Prod (Cic.Anonymous, + CicSubstitution.lift_from (rightno + 1) liftno indty, + if rightno = 0 then + Cic.Rel (1 + liftno + rightno) + else + Cic.Appl (Cic.Rel (1 + liftno + rightno) :: mk_rels 1 rightno)) + +let rec add_right_lambda dependent strip liftno liftfrom rightno indty case = +function + | Cic.Prod (_, src, tgt) when strip = 0 -> + Cic.Lambda (fresh_binder (), + CicSubstitution.lift_from liftfrom liftno src, + add_right_lambda dependent strip liftno (liftfrom + 1) rightno indty + case tgt) + | Cic.Prod (_, _, tgt) -> + add_right_lambda true (strip - 1) liftno liftfrom rightno indty + case tgt + | t -> + Cic.Lambda (fresh_binder (), + CicSubstitution.lift_from (rightno + 1) liftno indty, case) + +let rec branch (uri, typeno) insource paramsno t fix head args = + match t with + | Cic.MutInd (uri', typeno', []) when + UriManager.eq uri uri' && typeno = typeno' -> + if insource then + (match args with + | [arg] -> Cic.Appl (fix :: args) + | _ -> Cic.Appl (head :: [Cic.Appl args])) + else + (match args with + | [] -> head + | _ -> Cic.Appl (head :: args)) + | Cic.Appl (Cic.MutInd (uri', typeno', []) :: tl) when + UriManager.eq uri uri' && typeno = typeno' -> + if insource then + let (lparams, rparams) = split tl paramsno in + match args with + | [arg] -> Cic.Appl (fix :: rparams @ args) + | _ -> Cic.Appl (fix :: rparams @ [Cic.Appl args]) + else + (match args with + | [] -> head + | _ -> Cic.Appl (head :: args)) + | Cic.Prod (binder, src, tgt) -> + if recursive uri typeno src then + let args = List.map (CicSubstitution.lift 1) args in + let phi = + let fix = CicSubstitution.lift 1 fix in + let src = CicSubstitution.lift 1 src in + branch (uri, typeno) true paramsno src fix head [Cic.Rel 1] + in + Cic.Lambda (fresh_binder (), src, + branch (uri, typeno) insource paramsno tgt + (CicSubstitution.lift 1 fix) (CicSubstitution.lift 1 head) + (args @ [Cic.Rel 1; phi])) + else (* non recursive *) + let args = List.map (CicSubstitution.lift 1) args in + Cic.Lambda (fresh_binder (), src, + branch (uri, typeno) insource paramsno tgt + (CicSubstitution.lift 1 fix) (CicSubstitution.lift 1 head) + (args @ [Cic.Rel 1])) + | _ -> assert false + +let branch (uri, typeno) insource liftno paramsno t fix head args = + let t = strip_left_params liftno paramsno t in + branch (uri, typeno) insource paramsno t fix head args + +let elim_of ~sort uri typeno = + counter := ~-1; + let (obj, univ) = (CicEnvironment.get_obj CicUniv.empty_ugraph uri) in match obj with - | Cic.InductiveDefinition (indTypes, params, indno) -> + | Cic.InductiveDefinition (indTypes, params, leftno, _) -> let (name, inductive, ty, constructors) = try List.nth indTypes typeno with Failure _ -> assert false in + let paramsno = count_pi ty in (* number of (left or right) parameters *) + let rightno = paramsno - leftno in + let dependent = (strip_pi ty <> Cic.Sort Cic.Prop) in +let head = match strip_pi ty with Cic.Sort s -> s in let conslen = List.length constructors in let consno = ref (conslen + 1) in + if + not + (CicTypeChecker.check_allowed_sort_elimination uri typeno head sort) + then + raise Can_t_eliminate; let indty = - let indty = Cic.MutInd (uri, typeno, subst) in - if indno = 0 then + let indty = Cic.MutInd (uri, typeno, []) in + if paramsno = 0 then indty else - Cic.Appl (indty :: mk_rels 0 indno) + Cic.Appl (indty :: mk_rels 0 paramsno) in let mk_constructor consno = - let constructor = Cic.MutConstruct (uri, typeno, consno, subst) in - if indno = 0 then + let constructor = Cic.MutConstruct (uri, typeno, consno, []) in + if leftno = 0 then constructor else - Cic.Appl (constructor :: mk_rels consno indno) + Cic.Appl (constructor :: mk_rels consno leftno) in - let eliminator = - Cic.Prod (Cic.Name "P", - (Cic.Prod (Cic.Anonymous, - indty, - (* Cic.MutInd (uri, typeno, subst), *) - Cic.Sort (Cic.Type (CicUniv.fresh ())))), - (List.fold_right - (fun (_, constructor) acc -> - decr consno; - let p = Cic.Rel !consno in - Cic.Prod (Cic.Anonymous, - (delta (uri, typeno, subst) indno !consno constructor p - [mk_constructor !consno]), - acc)) (* lift acc? see assumption above on delta *) - constructors - (Cic.Prod (Cic.Name (fresh_binder ()), - CicSubstitution.lift (conslen + 1) indty - (* Cic.MutInd (uri, typeno, subst) *), - Cic.Appl [Cic.Rel (2 + conslen); Cic.Rel 1])))) + let p_ty = type_of_p sort dependent leftno indty ty in + let final_ty = + add_right_pi dependent leftno (conslen + 1) 1 rightno indty ty in - add_params indno ty eliminator - | _ -> assert false + let eliminator_type = + let cic = + Cic.Prod (Cic.Name "P", p_ty, + (List.fold_right + (fun (_, constructor) acc -> + decr consno; + let p = Cic.Rel !consno in + Cic.Prod (Cic.Anonymous, + (delta (uri, typeno) dependent leftno !consno + constructor p [mk_constructor !consno]), + acc)) + constructors final_ty)) + in + add_params (fun b s t -> Cic.Prod (b, s, t)) leftno ty cic + in + let consno = ref (conslen + 1) in + let eliminator_body = + let fix = Cic.Rel (rightno + 2) in + let is_recursive = recursive_type uri typeno constructors in + let recshift = if is_recursive then 1 else 0 in + let (_, branches) = + List.fold_right + (fun (_, ty) (shift, branches) -> + let head = Cic.Rel (rightno + shift + 1 + recshift) in + let b = + branch (uri, typeno) false + (rightno + conslen + 2 + recshift) leftno ty fix head [] + in + (shift + 1, b :: branches)) + constructors (1, []) + in + let shiftno = conslen + rightno + 2 + recshift in + let outtype = + if dependent then + Cic.Rel shiftno + else + let head = + if rightno = 0 then + CicSubstitution.lift 1 (Cic.Rel shiftno) + else + Cic.Appl + ((CicSubstitution.lift (rightno + 1) (Cic.Rel shiftno)) :: + mk_rels 1 rightno) + in + add_right_lambda true leftno shiftno 1 rightno indty head ty + in + let mutcase = + Cic.MutCase (uri, typeno, outtype, Cic.Rel 1, branches) + in + let body = + if is_recursive then + let fixfun = + add_right_lambda dependent leftno (conslen + 2) 1 rightno + indty mutcase ty + in + (* rightno is the decreasing argument, i.e. the argument of + * inductive type *) + Cic.Fix (0, ["f", rightno, final_ty, fixfun]) + else + add_right_lambda dependent leftno (conslen + 1) 1 rightno indty + mutcase ty + in + let cic = + Cic.Lambda (Cic.Name "P", p_ty, + (List.fold_right + (fun (_, constructor) acc -> + decr consno; + let p = Cic.Rel !consno in + Cic.Lambda (fresh_binder (), + (delta (uri, typeno) dependent leftno !consno + constructor p [mk_constructor !consno]), + acc)) + constructors body)) + in + add_params (fun b s t -> Cic.Lambda (b, s, t)) leftno ty cic + in +(* +debug_print (lazy (CicPp.ppterm eliminator_type)); +debug_print (lazy (CicPp.ppterm eliminator_body)); +*) + let eliminator_type = + FreshNamesGenerator.mk_fresh_names [] [] [] eliminator_type in + let eliminator_body = + FreshNamesGenerator.mk_fresh_names [] [] [] eliminator_body in +(* +debug_print (lazy (CicPp.ppterm eliminator_type)); +debug_print (lazy (CicPp.ppterm eliminator_body)); +*) + let (computed_type, ugraph) = + try + CicTypeChecker.type_of_aux' [] [] eliminator_body CicUniv.empty_ugraph + with CicTypeChecker.TypeCheckerFailure msg -> + raise (Elim_failure (lazy (sprintf + "type checker failure while type checking:\n%s\nerror:\n%s" + (CicPp.ppterm eliminator_body) (Lazy.force msg)))) + in + if not (fst (CicReduction.are_convertible [] + eliminator_type computed_type ugraph)) + then + raise (Failure (sprintf + "internal error: type mismatch on eliminator type\n%s\n%s" + (CicPp.ppterm eliminator_type) (CicPp.ppterm computed_type))); + let suffix = + match sort with + | Cic.Prop -> "_ind" + | Cic.Set -> "_rec" + | Cic.Type _ -> "_rect" + | _ -> assert false + in + let name = UriManager.name_of_uri uri ^ suffix in + let buri = UriManager.buri_of_uri uri in + let uri = UriManager.uri_of_string (buri ^ "/" ^ name ^ ".con") in + let obj_attrs = [`Class (`Elim sort); `Generated] in + uri, + Cic.Constant (name, Some eliminator_body, eliminator_type, [], obj_attrs) + | _ -> + failwith (sprintf "not an inductive definition (%s)" + (UriManager.string_of_uri uri))