X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Focaml%2Fcic_proof_checking%2FcicReductionMachine.ml;h=e963ddce9b5062a941a45ff2b6e3cf44c89b8707;hb=5325734bc2e4927ed7ec146e35a6f0f2b49f50c1;hp=d0e103521b88fedf16615c79c05cb2b79c8c858a;hpb=37f08b2aba9f17d9d609ca0f57d607f437a3d3fc;p=helm.git diff --git a/helm/ocaml/cic_proof_checking/cicReductionMachine.ml b/helm/ocaml/cic_proof_checking/cicReductionMachine.ml index d0e103521..e963ddce9 100644 --- a/helm/ocaml/cic_proof_checking/cicReductionMachine.ml +++ b/helm/ocaml/cic_proof_checking/cicReductionMachine.ml @@ -23,289 +23,715 @@ * http://cs.unibo.it/helm/. *) +(* TODO unify exceptions *) + exception CicReductionInternalError;; exception WrongUriToInductiveDefinition;; +exception Impossible of int;; +exception ReferenceToConstant;; +exception ReferenceToVariable;; +exception ReferenceToCurrentProof;; +exception ReferenceToInductiveDefinition;; let fdebug = ref 1;; let debug t env s = let rec debug_aux t i = let module C = Cic in let module U = UriManager in - CicPp.ppobj (C.Variable ("DEBUG", None, t)) ^ "\n" ^ i + CicPp.ppobj (C.Variable ("DEBUG", None, t, [])) ^ "\n" ^ i in if !fdebug = 0 then - begin - print_endline (s ^ "\n" ^ List.fold_right debug_aux (t::env) "") ; - flush stdout - end + prerr_endline (s ^ "\n" ^ List.fold_right debug_aux (t::env) "") ;; -exception Impossible of int;; -exception ReferenceToDefinition;; -exception ReferenceToAxiom;; -exception ReferenceToVariable;; -exception ReferenceToCurrentProof;; -exception ReferenceToInductiveDefinition;; +module type Strategy = + sig + type stack_term + type env_term + type ens_term + val to_stack : Cic.term -> stack_term + val to_stack_list : Cic.term list -> stack_term list + val to_env : Cic.term -> env_term + val to_ens : Cic.term -> ens_term + val from_stack : + unwind: + (int -> env_term list -> ens_term Cic.explicit_named_substitution -> + Cic.term -> Cic.term) -> + stack_term -> Cic.term + val from_stack_list : + unwind: + (int -> env_term list -> ens_term Cic.explicit_named_substitution -> + Cic.term -> Cic.term) -> + stack_term list -> Cic.term list + val from_env : env_term -> Cic.term + val from_ens : ens_term -> Cic.term + val stack_to_env : + reduce: + (int * env_term list * ens_term Cic.explicit_named_substitution * + Cic.term * stack_term list -> Cic.term) -> + unwind: + (int -> env_term list -> ens_term Cic.explicit_named_substitution -> + Cic.term -> Cic.term) -> + stack_term -> env_term + val compute_to_env : + reduce: + (int * env_term list * ens_term Cic.explicit_named_substitution * Cic.term * + stack_term list -> Cic.term) -> + unwind: + (int -> env_term list -> ens_term Cic.explicit_named_substitution -> + Cic.term -> Cic.term) -> + int -> env_term list -> ens_term Cic.explicit_named_substitution -> + Cic.term -> env_term + val compute_to_stack : + reduce: + (int * env_term list * ens_term Cic.explicit_named_substitution * Cic.term * + stack_term list -> Cic.term) -> + unwind: + (int -> env_term list -> ens_term Cic.explicit_named_substitution -> + Cic.term -> Cic.term) -> + int -> env_term list -> ens_term Cic.explicit_named_substitution -> + Cic.term -> stack_term + end +;; + +module CallByNameStrategy = + struct + type stack_term = Cic.term + type env_term = Cic.term + type ens_term = Cic.term + let to_stack v = v + let to_stack_list l = l + let to_env v = v + let to_ens v = v + let from_stack ~unwind v = v + let from_stack_list ~unwind l = l + let from_env v = v + let from_ens v = v + let stack_to_env ~reduce ~unwind v = v + let compute_to_stack ~reduce ~unwind k e ens t = unwind k e ens t + let compute_to_env ~reduce ~unwind k e ens t = unwind k e ens t + end +;; -type env = Cic.term list;; -type stack = Cic.term list;; -type config = int * env * Cic.term * stack;; +module CallByValueStrategy = + struct + type stack_term = Cic.term + type env_term = Cic.term + type ens_term = Cic.term + let to_stack v = v + let to_stack_list l = l + let to_env v = v + let to_ens v = v + let from_stack ~unwind v = v + let from_stack_list ~unwind l = l + let from_env v = v + let from_ens v = v + let stack_to_env ~reduce ~unwind v = v + let compute_to_stack ~reduce ~unwind k e ens t = reduce (k,e,ens,t,[]) + let compute_to_env ~reduce ~unwind k e ens t = reduce (k,e,ens,t,[]) + end +;; -(* k is the length of the environment e *) -(* m is the current depth inside the term *) -let unwind' m k e t = - let module C = Cic in - let module S = CicSubstitution in - if e = [] & k = 0 then t else - let rec unwind_aux m = function - C.Rel n as t -> if n <= m then t else - let d = try Some (List.nth e (n-m-1)) - with _ -> None - in (match d with - Some t' -> if m = 0 then t' - else S.lift m t' - | None -> C.Rel (n-k)) - | C.Var _ as t -> t - | C.Meta (i,l) as t -> t - | C.Sort _ as t -> t - | C.Implicit as t -> t - | C.Cast (te,ty) -> C.Cast (unwind_aux m te, unwind_aux m ty) (*CSC ??? *) - | C.Prod (n,s,t) -> C.Prod (n, unwind_aux m s, unwind_aux (m + 1) t) - | C.Lambda (n,s,t) -> C.Lambda (n, unwind_aux m s, unwind_aux (m + 1) t) - | C.LetIn (n,s,t) -> C.LetIn (n, unwind_aux m s, unwind_aux (m + 1) t) - | C.Appl l -> C.Appl (List.map (unwind_aux m) l) - | C.Const _ as t -> t - | C.Abst _ as t -> t - | C.MutInd _ as t -> t - | C.MutConstruct _ as t -> t - | C.MutCase (sp,cookingsno,i,outt,t,pl) -> - C.MutCase (sp,cookingsno,i,unwind_aux m outt, unwind_aux m t, - List.map (unwind_aux m) pl) - | C.Fix (i,fl) -> - let len = List.length fl in - let substitutedfl = - List.map - (fun (name,i,ty,bo) -> (name, i, unwind_aux m ty, unwind_aux (m+len) bo)) - fl - in - C.Fix (i, substitutedfl) - | C.CoFix (i,fl) -> - let len = List.length fl in - let substitutedfl = - List.map - (fun (name,ty,bo) -> (name, unwind_aux m ty, unwind_aux (m+len) bo)) - fl - in - C.CoFix (i, substitutedfl) - in - unwind_aux m t - ;; +module CallByValueStrategyByNameOnConstants = + struct + type stack_term = Cic.term + type env_term = Cic.term + type ens_term = Cic.term + let to_stack v = v + let to_stack_list l = l + let to_env v = v + let to_ens v = v + let from_stack ~unwind v = v + let from_stack_list ~unwind l = l + let from_env v = v + let from_ens v = v + let stack_to_env ~reduce ~unwind v = v + let compute_to_stack ~reduce ~unwind k e ens = + function + Cic.Const _ as t -> unwind k e ens t + | t -> reduce (k,e,ens,t,[]) + let compute_to_env ~reduce ~unwind k e ens = + function + Cic.Const _ as t -> unwind k e ens t + | t -> reduce (k,e,ens,t,[]) + end +;; -let unwind = - unwind' 0 +module LazyCallByValueStrategy = + struct + type stack_term = Cic.term lazy_t + type env_term = Cic.term lazy_t + type ens_term = Cic.term lazy_t + let to_stack v = lazy v + let to_stack_list l = List.map to_stack l + let to_env v = lazy v + let to_ens v = lazy v + let from_stack ~unwind v = Lazy.force v + let from_stack_list ~unwind l = List.map (from_stack ~unwind) l + let from_env v = Lazy.force v + let from_ens v = Lazy.force v + let stack_to_env ~reduce ~unwind v = v + let compute_to_stack ~reduce ~unwind k e ens t = lazy (reduce (k,e,ens,t,[])) + let compute_to_env ~reduce ~unwind k e ens t = lazy (reduce (k,e,ens,t,[])) + end ;; -let rec reduce : config -> Cic.term = - let module C = Cic in - let module S = CicSubstitution in +module LazyCallByValueStrategyByNameOnConstants = + struct + type stack_term = Cic.term lazy_t + type env_term = Cic.term lazy_t + type ens_term = Cic.term lazy_t + let to_stack v = lazy v + let to_stack_list l = List.map to_stack l + let to_env v = lazy v + let to_ens v = lazy v + let from_stack ~unwind v = Lazy.force v + let from_stack_list ~unwind l = List.map (from_stack ~unwind) l + let from_env v = Lazy.force v + let from_ens v = Lazy.force v + let stack_to_env ~reduce ~unwind v = v + let compute_to_stack ~reduce ~unwind k e ens t = + lazy ( + match t with + Cic.Const _ as t -> unwind k e ens t + | t -> reduce (k,e,ens,t,[])) + let compute_to_env ~reduce ~unwind k e ens t = + lazy ( + match t with + Cic.Const _ as t -> unwind k e ens t + | t -> reduce (k,e,ens,t,[])) + end +;; + +module LazyCallByNameStrategy = + struct + type stack_term = Cic.term lazy_t + type env_term = Cic.term lazy_t + type ens_term = Cic.term lazy_t + let to_stack v = lazy v + let to_stack_list l = List.map to_stack l + let to_env v = lazy v + let to_ens v = lazy v + let from_stack ~unwind v = Lazy.force v + let from_stack_list ~unwind l = List.map (from_stack ~unwind) l + let from_env v = Lazy.force v + let from_ens v = Lazy.force v + let stack_to_env ~reduce ~unwind v = v + let compute_to_stack ~reduce ~unwind k e ens t = lazy (unwind k e ens t) + let compute_to_env ~reduce ~unwind k e ens t = lazy (unwind k e ens t) + end +;; + +module + LazyCallByValueByNameOnConstantsWhenFromStack_ByNameStrategyWhenFromEnvOrEns += + struct + type stack_term = reduce:bool -> Cic.term + type env_term = reduce:bool -> Cic.term + type ens_term = reduce:bool -> Cic.term + let to_stack v = + let value = lazy v in + fun ~reduce -> Lazy.force value + let to_stack_list l = List.map to_stack l + let to_env v = + let value = lazy v in + fun ~reduce -> Lazy.force value + let to_ens v = + let value = lazy v in + fun ~reduce -> Lazy.force value + let from_stack ~unwind v = (v ~reduce:false) + let from_stack_list ~unwind l = List.map (from_stack ~unwind) l + let from_env v = (v ~reduce:true) + let from_ens v = (v ~reduce:true) + let stack_to_env ~reduce ~unwind v = v + let compute_to_stack ~reduce ~unwind k e ens t = + let svalue = + lazy ( + match t with + Cic.Const _ as t -> unwind k e ens t + | t -> reduce (k,e,ens,t,[]) + ) in + let lvalue = + lazy (unwind k e ens t) + in + fun ~reduce -> + if reduce then Lazy.force svalue else Lazy.force lvalue + let compute_to_env ~reduce ~unwind k e ens t = + let svalue = + lazy ( + match t with + Cic.Const _ as t -> unwind k e ens t + | t -> reduce (k,e,ens,t,[]) + ) in + let lvalue = + lazy (unwind k e ens t) + in + fun ~reduce -> + if reduce then Lazy.force svalue else Lazy.force lvalue + end +;; + +module ClosuresOnStackByValueFromEnvOrEnsStrategy = + struct + type stack_term = + int * Cic.term list * Cic.term Cic.explicit_named_substitution * Cic.term + type env_term = Cic.term + type ens_term = Cic.term + let to_stack v = (0,[],[],v) + let to_stack_list l = List.map to_stack l + let to_env v = v + let to_ens v = v + let from_stack ~unwind (k,e,ens,t) = unwind k e ens t + let from_stack_list ~unwind l = List.map (from_stack ~unwind) l + let from_env v = v + let from_ens v = v + let stack_to_env ~reduce ~unwind (k,e,ens,t) = reduce (k,e,ens,t,[]) + let compute_to_env ~reduce ~unwind k e ens t = + unwind k e ens t + let compute_to_stack ~reduce ~unwind k e ens t = (k,e,ens,t) + end +;; + +module ClosuresOnStackByValueFromEnvOrEnsByNameOnConstantsStrategy = + struct + type stack_term = + int * Cic.term list * Cic.term Cic.explicit_named_substitution * Cic.term + type env_term = Cic.term + type ens_term = Cic.term + let to_stack v = (0,[],[],v) + let to_stack_list l = List.map to_stack l + let to_env v = v + let to_ens v = v + let from_stack ~unwind (k,e,ens,t) = unwind k e ens t + let from_stack_list ~unwind l = List.map (from_stack ~unwind) l + let from_env v = v + let from_ens v = v + let stack_to_env ~reduce ~unwind (k,e,ens,t) = + match t with + Cic.Const _ as t -> unwind k e ens t + | t -> reduce (k,e,ens,t,[]) + let compute_to_env ~reduce ~unwind k e ens t = + unwind k e ens t + let compute_to_stack ~reduce ~unwind k e ens t = (k,e,ens,t) + end +;; + +module Reduction(RS : Strategy) = + struct + type env = RS.env_term list + type ens = RS.ens_term Cic.explicit_named_substitution + type stack = RS.stack_term list + type config = int * env * ens * Cic.term * stack + + (* k is the length of the environment e *) + (* m is the current depth inside the term *) + let unwind' m k e ens t = + let module C = Cic in + let module S = CicSubstitution in + if k = 0 && ens = [] then + t + else + let rec unwind_aux m = + function + C.Rel n as t -> + if n <= m then t else + let d = + try + Some (RS.from_env (List.nth e (n-m-1))) + with _ -> None + in + (match d with + Some t' -> + if m = 0 then t' else S.lift m t' + | None -> C.Rel (n-k) + ) + | C.Var (uri,exp_named_subst) -> +(* +prerr_endline ("%%%%%UWVAR " ^ String.concat " ; " (List.map (function (uri,t) -> UriManager.string_of_uri uri ^ " := " ^ CicPp.ppterm t) ens)) ; +*) + if List.exists (function (uri',_) -> UriManager.eq uri' uri) ens then + CicSubstitution.lift m (RS.from_ens (List.assq uri ens)) + else + let params = + (match CicEnvironment.get_obj uri with + C.Constant _ -> raise ReferenceToConstant + | C.Variable (_,_,_,params) -> params + | C.CurrentProof _ -> raise ReferenceToCurrentProof + | C.InductiveDefinition _ -> raise ReferenceToInductiveDefinition + ) + in + let exp_named_subst' = + substaux_in_exp_named_subst params exp_named_subst m + in + C.Var (uri,exp_named_subst') + | C.Meta (i,l) -> + let l' = + List.map + (function + None -> None + | Some t -> Some (unwind_aux m t) + ) l + in + C.Meta (i, l') + | C.Sort _ as t -> t + | C.Implicit _ as t -> t + | C.Cast (te,ty) -> C.Cast (unwind_aux m te, unwind_aux m ty) (*CSC ???*) + | C.Prod (n,s,t) -> C.Prod (n, unwind_aux m s, unwind_aux (m + 1) t) + | C.Lambda (n,s,t) -> C.Lambda (n, unwind_aux m s, unwind_aux (m + 1) t) + | C.LetIn (n,s,t) -> C.LetIn (n, unwind_aux m s, unwind_aux (m + 1) t) + | C.Appl l -> C.Appl (List.map (unwind_aux m) l) + | C.Const (uri,exp_named_subst) -> + let params = + (match CicEnvironment.get_obj uri with + C.Constant (_,_,_,params) -> params + | C.Variable _ -> raise ReferenceToVariable + | C.CurrentProof (_,_,_,_,params) -> params + | C.InductiveDefinition _ -> raise ReferenceToInductiveDefinition + ) + in + let exp_named_subst' = + substaux_in_exp_named_subst params exp_named_subst m + in + C.Const (uri,exp_named_subst') + | C.MutInd (uri,i,exp_named_subst) -> + let params = + (match CicEnvironment.get_obj uri with + C.Constant _ -> raise ReferenceToConstant + | C.Variable _ -> raise ReferenceToVariable + | C.CurrentProof _ -> raise ReferenceToCurrentProof + | C.InductiveDefinition (_,params,_) -> params + ) + in + let exp_named_subst' = + substaux_in_exp_named_subst params exp_named_subst m + in + C.MutInd (uri,i,exp_named_subst') + | C.MutConstruct (uri,i,j,exp_named_subst) -> + let params = + (match CicEnvironment.get_obj uri with + C.Constant _ -> raise ReferenceToConstant + | C.Variable _ -> raise ReferenceToVariable + | C.CurrentProof _ -> raise ReferenceToCurrentProof + | C.InductiveDefinition (_,params,_) -> params + ) + in + let exp_named_subst' = + substaux_in_exp_named_subst params exp_named_subst m + in + C.MutConstruct (uri,i,j,exp_named_subst') + | C.MutCase (sp,i,outt,t,pl) -> + C.MutCase (sp,i,unwind_aux m outt, unwind_aux m t, + List.map (unwind_aux m) pl) + | C.Fix (i,fl) -> + let len = List.length fl in + let substitutedfl = + List.map + (fun (name,i,ty,bo) -> + (name, i, unwind_aux m ty, unwind_aux (m+len) bo)) + fl + in + C.Fix (i, substitutedfl) + | C.CoFix (i,fl) -> + let len = List.length fl in + let substitutedfl = + List.map + (fun (name,ty,bo) -> (name, unwind_aux m ty, unwind_aux (m+len) bo)) + fl + in + C.CoFix (i, substitutedfl) + and substaux_in_exp_named_subst params exp_named_subst' m = + (*CSC: Idea di Andrea di ordinare compatibilmente con l'ordine dei params + let ens' = + List.map (function (uri,t) -> uri, unwind_aux m t) exp_named_subst' @ + (*CSC: qui liftiamo tutti gli ens anche se magari me ne servono la meta'!!! *) + List.map (function (uri,t) -> uri, CicSubstitution.lift m t) ens + in + let rec filter_and_lift = + function + [] -> [] + | uri::tl -> + let r = filter_and_lift tl in + (try + (uri,(List.assq uri ens'))::r + with + Not_found -> r + ) + in + filter_and_lift params + *) + + (*CSC: invece di concatenare sarebbe meglio rispettare l'ordine dei params *) + (*CSC: e' vero???? una veloce prova non sembra confermare la teoria *) + + (*CSC: codice copiato e modificato dalla cicSubstitution.subst_vars *) + (*CSC: codice altamente inefficiente *) + let rec filter_and_lift already_instantiated = + function + [] -> [] + | (uri,t)::tl when + List.for_all + (function (uri',_)-> not (UriManager.eq uri uri')) exp_named_subst' + && + not (List.mem uri already_instantiated) + && + List.mem uri params + -> + (uri,CicSubstitution.lift m (RS.from_ens t)) :: + (filter_and_lift (uri::already_instantiated) tl) + | _::tl -> filter_and_lift already_instantiated tl +(* + | (uri,_)::tl -> +prerr_endline ("---- SKIPPO " ^ UriManager.string_of_uri uri) ; +if List.for_all (function (uri',_) -> not (UriManager.eq uri uri')) exp_named_subst' then prerr_endline "---- OK1" ; +prerr_endline ("++++ uri " ^ UriManager.string_of_uri uri ^ " not in " ^ String.concat " ; " (List.map UriManager.string_of_uri params)) ; +if List.mem uri params then prerr_endline "---- OK2" ; + filter_and_lift tl +*) + in + List.map (function (uri,t) -> uri, unwind_aux m t) exp_named_subst' @ + (filter_and_lift [] (List.rev ens)) + in + unwind_aux m t + ;; + + let unwind = + unwind' 0 + ;; + + let reduce context : config -> Cic.term = + let module C = Cic in + let module S = CicSubstitution in + let rec reduce = function - (k, e, (C.Rel n as t), s) -> let d = -(* prerr_string ("Rel " ^ string_of_int n) ; flush stderr ; *) - try Some (List.nth e (n-1)) - with _ -> None - in (match d with - Some t' -> reduce (0, [],t',s) - | None -> if s = [] then C.Rel (n-k) - else C.Appl (C.Rel (n-k)::s)) - | (k, e, (C.Var uri as t), s) -> - (match CicEnvironment.get_cooked_obj uri 0 with - C.Definition _ -> raise ReferenceToDefinition - | C.Axiom _ -> raise ReferenceToAxiom - | C.CurrentProof _ -> raise ReferenceToCurrentProof - | C.InductiveDefinition _ -> raise ReferenceToInductiveDefinition - | C.Variable (_,None,_) -> if s = [] then t else C.Appl (t::s) - | C.Variable (_,Some body,_) -> reduce (0, [], body, s) + (k, e, _, (C.Rel n as t), s) -> + let d = + try + Some (RS.from_env (List.nth e (n-1))) + with + _ -> + try + begin + match List.nth context (n - 1 - k) with + None -> assert false + | Some (_,C.Decl _) -> None + | Some (_,C.Def (x,_)) -> Some (S.lift (n - k) x) + end + with + _ -> None + in + (match d with + Some t' -> reduce (0,[],[],t',s) + | None -> + if s = [] then + C.Rel (n-k) + else C.Appl (C.Rel (n-k)::(RS.from_stack_list ~unwind s)) ) - | (k, e, (C.Meta _ as t), s) -> if s = [] then t - else C.Appl (t::s) - | (k, e, (C.Sort _ as t), s) -> t (* s should be empty *) - | (k, e, (C.Implicit as t), s) -> t (* s should be empty *) - | (k, e, (C.Cast (te,ty) as t), s) -> reduce (k, e,te,s) (* s should be empty *) - | (k, e, (C.Prod _ as t), s) -> unwind k e t (* s should be empty *) - | (k, e, (C.Lambda (_,_,t) as t'), []) -> unwind k e t' - | (k, e, C.Lambda (_,_,t), p::s) -> -(* prerr_string ("Lambda body: " ^ CicPp.ppterm t) ; flush stderr ; *) - reduce (k+1, p::e,t,s) - | (k, e, (C.LetIn (_,m,t) as t'), s) -> let m' = reduce (k,e,m,[]) in - reduce (k+1, m'::e,t,s) - | (k, e, C.Appl [], s) -> raise (Impossible 1) - (* this is lazy - | (k, e, C.Appl (he::tl), s) -> let tl' = List.map (unwind k e) tl - in reduce (k, e, he, (List.append tl' s)) *) - (* this is strict *) - | (k, e, C.Appl (he::tl), s) -> - (* constants are NOT unfolded *) - let red = function - C.Const _ as t -> t - | t -> reduce (k, e,t,[]) in - let tl' = List.map red tl in - reduce (k, e, he , List.append tl' s) -(* - | (k, e, C.Appl ((C.Lambda _ as he)::tl), s) - | (k, e, C.Appl ((C.Const _ as he)::tl), s) - | (k, e, C.Appl ((C.MutCase _ as he)::tl), s) - | (k, e, C.Appl ((C.Fix _ as he)::tl), s) -> -(* strict evaluation, but constants are NOT - unfolded *) - let red = function - C.Const _ as t -> t - | t -> reduce (k, e,t,[]) in - let tl' = List.map red tl in - reduce (k, e, he , List.append tl' s) - | (k, e, C.Appl l, s) -> C.Appl (List.append (List.map (unwind k e) l) s) *) - | (k, e, (C.Const (uri,cookingsno) as t), s) -> - (match CicEnvironment.get_cooked_obj uri cookingsno with - C.Definition (_,body,_,_) -> reduce (0, [], body, s) - (* constants are closed *) - | C.Axiom _ -> if s = [] then t else C.Appl (t::s) - | C.Variable _ -> raise ReferenceToVariable - | C.CurrentProof (_,_,body,_) -> reduce (0, [], body, s) - | C.InductiveDefinition _ -> raise ReferenceToInductiveDefinition - ) - | (k, e, (C.Abst _ as t), s) -> t (* s should be empty ????? *) - | (k, e, (C.MutInd (uri,_,_) as t),s) -> let t' = unwind k e t in - if s = [] then t' else C.Appl (t'::s) - | (k, e, (C.MutConstruct (uri,_,_,_) as t),s) -> - let t' = unwind k e t in - if s = [] then t' else C.Appl (t'::s) - | (k, e, (C.MutCase (mutind,cookingsno,i,_,term,pl) as t),s) -> + | (k, e, ens, (C.Var (uri,exp_named_subst) as t), s) -> + if List.exists (function (uri',_) -> UriManager.eq uri' uri) ens then + reduce (0, [], [], RS.from_ens (List.assq uri ens), s) + else + (match CicEnvironment.get_obj uri with + C.Constant _ -> raise ReferenceToConstant + | C.CurrentProof _ -> raise ReferenceToCurrentProof + | C.InductiveDefinition _ -> raise ReferenceToInductiveDefinition + | C.Variable (_,None,_,_) -> + let t' = unwind k e ens t in + if s = [] then t' else + C.Appl (t'::(RS.from_stack_list ~unwind s)) + | C.Variable (_,Some body,_,_) -> + let ens' = push_exp_named_subst k e ens exp_named_subst in + reduce (0, [], ens', body, s) + ) + | (k, e, ens, (C.Meta _ as t), s) -> + let t' = unwind k e ens t in + if s = [] then t' else C.Appl (t'::(RS.from_stack_list ~unwind s)) + | (k, e, _, (C.Sort _ as t), s) -> t (* s should be empty *) + | (k, e, _, (C.Implicit _ as t), s) -> t (* s should be empty *) + | (k, e, ens, (C.Cast (te,ty) as t), s) -> + reduce (k, e, ens, te, s) (* s should be empty *) + | (k, e, ens, (C.Prod _ as t), s) -> + unwind k e ens t (* s should be empty *) + | (k, e, ens, (C.Lambda (_,_,t) as t'), []) -> unwind k e ens t' + | (k, e, ens, C.Lambda (_,_,t), p::s) -> + reduce (k+1, (RS.stack_to_env ~reduce ~unwind p)::e, ens, t,s) + | (k, e, ens, (C.LetIn (_,m,t) as t'), s) -> + let m' = RS.compute_to_env ~reduce ~unwind k e ens m in + reduce (k+1, m'::e, ens, t, s) + | (_, _, _, C.Appl [], _) -> assert false + | (k, e, ens, C.Appl (he::tl), s) -> + let tl' = + List.map + (function t -> RS.compute_to_stack ~reduce ~unwind k e ens t) tl + in + reduce (k, e, ens, he, (List.append tl') s) + (* CSC: Old Dead Code + | (k, e, ens, C.Appl ((C.Lambda _ as he)::tl), s) + | (k, e, ens, C.Appl ((C.Const _ as he)::tl), s) + | (k, e, ens, C.Appl ((C.MutCase _ as he)::tl), s) + | (k, e, ens, C.Appl ((C.Fix _ as he)::tl), s) -> + (* strict evaluation, but constants are NOT unfolded *) + let red = + function + C.Const _ as t -> unwind k e ens t + | t -> reduce (k,e,ens,t,[]) + in + let tl' = List.map red tl in + reduce (k, e, ens, he , List.append tl' s) + | (k, e, ens, C.Appl l, s) -> + C.Appl (List.append (List.map (unwind k e ens) l) s) + *) + | (k, e, ens, (C.Const (uri,exp_named_subst) as t), s) -> + (match CicEnvironment.get_obj uri with + C.Constant (_,Some body,_,_) -> + let ens' = push_exp_named_subst k e ens exp_named_subst in + (* constants are closed *) + reduce (0, [], ens', body, s) + | C.Constant (_,None,_,_) -> + let t' = unwind k e ens t in + if s = [] then t' else C.Appl (t'::(RS.from_stack_list ~unwind s)) + | C.Variable _ -> raise ReferenceToVariable + | C.CurrentProof (_,_,body,_,_) -> + let ens' = push_exp_named_subst k e ens exp_named_subst in + (* constants are closed *) + reduce (0, [], ens', body, s) + | C.InductiveDefinition _ -> raise ReferenceToInductiveDefinition + ) + | (k, e, ens, (C.MutInd _ as t),s) -> + let t' = unwind k e ens t in + if s = [] then t' else C.Appl (t'::(RS.from_stack_list ~unwind s)) + | (k, e, ens, (C.MutConstruct _ as t),s) -> + let t' = unwind k e ens t in + if s = [] then t' else C.Appl (t'::(RS.from_stack_list ~unwind s)) + | (k, e, ens, (C.MutCase (mutind,i,_,term,pl) as t),s) -> let decofix = - function - C.CoFix (i,fl) as t -> - let (_,_,body) = List.nth fl i in - let body' = - let counter = ref (List.length fl) in - List.fold_right - (fun _ -> decr counter ; S.subst (C.CoFix (!counter,fl))) - fl - body - in - reduce (0,[],body',[]) - | C.Appl (C.CoFix (i,fl) :: tl) -> - let (_,_,body) = List.nth fl i in - let body' = - let counter = ref (List.length fl) in - List.fold_right - (fun _ -> decr counter ; S.subst (C.CoFix (!counter,fl))) - fl - body - in - reduce (0,[], body', tl) - | t -> t - in - (match decofix (reduce (k, e,term,[])) with - C.MutConstruct (_,_,_,j) -> reduce (k, e, (List.nth pl (j-1)), s) - | C.Appl (C.MutConstruct (_,_,_,j) :: tl) -> - let (arity, r, num_ingredients) = - match CicEnvironment.get_obj mutind with - C.InductiveDefinition (tl,ingredients,r) -> - let (_,_,arity,_) = List.nth tl i - and num_ingredients = - List.fold_right - (fun (k,l) i -> - if k < cookingsno then i + List.length l else i - ) ingredients 0 - in - (arity,r,num_ingredients) - | _ -> raise WrongUriToInductiveDefinition - in - let ts = - let num_to_eat = r + num_ingredients in - let rec eat_first = - function - (0,l) -> l - | (n,he::tl) when n > 0 -> eat_first (n - 1, tl) - | _ -> raise (Impossible 5) - in - eat_first (num_to_eat,tl) + function + C.CoFix (i,fl) as t -> + let (_,_,body) = List.nth fl i in + let body' = + let counter = ref (List.length fl) in + List.fold_right + (fun _ -> decr counter ; S.subst (C.CoFix (!counter,fl))) + fl + body in - reduce (k, e, (List.nth pl (j-1)),(ts@s)) - | C.Abst _| C.Cast _ | C.Implicit -> - raise (Impossible 2) (* we don't trust our whd ;-) *) - | _ -> let t' = unwind k e t in - if s = [] then t' else C.Appl (t'::s) - ) - | (k, e, (C.Fix (i,fl) as t), s) -> - let (_,recindex,_,body) = List.nth fl i in - let recparam = - try - Some (List.nth s recindex) - with - _ -> None + (* the term is the result of a reduction; *) + (* so it is already unwinded. *) + reduce (0,[],[],body',[]) + | C.Appl (C.CoFix (i,fl) :: tl) -> + let (_,_,body) = List.nth fl i in + let body' = + let counter = ref (List.length fl) in + List.fold_right + (fun _ -> decr counter ; S.subst (C.CoFix (!counter,fl))) + fl + body + in + (* the term is the result of a reduction; *) + (* so it is already unwinded. *) + reduce (0,[],[],body',RS.to_stack_list tl) + | t -> t in - (match recparam with - Some recparam -> - (match reduce (0,[],recparam,[]) with - (* match recparam with *) - C.MutConstruct _ - | C.Appl ((C.MutConstruct _)::_) -> - (* OLD - let body' = - let counter = ref (List.length fl) in - List.fold_right - (fun _ -> decr counter ; S.subst (C.Fix (!counter,fl))) - fl - body - in - reduce (k, e, body', s) *) - (* NEW *) - let leng = List.length fl in - let fl' = - let unwind_fl (name,recindex,typ,body) = - (name,recindex,unwind' leng k e typ, unwind' leng k e body) in - List.map unwind_fl fl in - let new_env = - let counter = ref leng in - let rec build_env e = - if !counter = 0 then e else (decr counter; - build_env ((C.Fix (!counter,fl'))::e)) in - build_env e in - reduce (k+leng, new_env, body,s) - | _ -> let t' = unwind k e t in - if s = [] then t' else C.Appl (t'::s) - ) - | None -> let t' = unwind k e t in - if s = [] then t' else C.Appl (t'::s) + (match decofix (reduce (k,e,ens,term,[])) with + C.MutConstruct (_,_,j,_) -> + reduce (k, e, ens, (List.nth pl (j-1)), s) + | C.Appl (C.MutConstruct (_,_,j,_) :: tl) -> + let (arity, r) = + match CicEnvironment.get_obj mutind with + C.InductiveDefinition (tl,ingredients,r) -> + let (_,_,arity,_) = List.nth tl i in + (arity,r) + | _ -> raise WrongUriToInductiveDefinition + in + let ts = + let num_to_eat = r in + let rec eat_first = + function + (0,l) -> l + | (n,he::tl) when n > 0 -> eat_first (n - 1, tl) + | _ -> raise (Impossible 5) + in + eat_first (num_to_eat,tl) + in + (* ts are already unwinded because they are a sublist of tl *) + reduce (k, e, ens, (List.nth pl (j-1)), (RS.to_stack_list ts)@s) + | C.Cast _ | C.Implicit _ -> + raise (Impossible 2) (* we don't trust our whd ;-) *) + | _ -> + let t' = unwind k e ens t in + if s = [] then t' else C.Appl (t'::(RS.from_stack_list ~unwind s)) ) - | (k, e,(C.CoFix (i,fl) as t),s) -> let t' = unwind k e t in - if s = [] then t' else C.Appl (t'::s);; - -let rec whd = let module C = Cic in + | (k, e, ens, (C.Fix (i,fl) as t), s) -> + let (_,recindex,_,body) = List.nth fl i in + let recparam = + try + Some (RS.from_stack ~unwind (List.nth s recindex)) + with + _ -> None + in + (match recparam with + Some recparam -> + (match reduce (0,[],[],recparam,[]) with + (* match recparam with *) + C.MutConstruct _ + | C.Appl ((C.MutConstruct _)::_) -> + (* OLD + let body' = + let counter = ref (List.length fl) in + List.fold_right + (fun _ -> decr counter ; S.subst (C.Fix (!counter,fl))) + fl + body + in + reduce (k, e, ens, body', s) *) + (* NEW *) + let leng = List.length fl in + let fl' = + let unwind_fl (name,recindex,typ,body) = + (name,recindex,unwind k e ens typ, + unwind' leng k e ens body) + in + List.map unwind_fl fl + in + let new_env = + let counter = ref 0 in + let rec build_env e = + if !counter = leng then e + else + (incr counter ; + build_env ((RS.to_env (C.Fix (!counter -1, fl')))::e)) + in + build_env e + in + reduce (k+leng, new_env, ens, body, s) + | _ -> + let t' = unwind k e ens t in + if s = [] then t' else + C.Appl (t'::(RS.from_stack_list ~unwind s)) + ) + | None -> + let t' = unwind k e ens t in + if s = [] then t' else + C.Appl (t'::(RS.from_stack_list ~unwind s)) + ) + | (k, e, ens, (C.CoFix (i,fl) as t),s) -> + let t' = unwind k e ens t in + if s = [] then t' else C.Appl (t'::(RS.from_stack_list ~unwind s)) + and push_exp_named_subst k e ens = function - C.Rel _ as t -> t - | C.Var _ as t -> reduce (0, [], t, []) - | C.Meta _ as t -> t - | C.Sort _ as t -> t - | C.Implicit as t -> t - | C.Cast (te,ty) -> whd te - | C.Prod _ as t -> t - | C.Lambda _ as t -> t - | C.LetIn (n,s,t) -> reduce (1, [s], t, []) - | C.Appl [] -> raise (Impossible 1) - | C.Appl (he::tl) -> reduce (0, [], he, tl) - | C.Const _ as t -> reduce (0, [], t, []) - | C.Abst _ as t -> t - | C.MutInd _ as t -> t - | C.MutConstruct _ as t -> t - | C.MutCase _ as t -> reduce (0, [], t, []) - | C.Fix _ as t -> reduce (0, [], t, []) - | C.CoFix _ as t -> reduce (0, [], t, []) - ;; - -(* let whd t = reduce (0, [],t,[]);; - let res = reduce (0, [],t,[]) in - let rescsc = CicReductionNaif.whd t in - if not (CicReductionNaif.are_convertible res rescsc) then + [] -> ens + | (uri,t)::tl -> + push_exp_named_subst k e ((uri,RS.to_ens (unwind k e ens t))::ens) tl + in + reduce + ;; + + let rec whd context t = reduce context (0, [], [], t, []);; + +(* DEBUGGING ONLY +let whd context t = + let res = whd context t in + let rescsc = CicReductionNaif.whd context t in + if not (CicReductionNaif.are_convertible context res rescsc) then begin prerr_endline ("PRIMA: " ^ CicPp.ppterm t) ; flush stderr ; @@ -313,74 +739,174 @@ let rec whd = let module C = Cic in flush stderr ; prerr_endline ("CSC: " ^ CicPp.ppterm rescsc) ; flush stderr ; +CicReductionNaif.fdebug := 0 ; +let _ = CicReductionNaif.are_convertible context res rescsc in assert false ; end else - res ;; *) - - -(* t1, t2 must be well-typed *) -let are_convertible = - let rec aux t1 t2 = - if t1 = t2 then true - else - let aux2 t1 t2 = - let module U = UriManager in - let module C = Cic in - match (t1,t2) with - (C.Rel n1, C.Rel n2) -> n1 = n2 - | (C.Var uri1, C.Var uri2) -> U.eq uri1 uri2 - | (C.Meta n1, C.Meta n2) -> n1 = n2 - | (C.Sort s1, C.Sort s2) -> true (*CSC da finire con gli universi *) - | (C.Prod (_,s1,t1), C.Prod(_,s2,t2)) -> - aux s1 s2 && aux t1 t2 - | (C.Lambda (_,s1,t1), C.Lambda(_,s2,t2)) -> - aux s1 s2 && aux t1 t2 - | (C.Appl l1, C.Appl l2) -> - (try - List.fold_right2 (fun x y b -> aux x y && b) l1 l2 true - with - Invalid_argument _ -> false - ) - | (C.Const (uri1,_), C.Const (uri2,_)) -> - U.eq uri1 uri2 - | (C.MutInd (uri1,k1,i1), C.MutInd (uri2,k2,i2)) -> - U.eq uri1 uri2 && i1 = i2 - | (C.MutConstruct (uri1,_,i1,j1), C.MutConstruct (uri2,_,i2,j2)) -> - U.eq uri1 uri2 && i1 = i2 && j1 = j2 - | (C.MutCase (uri1,_,i1,outtype1,term1,pl1), - C.MutCase (uri2,_,i2,outtype2,term2,pl2)) -> - (* aux outtype1 outtype2 should be true if aux pl1 pl2 *) - U.eq uri1 uri2 && i1 = i2 && aux outtype1 outtype2 && - aux term1 term2 && - List.fold_right2 (fun x y b -> b && aux x y) pl1 pl2 true - | (C.Fix (i1,fl1), C.Fix (i2,fl2)) -> - i1 = i2 && - List.fold_right2 - (fun (_,recindex1,ty1,bo1) (_,recindex2,ty2,bo2) b -> - b && recindex1 = recindex2 && aux ty1 ty2 && aux bo1 bo2) - fl1 fl2 true - | (C.CoFix (i1,fl1), C.CoFix (i2,fl2)) -> - i1 = i2 && - List.fold_right2 - (fun (_,ty1,bo1) (_,ty2,bo2) b -> - b && aux ty1 ty2 && aux bo1 bo2) - fl1 fl2 true - | (_,_) -> false - in - if aux2 t1 t2 then true - else aux2 (whd t1) (whd t2) -in - aux -;; - - - - - - - + res +;; +*) + end +;; +(* +module R = Reduction CallByNameStrategy;; +module R = Reduction CallByValueStrategy;; +module R = Reduction CallByValueStrategyByNameOnConstants;; +module R = Reduction LazyCallByValueStrategy;; +module R = Reduction LazyCallByValueStrategyByNameOnConstants;; +module R = Reduction LazyCallByNameStrategy;; +module R = Reduction + LazyCallByValueByNameOnConstantsWhenFromStack_ByNameStrategyWhenFromEnvOrEns;; +module R = Reduction ClosuresOnStackByValueFromEnvOrEnsStrategy;; +module R = Reduction + ClosuresOnStackByValueFromEnvOrEnsByNameOnConstantsStrategy;; +*) +module R = Reduction(ClosuresOnStackByValueFromEnvOrEnsStrategy);; +let whd = R.whd;; +(* t1, t2 must be well-typed *) +let are_convertible = + let module U = UriManager in + let rec aux test_equality_only context t1 t2 = + let aux2 test_equality_only t1 t2 = + (* this trivial euristic cuts down the total time of about five times ;-) *) + (* this because most of the time t1 and t2 are "sintactically" the same *) + if t1 = t2 then + true + else + begin + let module C = Cic in + match (t1,t2) with + (C.Rel n1, C.Rel n2) -> n1 = n2 + | (C.Var (uri1,exp_named_subst1), C.Var (uri2,exp_named_subst2)) -> + U.eq uri1 uri2 && + (try + List.fold_right2 + (fun (uri1,x) (uri2,y) b -> + U.eq uri1 uri2 && aux test_equality_only context x y && b + ) exp_named_subst1 exp_named_subst2 true + with + Invalid_argument _ -> false + ) + | (C.Meta (n1,l1), C.Meta (n2,l2)) -> + n1 = n2 && + List.fold_left2 + (fun b t1 t2 -> + b && + match t1,t2 with + None,_ + | _,None -> true + | Some t1',Some t2' -> aux test_equality_only context t1' t2' + ) true l1 l2 + (* TASSI: CONSTRAINTS *) + | (C.Sort (C.Type t1), C.Sort (C.Type t2)) when test_equality_only -> + CicUniv.add_eq t2 t1 + (* TASSI: CONSTRAINTS *) + | (C.Sort (C.Type t1), C.Sort (C.Type t2)) -> + CicUniv.add_ge t2 t1 + (* TASSI: CONSTRAINTS *) + | (C.Sort s1, C.Sort (C.Type _)) -> not test_equality_only + (* TASSI: CONSTRAINTS *) + | (C.Sort s1, C.Sort s2) -> s1 = s2 + | (C.Prod (name1,s1,t1), C.Prod(_,s2,t2)) -> + aux true context s1 s2 && + aux test_equality_only ((Some (name1, (C.Decl s1)))::context) t1 t2 + | (C.Lambda (name1,s1,t1), C.Lambda(_,s2,t2)) -> + aux test_equality_only context s1 s2 && + aux test_equality_only ((Some (name1, (C.Decl s1)))::context) t1 t2 + | (C.LetIn (name1,s1,t1), C.LetIn(_,s2,t2)) -> + aux test_equality_only context s1 s2 && + aux test_equality_only + ((Some (name1, (C.Def (s1,None))))::context) t1 t2 + | (C.Appl l1, C.Appl l2) -> + (try + List.fold_right2 + (fun x y b -> aux test_equality_only context x y && b) l1 l2 true + with + Invalid_argument _ -> false + ) + | (C.Const (uri1,exp_named_subst1), C.Const (uri2,exp_named_subst2)) -> + U.eq uri1 uri2 && + (try + List.fold_right2 + (fun (uri1,x) (uri2,y) b -> + U.eq uri1 uri2 && aux test_equality_only context x y && b + ) exp_named_subst1 exp_named_subst2 true + with + Invalid_argument _ -> false + ) + | (C.MutInd (uri1,i1,exp_named_subst1), + C.MutInd (uri2,i2,exp_named_subst2) + ) -> + U.eq uri1 uri2 && i1 = i2 && + (try + List.fold_right2 + (fun (uri1,x) (uri2,y) b -> + U.eq uri1 uri2 && aux test_equality_only context x y && b + ) exp_named_subst1 exp_named_subst2 true + with + Invalid_argument _ -> false + ) + | (C.MutConstruct (uri1,i1,j1,exp_named_subst1), + C.MutConstruct (uri2,i2,j2,exp_named_subst2) + ) -> + U.eq uri1 uri2 && i1 = i2 && j1 = j2 && + (try + List.fold_right2 + (fun (uri1,x) (uri2,y) b -> + U.eq uri1 uri2 && aux test_equality_only context x y && b + ) exp_named_subst1 exp_named_subst2 true + with + Invalid_argument _ -> false + ) + | (C.MutCase (uri1,i1,outtype1,term1,pl1), + C.MutCase (uri2,i2,outtype2,term2,pl2)) -> + U.eq uri1 uri2 && i1 = i2 && + aux test_equality_only context outtype1 outtype2 && + aux test_equality_only context term1 term2 && + List.fold_right2 + (fun x y b -> b && aux test_equality_only context x y) + pl1 pl2 true + | (C.Fix (i1,fl1), C.Fix (i2,fl2)) -> + let tys = + List.map (function (n,_,ty,_) -> Some (C.Name n,(C.Decl ty))) fl1 + in + i1 = i2 && + List.fold_right2 + (fun (_,recindex1,ty1,bo1) (_,recindex2,ty2,bo2) b -> + b && recindex1 = recindex2 && + aux test_equality_only context ty1 ty2 && + aux test_equality_only (tys@context) bo1 bo2) + fl1 fl2 true + | (C.CoFix (i1,fl1), C.CoFix (i2,fl2)) -> + let tys = + List.map (function (n,ty,_) -> Some (C.Name n,(C.Decl ty))) fl1 + in + i1 = i2 && + List.fold_right2 + (fun (_,ty1,bo1) (_,ty2,bo2) b -> + b && aux test_equality_only context ty1 ty2 && + aux test_equality_only (tys@context) bo1 bo2) + fl1 fl2 true + | (C.Cast _, _) | (_, C.Cast _) + | (C.Implicit _, _) | (_, C.Implicit _) -> + assert false + | (_,_) -> false + end + in + if aux2 test_equality_only t1 t2 then true + else + begin + debug t1 [t2] "PREWHD"; + let t1' = whd context t1 in + let t2' = whd context t2 in + debug t1' [t2'] "POSTWHD"; + aux2 test_equality_only t1' t2' + end + in + aux false +;;