X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Focaml%2Fcic_proof_checking%2FcicReduction.ml;h=813a589d603d7c2025d9cfb97686d10573e5064c;hb=97c2d258a5c524eb5c4b85208899d80751a2c82f;hp=a6f6ee23b8e638452caf4a681ca1c6bf96585e96;hpb=58004b95e09ac46115883c4d29d69cfa58184e56;p=helm.git diff --git a/helm/ocaml/cic_proof_checking/cicReduction.ml b/helm/ocaml/cic_proof_checking/cicReduction.ml index a6f6ee23b..813a589d6 100644 --- a/helm/ocaml/cic_proof_checking/cicReduction.ml +++ b/helm/ocaml/cic_proof_checking/cicReduction.ml @@ -23,257 +23,1114 @@ * http://cs.unibo.it/helm/. *) +(* TODO unify exceptions *) + exception CicReductionInternalError;; exception WrongUriToInductiveDefinition;; +exception Impossible of int;; +exception ReferenceToConstant;; +exception ReferenceToVariable;; +exception ReferenceToCurrentProof;; +exception ReferenceToInductiveDefinition;; + +let debug = false +let profile = false +let debug_print s = if debug then prerr_endline (Lazy.force s) let fdebug = ref 1;; let debug t env s = let rec debug_aux t i = let module C = Cic in let module U = UriManager in - CicPp.ppobj (C.Variable ("DEBUG", None, - C.Prod (C.Name "-9", C.Const (U.uri_of_string "cic:/dummy-9",0), - C.Prod (C.Name "-8", C.Const (U.uri_of_string "cic:/dummy-8",0), - C.Prod (C.Name "-7", C.Const (U.uri_of_string "cic:/dummy-7",0), - C.Prod (C.Name "-6", C.Const (U.uri_of_string "cic:/dummy-6",0), - C.Prod (C.Name "-5", C.Const (U.uri_of_string "cic:/dummy-5",0), - C.Prod (C.Name "-4", C.Const (U.uri_of_string "cic:/dummy-4",0), - C.Prod (C.Name "-3", C.Const (U.uri_of_string "cic:/dummy-3",0), - C.Prod (C.Name "-2", C.Const (U.uri_of_string "cic:/dummy-2",0), - C.Prod (C.Name "-1", C.Const (U.uri_of_string "cic:/dummy-1",0), - t - ) - ) - ) - ) - ) - ) - ) - ) - ) - )) ^ "\n" ^ i + CicPp.ppobj (C.Variable ("DEBUG", None, t, [], [])) ^ "\n" ^ i in if !fdebug = 0 then - begin - print_endline (s ^ "\n" ^ List.fold_right debug_aux (t::env) "") ; - flush stdout - end + debug_print (lazy (s ^ "\n" ^ List.fold_right debug_aux (t::env) "")) ;; -exception Impossible of int;; -exception ReferenceToDefinition;; -exception ReferenceToAxiom;; -exception ReferenceToVariable;; -exception ReferenceToCurrentProof;; -exception ReferenceToInductiveDefinition;; +module type Strategy = + sig + type stack_term + type env_term + type ens_term + val to_stack : Cic.term -> stack_term + val to_stack_list : Cic.term list -> stack_term list + val to_env : Cic.term -> env_term + val to_ens : Cic.term -> ens_term + val from_stack : + unwind: + (int -> env_term list -> ens_term Cic.explicit_named_substitution -> + Cic.term -> Cic.term) -> + stack_term -> Cic.term + val from_stack_list : + unwind: + (int -> env_term list -> ens_term Cic.explicit_named_substitution -> + Cic.term -> Cic.term) -> + stack_term list -> Cic.term list + val from_env : env_term -> Cic.term + val from_ens : ens_term -> Cic.term + val stack_to_env : + reduce: + (int * env_term list * ens_term Cic.explicit_named_substitution * + Cic.term * stack_term list -> Cic.term) -> + unwind: + (int -> env_term list -> ens_term Cic.explicit_named_substitution -> + Cic.term -> Cic.term) -> + stack_term -> env_term + val compute_to_env : + reduce: + (int * env_term list * ens_term Cic.explicit_named_substitution * Cic.term * + stack_term list -> Cic.term) -> + unwind: + (int -> env_term list -> ens_term Cic.explicit_named_substitution -> + Cic.term -> Cic.term) -> + int -> env_term list -> ens_term Cic.explicit_named_substitution -> + Cic.term -> env_term + val compute_to_stack : + reduce: + (int * env_term list * ens_term Cic.explicit_named_substitution * Cic.term * + stack_term list -> Cic.term) -> + unwind: + (int -> env_term list -> ens_term Cic.explicit_named_substitution -> + Cic.term -> Cic.term) -> + int -> env_term list -> ens_term Cic.explicit_named_substitution -> + Cic.term -> stack_term + end +;; -(* takes a well-typed term *) -let whd = - let rec whdaux l = - let module C = Cic in - let module S = CicSubstitution in +module CallByNameStrategy = + struct + type stack_term = Cic.term + type env_term = Cic.term + type ens_term = Cic.term + let to_stack v = v + let to_stack_list l = l + let to_env v = v + let to_ens v = v + let from_stack ~unwind v = v + let from_stack_list ~unwind l = l + let from_env v = v + let from_ens v = v + let stack_to_env ~reduce ~unwind v = v + let compute_to_stack ~reduce ~unwind k e ens t = unwind k e ens t + let compute_to_env ~reduce ~unwind k e ens t = unwind k e ens t + end +;; + +module CallByValueStrategy = + struct + type stack_term = Cic.term + type env_term = Cic.term + type ens_term = Cic.term + let to_stack v = v + let to_stack_list l = l + let to_env v = v + let to_ens v = v + let from_stack ~unwind v = v + let from_stack_list ~unwind l = l + let from_env v = v + let from_ens v = v + let stack_to_env ~reduce ~unwind v = v + let compute_to_stack ~reduce ~unwind k e ens t = reduce (k,e,ens,t,[]) + let compute_to_env ~reduce ~unwind k e ens t = reduce (k,e,ens,t,[]) + end +;; + +module CallByValueStrategyByNameOnConstants = + struct + type stack_term = Cic.term + type env_term = Cic.term + type ens_term = Cic.term + let to_stack v = v + let to_stack_list l = l + let to_env v = v + let to_ens v = v + let from_stack ~unwind v = v + let from_stack_list ~unwind l = l + let from_env v = v + let from_ens v = v + let stack_to_env ~reduce ~unwind v = v + let compute_to_stack ~reduce ~unwind k e ens = function - C.Rel _ as t -> if l = [] then t else C.Appl (t::l) - | C.Var _ as t -> if l = [] then t else C.Appl (t::l) - | C.Meta _ as t -> if l = [] then t else C.Appl (t::l) - | C.Sort _ as t -> t (* l should be empty *) - | C.Implicit as t -> t - | C.Cast (te,ty) -> whdaux l te (*CSC E' GIUSTO BUTTARE IL CAST? *) - | C.Prod _ as t -> t (* l should be empty *) - | C.Lambda (name,s,t) as t' -> - (match l with - [] -> t' - | he::tl -> whdaux tl (S.subst he t) - (* when name is Anonimous the substitution should be superfluous *) - ) - | C.LetIn (n,s,t) -> whdaux l (S.subst (whdaux [] s) t) - | C.Appl (he::tl) -> whdaux (tl@l) he - | C.Appl [] -> raise (Impossible 1) - | C.Const (uri,cookingsno) as t -> - (match CicEnvironment.get_cooked_obj uri cookingsno with - C.Definition (_,body,_,_) -> whdaux l body - | C.Axiom _ -> if l = [] then t else C.Appl (t::l) - (*CSC: Prossima riga sbagliata: Var punta alle variabili, non Const *) - | C.Variable _ -> if l = [] then t else C.Appl (t::l) - | C.CurrentProof (_,_,body,_) -> whdaux l body - | C.InductiveDefinition _ -> raise ReferenceToInductiveDefinition - ) - | C.Abst _ as t -> t (*CSC l should be empty ????? *) - | C.MutInd (uri,_,_) as t -> if l = [] then t else C.Appl (t::l) - | C.MutConstruct (uri,_,_,_) as t -> if l = [] then t else C.Appl (t::l) - | C.MutCase (mutind,cookingsno,i,_,term,pl) as t -> - let decofix = - function - C.CoFix (i,fl) as t -> - let (_,_,body) = List.nth fl i in - let body' = - let counter = ref (List.length fl) in - List.fold_right - (fun _ -> decr counter ; S.subst (C.CoFix (!counter,fl))) - fl - body - in - whdaux [] body' - | C.Appl (C.CoFix (i,fl) :: tl) -> - let (_,_,body) = List.nth fl i in - let body' = - let counter = ref (List.length fl) in - List.fold_right - (fun _ -> decr counter ; S.subst (C.CoFix (!counter,fl))) - fl - body - in - whdaux tl body' - | t -> t - in - (match decofix (whdaux [] term) with - C.MutConstruct (_,_,_,j) -> whdaux l (List.nth pl (j-1)) - | C.Appl (C.MutConstruct (_,_,_,j) :: tl) -> - let (arity, r, num_ingredients) = - match CicEnvironment.get_obj mutind with - C.InductiveDefinition (tl,ingredients,r) -> - let (_,_,arity,_) = List.nth tl i - and num_ingredients = - List.fold_right - (fun (k,l) i -> - if k < cookingsno then i + List.length l else i - ) ingredients 0 - in - (arity,r,num_ingredients) - | _ -> raise WrongUriToInductiveDefinition - in - let ts = - let num_to_eat = r + num_ingredients in - let rec eat_first = - function - (0,l) -> l - | (n,he::tl) when n > 0 -> eat_first (n - 1, tl) - | _ -> raise (Impossible 5) - in - eat_first (num_to_eat,tl) - in - whdaux (ts@l) (List.nth pl (j-1)) - | C.Abst _| C.Cast _ | C.Implicit -> - raise (Impossible 2) (* we don't trust our whd ;-) *) - | _ -> t - ) - | C.Fix (i,fl) as t -> - let (_,recindex,_,body) = List.nth fl i in - let recparam = + Cic.Const _ as t -> unwind k e ens t + | t -> reduce (k,e,ens,t,[]) + let compute_to_env ~reduce ~unwind k e ens = + function + Cic.Const _ as t -> unwind k e ens t + | t -> reduce (k,e,ens,t,[]) + end +;; + +module LazyCallByValueStrategy = + struct + type stack_term = Cic.term lazy_t + type env_term = Cic.term lazy_t + type ens_term = Cic.term lazy_t + let to_stack v = lazy v + let to_stack_list l = List.map to_stack l + let to_env v = lazy v + let to_ens v = lazy v + let from_stack ~unwind v = Lazy.force v + let from_stack_list ~unwind l = List.map (from_stack ~unwind) l + let from_env v = Lazy.force v + let from_ens v = Lazy.force v + let stack_to_env ~reduce ~unwind v = v + let compute_to_stack ~reduce ~unwind k e ens t = lazy (reduce (k,e,ens,t,[])) + let compute_to_env ~reduce ~unwind k e ens t = lazy (reduce (k,e,ens,t,[])) + end +;; + +module LazyCallByValueStrategyByNameOnConstants = + struct + type stack_term = Cic.term lazy_t + type env_term = Cic.term lazy_t + type ens_term = Cic.term lazy_t + let to_stack v = lazy v + let to_stack_list l = List.map to_stack l + let to_env v = lazy v + let to_ens v = lazy v + let from_stack ~unwind v = Lazy.force v + let from_stack_list ~unwind l = List.map (from_stack ~unwind) l + let from_env v = Lazy.force v + let from_ens v = Lazy.force v + let stack_to_env ~reduce ~unwind v = v + let compute_to_stack ~reduce ~unwind k e ens t = + lazy ( + match t with + Cic.Const _ as t -> unwind k e ens t + | t -> reduce (k,e,ens,t,[])) + let compute_to_env ~reduce ~unwind k e ens t = + lazy ( + match t with + Cic.Const _ as t -> unwind k e ens t + | t -> reduce (k,e,ens,t,[])) + end +;; + +module LazyCallByNameStrategy = + struct + type stack_term = Cic.term lazy_t + type env_term = Cic.term lazy_t + type ens_term = Cic.term lazy_t + let to_stack v = lazy v + let to_stack_list l = List.map to_stack l + let to_env v = lazy v + let to_ens v = lazy v + let from_stack ~unwind v = Lazy.force v + let from_stack_list ~unwind l = List.map (from_stack ~unwind) l + let from_env v = Lazy.force v + let from_ens v = Lazy.force v + let stack_to_env ~reduce ~unwind v = v + let compute_to_stack ~reduce ~unwind k e ens t = lazy (unwind k e ens t) + let compute_to_env ~reduce ~unwind k e ens t = lazy (unwind k e ens t) + end +;; + +module + LazyCallByValueByNameOnConstantsWhenFromStack_ByNameStrategyWhenFromEnvOrEns += + struct + type stack_term = reduce:bool -> Cic.term + type env_term = reduce:bool -> Cic.term + type ens_term = reduce:bool -> Cic.term + let to_stack v = + let value = lazy v in + fun ~reduce -> Lazy.force value + let to_stack_list l = List.map to_stack l + let to_env v = + let value = lazy v in + fun ~reduce -> Lazy.force value + let to_ens v = + let value = lazy v in + fun ~reduce -> Lazy.force value + let from_stack ~unwind v = (v ~reduce:false) + let from_stack_list ~unwind l = List.map (from_stack ~unwind) l + let from_env v = (v ~reduce:true) + let from_ens v = (v ~reduce:true) + let stack_to_env ~reduce ~unwind v = v + let compute_to_stack ~reduce ~unwind k e ens t = + let svalue = + lazy ( + match t with + Cic.Const _ as t -> unwind k e ens t + | t -> reduce (k,e,ens,t,[]) + ) in + let lvalue = + lazy (unwind k e ens t) + in + fun ~reduce -> + if reduce then Lazy.force svalue else Lazy.force lvalue + let compute_to_env ~reduce ~unwind k e ens t = + let svalue = + lazy ( + match t with + Cic.Const _ as t -> unwind k e ens t + | t -> reduce (k,e,ens,t,[]) + ) in + let lvalue = + lazy (unwind k e ens t) + in + fun ~reduce -> + if reduce then Lazy.force svalue else Lazy.force lvalue + end +;; + +module ClosuresOnStackByValueFromEnvOrEnsStrategy = + struct + type stack_term = + int * Cic.term list * Cic.term Cic.explicit_named_substitution * Cic.term + type env_term = Cic.term + type ens_term = Cic.term + let to_stack v = (0,[],[],v) + let to_stack_list l = List.map to_stack l + let to_env v = v + let to_ens v = v + let from_stack ~unwind (k,e,ens,t) = unwind k e ens t + let from_stack_list ~unwind l = List.map (from_stack ~unwind) l + let from_env v = v + let from_ens v = v + let stack_to_env ~reduce ~unwind (k,e,ens,t) = reduce (k,e,ens,t,[]) + let compute_to_env ~reduce ~unwind k e ens t = + unwind k e ens t + let compute_to_stack ~reduce ~unwind k e ens t = (k,e,ens,t) + end +;; + +module ClosuresOnStackByValueFromEnvOrEnsByNameOnConstantsStrategy = + struct + type stack_term = + int * Cic.term list * Cic.term Cic.explicit_named_substitution * Cic.term + type env_term = Cic.term + type ens_term = Cic.term + let to_stack v = (0,[],[],v) + let to_stack_list l = List.map to_stack l + let to_env v = v + let to_ens v = v + let from_stack ~unwind (k,e,ens,t) = unwind k e ens t + let from_stack_list ~unwind l = List.map (from_stack ~unwind) l + let from_env v = v + let from_ens v = v + let stack_to_env ~reduce ~unwind (k,e,ens,t) = + match t with + Cic.Const _ as t -> unwind k e ens t + | t -> reduce (k,e,ens,t,[]) + let compute_to_env ~reduce ~unwind k e ens t = + unwind k e ens t + let compute_to_stack ~reduce ~unwind k e ens t = (k,e,ens,t) + end +;; + +module Reduction(RS : Strategy) = + struct + type env = RS.env_term list + type ens = RS.ens_term Cic.explicit_named_substitution + type stack = RS.stack_term list + type config = int * env * ens * Cic.term * stack + + (* k is the length of the environment e *) + (* m is the current depth inside the term *) + let unwind' m k e ens t = + let module C = Cic in + let module S = CicSubstitution in + if k = 0 && ens = [] then + t + else + let rec unwind_aux m = + function + C.Rel n as t -> + if n <= m then t else + let d = + try + Some (RS.from_env (List.nth e (n-m-1))) + with _ -> None + in + (match d with + Some t' -> + if m = 0 then t' else S.lift m t' + | None -> C.Rel (n-k) + ) + | C.Var (uri,exp_named_subst) -> +(* +debug_print (lazy ("%%%%%UWVAR " ^ String.concat " ; " (List.map (function (uri,t) -> UriManager.string_of_uri uri ^ " := " ^ CicPp.ppterm t) ens))) ; +*) + if List.exists (function (uri',_) -> UriManager.eq uri' uri) ens then + CicSubstitution.lift m (RS.from_ens (List.assq uri ens)) + else + let params = + let o,_ = + CicEnvironment.get_cooked_obj CicUniv.empty_ugraph uri + in + (match o with + C.Constant _ -> raise ReferenceToConstant + | C.Variable (_,_,_,params,_) -> params + | C.CurrentProof _ -> raise ReferenceToCurrentProof + | C.InductiveDefinition _ -> raise ReferenceToInductiveDefinition + ) + in + let exp_named_subst' = + substaux_in_exp_named_subst params exp_named_subst m + in + C.Var (uri,exp_named_subst') + | C.Meta (i,l) -> + let l' = + List.map + (function + None -> None + | Some t -> Some (unwind_aux m t) + ) l + in + C.Meta (i, l') + | C.Sort _ as t -> t + | C.Implicit _ as t -> t + | C.Cast (te,ty) -> C.Cast (unwind_aux m te, unwind_aux m ty) (*CSC ???*) + | C.Prod (n,s,t) -> C.Prod (n, unwind_aux m s, unwind_aux (m + 1) t) + | C.Lambda (n,s,t) -> C.Lambda (n, unwind_aux m s, unwind_aux (m + 1) t) + | C.LetIn (n,s,t) -> C.LetIn (n, unwind_aux m s, unwind_aux (m + 1) t) + | C.Appl l -> C.Appl (List.map (unwind_aux m) l) + | C.Const (uri,exp_named_subst) -> + let params = + let o,_ = + CicEnvironment.get_cooked_obj CicUniv.empty_ugraph uri + in + (match o with + C.Constant (_,_,_,params,_) -> params + | C.Variable _ -> raise ReferenceToVariable + | C.CurrentProof (_,_,_,_,params,_) -> params + | C.InductiveDefinition _ -> raise ReferenceToInductiveDefinition + ) + in + let exp_named_subst' = + substaux_in_exp_named_subst params exp_named_subst m + in + C.Const (uri,exp_named_subst') + | C.MutInd (uri,i,exp_named_subst) -> + let params = + let o,_ = + CicEnvironment.get_cooked_obj CicUniv.empty_ugraph uri + in + (match o with + C.Constant _ -> raise ReferenceToConstant + | C.Variable _ -> raise ReferenceToVariable + | C.CurrentProof _ -> raise ReferenceToCurrentProof + | C.InductiveDefinition (_,params,_,_) -> params + ) + in + let exp_named_subst' = + substaux_in_exp_named_subst params exp_named_subst m + in + C.MutInd (uri,i,exp_named_subst') + | C.MutConstruct (uri,i,j,exp_named_subst) -> + let params = + let o,_ = + CicEnvironment.get_cooked_obj CicUniv.empty_ugraph uri + in + (match o with + C.Constant _ -> raise ReferenceToConstant + | C.Variable _ -> raise ReferenceToVariable + | C.CurrentProof _ -> raise ReferenceToCurrentProof + | C.InductiveDefinition (_,params,_,_) -> params + ) + in + let exp_named_subst' = + substaux_in_exp_named_subst params exp_named_subst m + in + C.MutConstruct (uri,i,j,exp_named_subst') + | C.MutCase (sp,i,outt,t,pl) -> + C.MutCase (sp,i,unwind_aux m outt, unwind_aux m t, + List.map (unwind_aux m) pl) + | C.Fix (i,fl) -> + let len = List.length fl in + let substitutedfl = + List.map + (fun (name,i,ty,bo) -> + (name, i, unwind_aux m ty, unwind_aux (m+len) bo)) + fl + in + C.Fix (i, substitutedfl) + | C.CoFix (i,fl) -> + let len = List.length fl in + let substitutedfl = + List.map + (fun (name,ty,bo) -> (name, unwind_aux m ty, unwind_aux (m+len) bo)) + fl + in + C.CoFix (i, substitutedfl) + and substaux_in_exp_named_subst params exp_named_subst' m = + (*CSC: Idea di Andrea di ordinare compatibilmente con l'ordine dei params + let ens' = + List.map (function (uri,t) -> uri, unwind_aux m t) exp_named_subst' @ + (*CSC: qui liftiamo tutti gli ens anche se magari me ne servono la meta'!!! *) + List.map (function (uri,t) -> uri, CicSubstitution.lift m t) ens + in + let rec filter_and_lift = + function + [] -> [] + | uri::tl -> + let r = filter_and_lift tl in + (try + (uri,(List.assq uri ens'))::r + with + Not_found -> r + ) + in + filter_and_lift params + *) + + (*CSC: invece di concatenare sarebbe meglio rispettare l'ordine dei params *) + (*CSC: e' vero???? una veloce prova non sembra confermare la teoria *) + + (*CSC: codice copiato e modificato dalla cicSubstitution.subst_vars *) + (*CSC: codice altamente inefficiente *) + let rec filter_and_lift already_instantiated = + function + [] -> [] + | (uri,t)::tl when + List.for_all + (function (uri',_)-> not (UriManager.eq uri uri')) exp_named_subst' + && + not (List.mem uri already_instantiated) + && + List.mem uri params + -> + (uri,CicSubstitution.lift m (RS.from_ens t)) :: + (filter_and_lift (uri::already_instantiated) tl) + | _::tl -> filter_and_lift already_instantiated tl +(* + | (uri,_)::tl -> +debug_print (lazy ("---- SKIPPO " ^ UriManager.string_of_uri uri)) ; +if List.for_all (function (uri',_) -> not (UriManager.eq uri uri')) +exp_named_subst' then debug_print (lazy "---- OK1") ; +debug_print (lazy ("++++ uri " ^ UriManager.string_of_uri uri ^ " not in " ^ String.concat " ; " (List.map UriManager.string_of_uri params))) ; +if List.mem uri params then debug_print (lazy "---- OK2") ; + filter_and_lift tl +*) + in + List.map (function (uri,t) -> uri, unwind_aux m t) exp_named_subst' @ + (filter_and_lift [] (List.rev ens)) + in + unwind_aux m t + ;; + + let unwind = unwind' 0;; + +(* + let unwind = + let profiler_unwind = HExtlib.profile ~enable:profile "are_convertible.unwind" in + fun k e ens t -> + profiler_unwind.HExtlib.profile (unwind k e ens) t + ;; +*) + + let reduce ~delta ?(subst = []) context : config -> Cic.term = + let module C = Cic in + let module S = CicSubstitution in + let rec reduce = + function + (k, e, _, (C.Rel n as t), s) -> + let d = try - Some (List.nth l recindex) + Some (RS.from_env (List.nth e (n-1))) with - _ -> None + _ -> + try + begin + match List.nth context (n - 1 - k) with + None -> assert false + | Some (_,C.Decl _) -> None + | Some (_,C.Def (x,_)) -> Some (S.lift (n - k) x) + end + with + _ -> None in - (match recparam with - Some recparam -> - (match whdaux [] recparam with - C.MutConstruct _ - | C.Appl ((C.MutConstruct _)::_) -> - let body' = - let counter = ref (List.length fl) in - List.fold_right - (fun _ -> decr counter ; S.subst (C.Fix (!counter,fl))) - fl - body - in - (* Possible optimization: substituting whd recparam in l *) - whdaux l body' - | _ -> if l = [] then t else C.Appl (t::l) - ) - | None -> if l = [] then t else C.Appl (t::l) + (match d with + Some t' -> reduce (0,[],[],t',s) + | None -> + if s = [] then + C.Rel (n-k) + else C.Appl (C.Rel (n-k)::(RS.from_stack_list ~unwind s)) ) - | C.CoFix (i,fl) as t -> - (*CSC vecchio codice - let (_,_,body) = List.nth fl i in - let body' = - let counter = ref (List.length fl) in - List.fold_right - (fun _ -> decr counter ; S.subst (C.CoFix (!counter,fl))) - fl - body + | (k, e, ens, (C.Var (uri,exp_named_subst) as t), s) -> + if List.exists (function (uri',_) -> UriManager.eq uri' uri) ens then + reduce (0, [], [], RS.from_ens (List.assq uri ens), s) + else + ( let o,_ = + CicEnvironment.get_cooked_obj CicUniv.empty_ugraph uri + in + match o with + C.Constant _ -> raise ReferenceToConstant + | C.CurrentProof _ -> raise ReferenceToCurrentProof + | C.InductiveDefinition _ -> raise ReferenceToInductiveDefinition + | C.Variable (_,None,_,_,_) -> + let t' = unwind k e ens t in + if s = [] then t' else + C.Appl (t'::(RS.from_stack_list ~unwind s)) + | C.Variable (_,Some body,_,_,_) -> + let ens' = push_exp_named_subst k e ens exp_named_subst in + reduce (0, [], ens', body, s) + ) + | (k, e, ens, (C.Meta (n,l) as t), s) -> + (try + let (_, term,_) = CicUtil.lookup_subst n subst in + reduce (k, e, ens,CicSubstitution.subst_meta l term,s) + with CicUtil.Subst_not_found _ -> + let t' = unwind k e ens t in + if s = [] then t' else C.Appl (t'::(RS.from_stack_list ~unwind s))) + | (k, e, _, (C.Sort _ as t), s) -> t (* s should be empty *) + | (k, e, _, (C.Implicit _ as t), s) -> t (* s should be empty *) + | (k, e, ens, (C.Cast (te,ty) as t), s) -> + reduce (k, e, ens, te, s) (* s should be empty *) + | (k, e, ens, (C.Prod _ as t), s) -> + unwind k e ens t (* s should be empty *) + | (k, e, ens, (C.Lambda (_,_,t) as t'), []) -> unwind k e ens t' + | (k, e, ens, C.Lambda (_,_,t), p::s) -> + reduce (k+1, (RS.stack_to_env ~reduce ~unwind p)::e, ens, t,s) + | (k, e, ens, (C.LetIn (_,m,t) as t'), s) -> + let m' = RS.compute_to_env ~reduce ~unwind k e ens m in + reduce (k+1, m'::e, ens, t, s) + | (_, _, _, C.Appl [], _) -> assert false + | (k, e, ens, C.Appl (he::tl), s) -> + let tl' = + List.map + (function t -> RS.compute_to_stack ~reduce ~unwind k e ens t) tl in - whdaux l body' - *) - if l = [] then t else C.Appl (t::l) - in - whdaux [] + reduce (k, e, ens, he, (List.append tl') s) + (* CSC: Old Dead Code + | (k, e, ens, C.Appl ((C.Lambda _ as he)::tl), s) + | (k, e, ens, C.Appl ((C.Const _ as he)::tl), s) + | (k, e, ens, C.Appl ((C.MutCase _ as he)::tl), s) + | (k, e, ens, C.Appl ((C.Fix _ as he)::tl), s) -> + (* strict evaluation, but constants are NOT unfolded *) + let red = + function + C.Const _ as t -> unwind k e ens t + | t -> reduce (k,e,ens,t,[]) + in + let tl' = List.map red tl in + reduce (k, e, ens, he , List.append tl' s) + | (k, e, ens, C.Appl l, s) -> + C.Appl (List.append (List.map (unwind k e ens) l) s) + *) + | (k, e, ens, (C.Const (uri,exp_named_subst) as t), s) when delta=false-> + let t' = unwind k e ens t in + if s = [] then t' else C.Appl (t'::(RS.from_stack_list ~unwind s)) + | (k, e, ens, (C.Const (uri,exp_named_subst) as t), s) -> + (let o,_ = + CicEnvironment.get_cooked_obj CicUniv.empty_ugraph uri + in + match o with + C.Constant (_,Some body,_,_,_) -> + let ens' = push_exp_named_subst k e ens exp_named_subst in + (* constants are closed *) + reduce (0, [], ens', body, s) + | C.Constant (_,None,_,_,_) -> + let t' = unwind k e ens t in + if s = [] then t' else C.Appl (t'::(RS.from_stack_list ~unwind s)) + | C.Variable _ -> raise ReferenceToVariable + | C.CurrentProof (_,_,body,_,_,_) -> + let ens' = push_exp_named_subst k e ens exp_named_subst in + (* constants are closed *) + reduce (0, [], ens', body, s) + | C.InductiveDefinition _ -> raise ReferenceToInductiveDefinition + ) + | (k, e, ens, (C.MutInd _ as t),s) -> + let t' = unwind k e ens t in + if s = [] then t' else C.Appl (t'::(RS.from_stack_list ~unwind s)) + | (k, e, ens, (C.MutConstruct _ as t),s) -> + let t' = unwind k e ens t in + if s = [] then t' else C.Appl (t'::(RS.from_stack_list ~unwind s)) + | (k, e, ens, (C.MutCase (mutind,i,_,term,pl) as t),s) -> + let decofix = + function + C.CoFix (i,fl) as t -> + let (_,_,body) = List.nth fl i in + let body' = + let counter = ref (List.length fl) in + List.fold_right + (fun _ -> decr counter ; S.subst (C.CoFix (!counter,fl))) + fl + body + in + (* the term is the result of a reduction; *) + (* so it is already unwinded. *) + reduce (0,[],[],body',[]) + | C.Appl (C.CoFix (i,fl) :: tl) -> + let (_,_,body) = List.nth fl i in + let body' = + let counter = ref (List.length fl) in + List.fold_right + (fun _ -> decr counter ; S.subst (C.CoFix (!counter,fl))) + fl + body + in + (* the term is the result of a reduction; *) + (* so it is already unwinded. *) + reduce (0,[],[],body',RS.to_stack_list tl) + | t -> t + in + (match decofix (reduce (k,e,ens,term,[])) with + C.MutConstruct (_,_,j,_) -> + reduce (k, e, ens, (List.nth pl (j-1)), s) + | C.Appl (C.MutConstruct (_,_,j,_) :: tl) -> + let (arity, r) = + let o,_ = + CicEnvironment.get_cooked_obj CicUniv.empty_ugraph mutind + in + match o with + C.InductiveDefinition (tl,ingredients,r,_) -> + let (_,_,arity,_) = List.nth tl i in + (arity,r) + | _ -> raise WrongUriToInductiveDefinition + in + let ts = + let num_to_eat = r in + let rec eat_first = + function + (0,l) -> l + | (n,he::tl) when n > 0 -> eat_first (n - 1, tl) + | _ -> raise (Impossible 5) + in + eat_first (num_to_eat,tl) + in + (* ts are already unwinded because they are a sublist of tl *) + reduce (k, e, ens, (List.nth pl (j-1)), (RS.to_stack_list ts)@s) + | C.Cast _ | C.Implicit _ -> + raise (Impossible 2) (* we don't trust our whd ;-) *) + | _ -> + let t' = unwind k e ens t in + if s = [] then t' else C.Appl (t'::(RS.from_stack_list ~unwind s)) + ) + | (k, e, ens, (C.Fix (i,fl) as t), s) -> + let (_,recindex,_,body) = List.nth fl i in + let recparam = + try + Some (RS.from_stack ~unwind (List.nth s recindex)) + with + _ -> None + in + (match recparam with + Some recparam -> + (match reduce (0,[],[],recparam,[]) with + (* match recparam with *) + C.MutConstruct _ + | C.Appl ((C.MutConstruct _)::_) -> + (* OLD + let body' = + let counter = ref (List.length fl) in + List.fold_right + (fun _ -> decr counter ; S.subst (C.Fix (!counter,fl))) + fl + body + in + reduce (k, e, ens, body', s) *) + (* NEW *) + let leng = List.length fl in + let fl' = + let unwind_fl (name,recindex,typ,body) = + (name,recindex,unwind k e ens typ, + unwind' leng k e ens body) + in + List.map unwind_fl fl + in + let new_env = + let counter = ref 0 in + let rec build_env e = + if !counter = leng then e + else + (incr counter ; + build_env ((RS.to_env (C.Fix (!counter -1, fl')))::e)) + in + build_env e + in + reduce (k+leng, new_env, ens, body, s) + | _ -> + let t' = unwind k e ens t in + if s = [] then t' else + C.Appl (t'::(RS.from_stack_list ~unwind s)) + ) + | None -> + let t' = unwind k e ens t in + if s = [] then t' else + C.Appl (t'::(RS.from_stack_list ~unwind s)) + ) + | (k, e, ens, (C.CoFix (i,fl) as t),s) -> + let t' = unwind k e ens t in + if s = [] then t' else C.Appl (t'::(RS.from_stack_list ~unwind s)) + and push_exp_named_subst k e ens = + function + [] -> ens + | (uri,t)::tl -> + push_exp_named_subst k e ((uri,RS.to_ens (unwind k e ens t))::ens) tl + in + reduce + ;; + (* + let rec whd context t = + try + reduce context (0, [], [], t, []) + with Not_found -> + debug_print (lazy (CicPp.ppterm t)) ; + raise Not_found + ;; + *) + + let rec whd ?(delta=true) ?(subst=[]) context t = + reduce ~delta ~subst context (0, [], [], t, []) + ;; + + + end ;; + +(* ROTTO = rompe l'unificazione poiche' riduce gli argomenti di un'applicazione + senza ridurre la testa +module R = Reduction CallByNameStrategy;; OK 56.368s +module R = Reduction CallByValueStrategy;; ROTTO +module R = Reduction CallByValueStrategyByNameOnConstants;; ROTTO +module R = Reduction LazyCallByValueStrategy;; ROTTO +module R = Reduction LazyCallByValueStrategyByNameOnConstants;; ROTTO +module R = Reduction LazyCallByNameStrategy;; OK 0m56.398s +module R = Reduction + LazyCallByValueByNameOnConstantsWhenFromStack_ByNameStrategyWhenFromEnvOrEns;; + OK 59.058s +module R = Reduction ClosuresOnStackByValueFromEnvOrEnsStrategy;; OK 58.583s +module R = Reduction + ClosuresOnStackByValueFromEnvOrEnsByNameOnConstantsStrategy;; OK 58.094s +module R = Reduction(ClosuresOnStackByValueFromEnvOrEnsStrategy);; OK 58.127s +*) +module R = Reduction(ClosuresOnStackByValueFromEnvOrEnsStrategy);; +module U = UriManager;; + +let whd = R.whd + +(* +let whd = + let profiler_whd = HExtlib.profile ~enable:profile "are_convertible.whd" in + fun ?(delta=true) ?(subst=[]) context t -> + profiler_whd.HExtlib.profile (whd ~delta ~subst context) t +*) + + (* mimic ocaml (<< 3.08) "=" behaviour. Tests physical equality first then + * fallbacks to structural equality *) +let (===) x y = + Pervasives.compare x y = 0 + (* t1, t2 must be well-typed *) -let are_convertible t1 t2 = - let module U = UriManager in - let rec aux t1 t2 = - debug t1 [t2] "PREWHD"; - (* this trivial euristic cuts down the total time of about five times ;-) *) - (* this because most of the time t1 and t2 are "sintactically" the same *) - if t1 = t2 then - true - else +let are_convertible whd ?(subst=[]) ?(metasenv=[]) = + let rec aux test_equality_only context t1 t2 ugraph = + let aux2 test_equality_only t1 t2 ugraph = + + (* this trivial euristic cuts down the total time of about five times ;-) *) + (* this because most of the time t1 and t2 are "sintactically" the same *) + if t1 === t2 then + true,ugraph + else + begin + let module C = Cic in + match (t1,t2) with + (C.Rel n1, C.Rel n2) -> (n1 = n2),ugraph + | (C.Var (uri1,exp_named_subst1), C.Var (uri2,exp_named_subst2)) -> + if U.eq uri1 uri2 then + (try + List.fold_right2 + (fun (uri1,x) (uri2,y) (b,ugraph) -> + let b',ugraph' = aux test_equality_only context x y ugraph in + (U.eq uri1 uri2 && b' && b),ugraph' + ) exp_named_subst1 exp_named_subst2 (true,ugraph) + with + Invalid_argument _ -> false,ugraph + ) + else + false,ugraph + | (C.Meta (n1,l1), C.Meta (n2,l2)) -> + if n1 = n2 then + let b2, ugraph1 = + let l1 = CicUtil.clean_up_local_context subst metasenv n1 l1 in + let l2 = CicUtil.clean_up_local_context subst metasenv n2 l2 in + List.fold_left2 + (fun (b,ugraph) t1 t2 -> + if b then + match t1,t2 with + None,_ + | _,None -> true,ugraph + | Some t1',Some t2' -> + aux test_equality_only context t1' t2' ugraph + else + false,ugraph + ) (true,ugraph) l1 l2 + in + if b2 then true,ugraph1 else false,ugraph + else + false,ugraph + (* TASSI: CONSTRAINTS *) + | (C.Sort (C.Type t1), C.Sort (C.Type t2)) when test_equality_only -> + true,(CicUniv.add_eq t2 t1 ugraph) + (* TASSI: CONSTRAINTS *) + | (C.Sort (C.Type t1), C.Sort (C.Type t2)) -> + true,(CicUniv.add_ge t2 t1 ugraph) + (* TASSI: CONSTRAINTS *) + | (C.Sort s1, C.Sort (C.Type _)) -> (not test_equality_only),ugraph + (* TASSI: CONSTRAINTS *) + | (C.Sort s1, C.Sort s2) -> (s1 = s2),ugraph + | (C.Prod (name1,s1,t1), C.Prod(_,s2,t2)) -> + let b',ugraph' = aux true context s1 s2 ugraph in + if b' then + aux test_equality_only ((Some (name1, (C.Decl s1)))::context) + t1 t2 ugraph' + else + false,ugraph + | (C.Lambda (name1,s1,t1), C.Lambda(_,s2,t2)) -> + let b',ugraph' = aux test_equality_only context s1 s2 ugraph in + if b' then + aux test_equality_only ((Some (name1, (C.Decl s1)))::context) + t1 t2 ugraph' + else + false,ugraph + | (C.LetIn (name1,s1,t1), C.LetIn(_,s2,t2)) -> + let b',ugraph' = aux test_equality_only context s1 s2 ugraph in + if b' then + aux test_equality_only + ((Some (name1, (C.Def (s1,None))))::context) t1 t2 ugraph' + else + false,ugraph + | (C.Appl l1, C.Appl l2) -> + (try + List.fold_right2 + (fun x y (b,ugraph) -> + if b then + aux test_equality_only context x y ugraph + else + false,ugraph) l1 l2 (true,ugraph) + with + Invalid_argument _ -> false,ugraph + ) + | (C.Const (uri1,exp_named_subst1), C.Const (uri2,exp_named_subst2)) -> + let b' = U.eq uri1 uri2 in + if b' then + (try + List.fold_right2 + (fun (uri1,x) (uri2,y) (b,ugraph) -> + if b && U.eq uri1 uri2 then + aux test_equality_only context x y ugraph + else + false,ugraph + ) exp_named_subst1 exp_named_subst2 (true,ugraph) + with + Invalid_argument _ -> false,ugraph + ) + else + false,ugraph + | (C.MutInd (uri1,i1,exp_named_subst1), + C.MutInd (uri2,i2,exp_named_subst2) + ) -> + let b' = U.eq uri1 uri2 && i1 = i2 in + if b' then + (try + List.fold_right2 + (fun (uri1,x) (uri2,y) (b,ugraph) -> + if b && U.eq uri1 uri2 then + aux test_equality_only context x y ugraph + else + false,ugraph + ) exp_named_subst1 exp_named_subst2 (true,ugraph) + with + Invalid_argument _ -> false,ugraph + ) + else + false,ugraph + | (C.MutConstruct (uri1,i1,j1,exp_named_subst1), + C.MutConstruct (uri2,i2,j2,exp_named_subst2) + ) -> + let b' = U.eq uri1 uri2 && i1 = i2 && j1 = j2 in + if b' then + (try + List.fold_right2 + (fun (uri1,x) (uri2,y) (b,ugraph) -> + if b && U.eq uri1 uri2 then + aux test_equality_only context x y ugraph + else + false,ugraph + ) exp_named_subst1 exp_named_subst2 (true,ugraph) + with + Invalid_argument _ -> false,ugraph + ) + else + false,ugraph + | (C.MutCase (uri1,i1,outtype1,term1,pl1), + C.MutCase (uri2,i2,outtype2,term2,pl2)) -> + let b' = U.eq uri1 uri2 && i1 = i2 in + if b' then + let b'',ugraph''=aux test_equality_only context + outtype1 outtype2 ugraph in + if b'' then + let b''',ugraph'''= aux test_equality_only context + term1 term2 ugraph'' in + List.fold_right2 + (fun x y (b,ugraph) -> + if b then + aux test_equality_only context x y ugraph + else + false,ugraph) + pl1 pl2 (b''',ugraph''') + else + false,ugraph + else + false,ugraph + | (C.Fix (i1,fl1), C.Fix (i2,fl2)) -> + let tys = + List.map (function (n,_,ty,_) -> Some (C.Name n,(C.Decl ty))) fl1 + in + if i1 = i2 then + List.fold_right2 + (fun (_,recindex1,ty1,bo1) (_,recindex2,ty2,bo2) (b,ugraph) -> + if b && recindex1 = recindex2 then + let b',ugraph' = aux test_equality_only context ty1 ty2 + ugraph in + if b' then + aux test_equality_only (tys@context) bo1 bo2 ugraph' + else + false,ugraph + else + false,ugraph) + fl1 fl2 (true,ugraph) + else + false,ugraph + | (C.CoFix (i1,fl1), C.CoFix (i2,fl2)) -> + let tys = + List.map (function (n,ty,_) -> Some (C.Name n,(C.Decl ty))) fl1 + in + if i1 = i2 then + List.fold_right2 + (fun (_,ty1,bo1) (_,ty2,bo2) (b,ugraph) -> + if b then + let b',ugraph' = aux test_equality_only context ty1 ty2 + ugraph in + if b' then + aux test_equality_only (tys@context) bo1 bo2 ugraph' + else + false,ugraph + else + false,ugraph) + fl1 fl2 (true,ugraph) + else + false,ugraph + | (C.Cast _, _) | (_, C.Cast _) + | (C.Implicit _, _) | (_, C.Implicit _) -> assert false + | (_,_) -> false,ugraph + end + in + begin + debug t1 [t2] "PREWHD"; + (* + (match t1 with + Cic.Meta _ -> + debug_print (lazy (CicPp.ppterm t1)); + debug_print (lazy (CicPp.ppterm (whd ~subst context t1))); + debug_print (lazy (CicPp.ppterm t2)); + debug_print (lazy (CicPp.ppterm (whd ~subst context t2))) + | _ -> ()); *) + let t1' = whd ?delta:(Some true) ?subst:(Some subst) context t1 in + let t2' = whd ?delta:(Some true) ?subst:(Some subst) context t2 in + debug t1' [t2'] "POSTWHD"; + aux2 test_equality_only t1' t2' ugraph + end + in + aux false (*c t1 t2 ugraph *) +;; + +(* DEBUGGING ONLY +let whd ?(delta=true) ?(subst=[]) context t = + let res = whd ~delta ~subst context t in + let rescsc = CicReductionNaif.whd ~delta ~subst context t in + if not (fst (are_convertible CicReductionNaif.whd ~subst context res rescsc CicUniv.empty_ugraph)) then begin - let module C = Cic in - let t1' = whd t1 - and t2' = whd t2 in - debug t1' [t2'] "POSTWHD"; - (*if !fdebug = 0 then ignore(Unix.system "read" );*) - match (t1',t2') with - (C.Rel n1, C.Rel n2) -> n1 = n2 - | (C.Var uri1, C.Var uri2) -> U.eq uri1 uri2 - | (C.Meta n1, C.Meta n2) -> n1 = n2 - | (C.Sort s1, C.Sort s2) -> true (*CSC da finire con gli universi *) - | (C.Prod (_,s1,t1), C.Prod(_,s2,t2)) -> - aux s1 s2 && aux t1 t2 - | (C.Lambda (_,s1,t1), C.Lambda(_,s2,t2)) -> - aux s1 s2 && aux t1 t2 - | (C.Appl l1, C.Appl l2) -> - (try - List.fold_right2 (fun x y b -> aux x y && b) l1 l2 true - with - Invalid_argument _ -> false - ) - | (C.Const (uri1,_), C.Const (uri2,_)) -> - (*CSC: questo commento e' chiaro o delirante? Io lo sto scrivendo *) - (*CSC: mentre sono delirante, quindi ... *) - (* WARNING: it is really important that the two cookingsno are not *) - (* checked for equality. This allows not to cook an object with no *) - (* ingredients only to update the cookingsno. E.g: if a term t has *) - (* a reference to a term t1 which does not depend on any variable *) - (* and t1 depends on a term t2 (that can't depend on any variable *) - (* because of t1), then t1 cooked at every level could be the same *) - (* as t1 cooked at level 0. Doing so, t2 will be extended in t *) - (* with cookingsno 0 and not 2. But this will not cause any trouble*) - (* if here we don't check that the two cookingsno are equal. *) - U.eq uri1 uri2 - | (C.MutInd (uri1,k1,i1), C.MutInd (uri2,k2,i2)) -> - (* WARNIG: see the previous warning *) - U.eq uri1 uri2 && i1 = i2 - | (C.MutConstruct (uri1,_,i1,j1), C.MutConstruct (uri2,_,i2,j2)) -> - (* WARNIG: see the previous warning *) - U.eq uri1 uri2 && i1 = i2 && j1 = j2 - | (C.MutCase (uri1,_,i1,outtype1,term1,pl1), - C.MutCase (uri2,_,i2,outtype2,term2,pl2)) -> - (* WARNIG: see the previous warning *) - (* aux outtype1 outtype2 should be true if aux pl1 pl2 *) - U.eq uri1 uri2 && i1 = i2 && aux outtype1 outtype2 && - aux term1 term2 && - List.fold_right2 (fun x y b -> b && aux x y) pl1 pl2 true - | (C.Fix (i1,fl1), C.Fix (i2,fl2)) -> - i1 = i2 && - List.fold_right2 - (fun (_,recindex1,ty1,bo1) (_,recindex2,ty2,bo2) b -> - b && recindex1 = recindex2 && aux ty1 ty2 && aux bo1 bo2) - fl1 fl2 true - | (C.CoFix (i1,fl1), C.CoFix (i2,fl2)) -> - i1 = i2 && - List.fold_right2 - (fun (_,ty1,bo1) (_,ty2,bo2) b -> - b && aux ty1 ty2 && aux bo1 bo2) - fl1 fl2 true - | (C.Abst _, _) | (_, C.Abst _) | (C.Cast _, _) | (_, C.Cast _) - | (C.Implicit, _) | (_, C.Implicit) -> - raise (Impossible 3) (* we don't trust our whd ;-) *) - | (_,_) -> false + debug_print (lazy ("PRIMA: " ^ CicPp.ppterm t)) ; + flush stderr ; + debug_print (lazy ("DOPO: " ^ CicPp.ppterm res)) ; + flush stderr ; + debug_print (lazy ("CSC: " ^ CicPp.ppterm rescsc)) ; + flush stderr ; +fdebug := 0 ; +let _ = are_convertible CicReductionNaif.whd ~subst context res rescsc CicUniv.empty_ugraph in + assert false ; end - in - aux t1 t2 + else + res ;; +*) + +let are_convertible = are_convertible whd + +let whd = R.whd + +(* +let profiler_other_whd = HExtlib.profile ~enable:profile "~are_convertible.whd" +let whd ?(delta=true) ?(subst=[]) context t = + let foo () = + whd ~delta ~subst context t + in + profiler_other_whd.HExtlib.profile foo () +*) + +let rec normalize ?(delta=true) ?(subst=[]) ctx term = + let module C = Cic in + let t = whd ~delta ~subst ctx term in + let aux = normalize ~delta ~subst in + let decl name t = Some (name, C.Decl t) in + let def name t = Some (name, C.Def (t,None)) in + match t with + | C.Rel n -> t + | C.Var (uri,exp_named_subst) -> + C.Var (uri, List.map (fun (n,t) -> n,aux ctx t) exp_named_subst) + | C.Meta (i,l) -> + C.Meta (i,List.map (function Some t -> Some (aux ctx t) | None -> None) l) + | C.Sort _ -> t + | C.Implicit _ -> t + | C.Cast (te,ty) -> C.Cast (aux ctx te, aux ctx ty) + | C.Prod (n,s,t) -> + let s' = aux ctx s in + C.Prod (n, s', aux ((decl n s')::ctx) t) + | C.Lambda (n,s,t) -> + let s' = aux ctx s in + C.Lambda (n, s', aux ((decl n s')::ctx) t) + | C.LetIn (n,s,t) -> + (* the term is already in weak head normal form *) + assert false + | C.Appl (h::l) -> C.Appl (h::(List.map (aux ctx) l)) + | C.Appl [] -> assert false + | C.Const (uri,exp_named_subst) -> + C.Const (uri, List.map (fun (n,t) -> n,aux ctx t) exp_named_subst) + | C.MutInd (uri,typeno,exp_named_subst) -> + C.MutInd (uri,typeno, List.map (fun (n,t) -> n,aux ctx t) exp_named_subst) + | C.MutConstruct (uri,typeno,consno,exp_named_subst) -> + C.MutConstruct (uri, typeno, consno, + List.map (fun (n,t) -> n,aux ctx t) exp_named_subst) + | C.MutCase (sp,i,outt,t,pl) -> + C.MutCase (sp,i, aux ctx outt, aux ctx t, List.map (aux ctx) pl) +(*CSC: to be completed, I suppose *) + | C.Fix _ -> t + | C.CoFix _ -> t + +let normalize ?delta ?subst ctx term = +(* prerr_endline ("NORMALIZE:" ^ CicPp.ppterm term); *) + let t = normalize ?delta ?subst ctx term in +(* prerr_endline ("NORMALIZED:" ^ CicPp.ppterm t); *) + t + + +(* performs an head beta/cast reduction *) +let rec head_beta_reduce = + function + (Cic.Appl (Cic.Lambda (_,_,t)::he'::tl')) -> + let he'' = CicSubstitution.subst he' t in + if tl' = [] then + he'' + else + let he''' = + match he'' with + Cic.Appl l -> Cic.Appl (l@tl') + | _ -> Cic.Appl (he''::tl') + in + head_beta_reduce he''' + | Cic.Cast (te,_) -> head_beta_reduce te + | t -> t