X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Focaml%2Fcic_proof_checking%2FcicTypeChecker.ml;h=48d8b2ea925450736c9be0d60288c351df233751;hb=1c7fb836e2af4f2f3d18afd0396701f2094265ff;hp=63366b4b9997f5897027117458c17a98a7627f05;hpb=97de13c52f24e7e7e7d0a9a43116750739d056f1;p=helm.git diff --git a/helm/ocaml/cic_proof_checking/cicTypeChecker.ml b/helm/ocaml/cic_proof_checking/cicTypeChecker.ml index 63366b4b9..48d8b2ea9 100644 --- a/helm/ocaml/cic_proof_checking/cicTypeChecker.ml +++ b/helm/ocaml/cic_proof_checking/cicTypeChecker.ml @@ -23,165 +23,241 @@ * http://cs.unibo.it/helm/. *) -exception NotImplemented;; -exception Impossible of int;; -exception NotWellTyped of string;; -exception WrongUriToConstant of string;; -exception WrongUriToVariable of string;; -exception WrongUriToMutualInductiveDefinitions of string;; -exception ListTooShort;; -exception NotPositiveOccurrences of string;; -exception NotWellFormedTypeOfInductiveConstructor of string;; -exception WrongRequiredArgument of string;; +type type_checker_exn = + Impossible of int + | NotWellTyped of string + | WrongUriToConstant of string + | WrongUriToVariable of string + | WrongUriToMutualInductiveDefinitions of string + | ListTooShort + | NotPositiveOccurrences of string + | NotWellFormedTypeOfInductiveConstructor of string + | WrongRequiredArgument of string + | RelToHiddenHypothesis + | MetasenvInconsistency;; -let log = - let module U = UriManager in - let indent = ref 0 in - function - `Start_type_checking uri -> - print_string ( - (String.make !indent ' ') ^ - "
" ^ - "Type-Checking of " ^ (U.string_of_uri uri) ^ " started
\n" - ) ; - flush stdout ; - incr indent - | `Type_checking_completed uri -> - decr indent ; - print_string ( - (String.make !indent ' ') ^ - "
" ^ - "Type-Checking of " ^ (U.string_of_uri uri) ^ " completed.
\n" - ) ; - flush stdout -;; +(* This is the only exception that will be raised *) +exception TypeCheckerFailure of type_checker_exn;; let fdebug = ref 0;; -let debug t env = +let debug t context = let rec debug_aux t i = let module C = Cic in let module U = UriManager in - CicPp.ppobj (C.Variable ("DEBUG", None, t)) ^ "\n" ^ i + CicPp.ppobj (C.Variable ("DEBUG", None, t, [])) ^ "\n" ^ i in if !fdebug = 0 then - raise (NotWellTyped ("\n" ^ List.fold_right debug_aux (t::env) "")) - (*print_endline ("\n" ^ List.fold_right debug_aux (t::env) "") ; flush stdout*) + raise + (TypeCheckerFailure + (NotWellTyped ("\n" ^ List.fold_right debug_aux (t::context) ""))) + (*print_endline ("\n" ^ List.fold_right debug_aux (t::context) "") ; flush stdout*) ;; let rec split l n = match (l,n) with (l,0) -> ([], l) | (he::tl, n) -> let (l1,l2) = split tl (n-1) in (he::l1,l2) - | (_,_) -> raise ListTooShort + | (_,_) -> raise (TypeCheckerFailure ListTooShort) +;; + +let debrujin_constructor uri number_of_types = + let rec aux k = + let module C = Cic in + function + C.Rel n as t when n <= k -> t + | C.Rel _ -> + raise (TypeCheckerFailure (NotWellTyped ("Debrujin: open term found"))) + | C.Var (uri,exp_named_subst) -> + let exp_named_subst' = + List.map (function (uri,t) -> (uri,aux k t)) exp_named_subst + in + C.Var (uri,exp_named_subst') + | C.Meta _ -> assert false + | C.Sort _ + | C.Implicit as t -> t + | C.Cast (te,ty) -> C.Cast (aux k te, aux k ty) + | C.Prod (n,s,t) -> C.Prod (n, aux k s, aux (k+1) t) + | C.Lambda (n,s,t) -> C.Lambda (n, aux k s, aux (k+1) t) + | C.LetIn (n,s,t) -> C.LetIn (n, aux k s, aux (k+1) t) + | C.Appl l -> C.Appl (List.map (aux k) l) + | C.Const (uri,exp_named_subst) -> + let exp_named_subst' = + List.map (function (uri,t) -> (uri,aux k t)) exp_named_subst + in + C.Const (uri,exp_named_subst') + | C.MutInd (uri',tyno,exp_named_subst) when UriManager.eq uri uri' -> + if exp_named_subst != [] then + raise + (TypeCheckerFailure + (NotWellTyped + ("Debrujin: a non-empty explicit named substitution is applied to "^ + "a mutual inductive type which is being defined"))) ; + C.Rel (k + number_of_types - tyno) ; + | C.MutInd (uri',tyno,exp_named_subst) -> + let exp_named_subst' = + List.map (function (uri,t) -> (uri,aux k t)) exp_named_subst + in + C.MutInd (uri',tyno,exp_named_subst') + | C.MutConstruct (uri,tyno,consno,exp_named_subst) -> + let exp_named_subst' = + List.map (function (uri,t) -> (uri,aux k t)) exp_named_subst + in + C.MutConstruct (uri,tyno,consno,exp_named_subst') + | C.MutCase (sp,i,outty,t,pl) -> + C.MutCase (sp, i, aux k outty, aux k t, + List.map (aux k) pl) + | C.Fix (i, fl) -> + let len = List.length fl in + let liftedfl = + List.map + (fun (name, i, ty, bo) -> (name, i, aux k ty, aux (k+len) bo)) + fl + in + C.Fix (i, liftedfl) + | C.CoFix (i, fl) -> + let len = List.length fl in + let liftedfl = + List.map + (fun (name, ty, bo) -> (name, aux k ty, aux (k+len) bo)) + fl + in + C.CoFix (i, liftedfl) + in + aux 0 ;; exception CicEnvironmentError;; -let rec cooked_type_of_constant uri cookingsno = +let rec type_of_constant uri = let module C = Cic in let module R = CicReduction in let module U = UriManager in let cobj = - match CicEnvironment.is_type_checked uri cookingsno with + match CicEnvironment.is_type_checked ~trust:true uri with CicEnvironment.CheckedObj cobj -> cobj | CicEnvironment.UncheckedObj uobj -> - log (`Start_type_checking uri) ; + Logger.log (`Start_type_checking uri) ; (* let's typecheck the uncooked obj *) (match uobj with - C.Definition (_,te,ty,_) -> + C.Constant (_,Some te,ty,_) -> let _ = type_of ty in - if not (R.are_convertible (type_of te) ty) then - raise (NotWellTyped ("Constant " ^ (U.string_of_uri uri))) - | C.Axiom (_,ty,_) -> + if not (R.are_convertible [] (type_of te) ty) then + raise + (TypeCheckerFailure + (NotWellTyped ("Constant " ^ (U.string_of_uri uri)))) + | C.Constant (_,None,ty,_) -> (* only to check that ty is well-typed *) let _ = type_of ty in () - | C.CurrentProof (_,_,te,ty) -> - let _ = type_of ty in - if not (R.are_convertible (type_of te) ty) then - raise (NotWellTyped ("CurrentProof" ^ (U.string_of_uri uri))) - | _ -> raise (WrongUriToConstant (U.string_of_uri uri)) + | C.CurrentProof (_,conjs,te,ty,_) -> + let _ = + List.fold_left + (fun metasenv ((_,context,ty) as conj) -> + ignore (type_of_aux' metasenv context ty) ; + metasenv @ [conj] + ) [] conjs + in + let _ = type_of_aux' conjs [] ty in + if not (R.are_convertible [] (type_of_aux' conjs [] te) ty) + then + raise + (TypeCheckerFailure + (NotWellTyped ("CurrentProof" ^ (U.string_of_uri uri)))) + | _ -> + raise (TypeCheckerFailure (WrongUriToConstant (U.string_of_uri uri))) ) ; CicEnvironment.set_type_checking_info uri ; - log (`Type_checking_completed uri) ; - match CicEnvironment.is_type_checked uri cookingsno with + Logger.log (`Type_checking_completed uri) ; + match CicEnvironment.is_type_checked ~trust:false uri with CicEnvironment.CheckedObj cobj -> cobj | CicEnvironment.UncheckedObj _ -> raise CicEnvironmentError in match cobj with - C.Definition (_,_,ty,_) -> ty - | C.Axiom (_,ty,_) -> ty - | C.CurrentProof (_,_,_,ty) -> ty - | _ -> raise (WrongUriToConstant (U.string_of_uri uri)) + C.Constant (_,_,ty,_) -> ty + | C.CurrentProof (_,_,_,ty,_) -> ty + | _ -> raise (TypeCheckerFailure (WrongUriToConstant (U.string_of_uri uri))) and type_of_variable uri = let module C = Cic in let module R = CicReduction in let module U = UriManager in (* 0 because a variable is never cooked => no partial cooking at one level *) - match CicEnvironment.is_type_checked uri 0 with - CicEnvironment.CheckedObj (C.Variable (_,_,ty)) -> ty - | CicEnvironment.UncheckedObj (C.Variable (_,bo,ty)) -> - log (`Start_type_checking uri) ; + match CicEnvironment.is_type_checked ~trust:true uri with + CicEnvironment.CheckedObj (C.Variable (_,_,ty,_)) -> ty + | CicEnvironment.UncheckedObj (C.Variable (_,bo,ty,_)) -> + Logger.log (`Start_type_checking uri) ; (* only to check that ty is well-typed *) let _ = type_of ty in (match bo with None -> () | Some bo -> - if not (R.are_convertible (type_of bo) ty) then - raise (NotWellTyped ("Variable " ^ (U.string_of_uri uri))) + if not (R.are_convertible [] (type_of bo) ty) then + raise + (TypeCheckerFailure + (NotWellTyped ("Variable " ^ (U.string_of_uri uri)))) ) ; CicEnvironment.set_type_checking_info uri ; - log (`Type_checking_completed uri) ; + Logger.log (`Type_checking_completed uri) ; ty - | _ -> raise (WrongUriToVariable (UriManager.string_of_uri uri)) + | _ -> + raise + (TypeCheckerFailure (WrongUriToVariable (UriManager.string_of_uri uri))) -and does_not_occur n nn te = +and does_not_occur context n nn te = let module C = Cic in (*CSC: whd sembra essere superflua perche' un caso in cui l'occorrenza *) (*CSC: venga mangiata durante la whd sembra presentare problemi di *) (*CSC: universi *) - match CicReduction.whd te with + match CicReduction.whd context te with C.Rel m when m > n && m <= nn -> false | C.Rel _ - | C.Var _ | C.Meta _ | C.Sort _ | C.Implicit -> true - | C.Cast (te,ty) -> does_not_occur n nn te && does_not_occur n nn ty - | C.Prod (_,so,dest) -> - does_not_occur n nn so && does_not_occur (n + 1) (nn + 1) dest - | C.Lambda (_,so,dest) -> - does_not_occur n nn so && does_not_occur (n + 1) (nn + 1) dest - | C.LetIn (_,so,dest) -> - does_not_occur n nn so && does_not_occur (n + 1) (nn + 1) dest + | C.Cast (te,ty) -> + does_not_occur context n nn te && does_not_occur context n nn ty + | C.Prod (name,so,dest) -> + does_not_occur context n nn so && + does_not_occur((Some (name,(C.Decl so)))::context) (n + 1) (nn + 1) dest + | C.Lambda (name,so,dest) -> + does_not_occur context n nn so && + does_not_occur((Some (name,(C.Decl so)))::context) (n + 1) (nn + 1) dest + | C.LetIn (name,so,dest) -> + does_not_occur context n nn so && + does_not_occur ((Some (name,(C.Def so)))::context) (n + 1) (nn + 1) dest | C.Appl l -> - List.fold_right (fun x i -> i && does_not_occur n nn x) l true - | C.Const _ - | C.Abst _ - | C.MutInd _ - | C.MutConstruct _ -> true - | C.MutCase (_,_,_,out,te,pl) -> - does_not_occur n nn out && does_not_occur n nn te && - List.fold_right (fun x i -> i && does_not_occur n nn x) pl true + List.fold_right (fun x i -> i && does_not_occur context n nn x) l true + | C.Var (_,exp_named_subst) + | C.Const (_,exp_named_subst) + | C.MutInd (_,_,exp_named_subst) + | C.MutConstruct (_,_,_,exp_named_subst) -> + List.fold_right (fun (_,x) i -> i && does_not_occur context n nn x) + exp_named_subst true + | C.MutCase (_,_,out,te,pl) -> + does_not_occur context n nn out && does_not_occur context n nn te && + List.fold_right (fun x i -> i && does_not_occur context n nn x) pl true | C.Fix (_,fl) -> let len = List.length fl in let n_plus_len = n + len in let nn_plus_len = nn + len in + let tys = + List.map (fun (n,_,ty,_) -> Some (C.Name n,(Cic.Decl ty))) fl + in List.fold_right (fun (_,_,ty,bo) i -> - i && does_not_occur n_plus_len nn_plus_len ty && - does_not_occur n_plus_len nn_plus_len bo + i && does_not_occur context n nn ty && + does_not_occur (tys @ context) n_plus_len nn_plus_len bo ) fl true | C.CoFix (_,fl) -> let len = List.length fl in let n_plus_len = n + len in let nn_plus_len = nn + len in + let tys = + List.map (fun (n,ty,_) -> Some (C.Name n,(Cic.Decl ty))) fl + in List.fold_right (fun (_,ty,bo) i -> - i && does_not_occur n_plus_len nn_plus_len ty && - does_not_occur n_plus_len nn_plus_len bo + i && does_not_occur context n nn ty && + does_not_occur (tys @ context) n_plus_len nn_plus_len bo ) fl true (*CSC l'indice x dei tipi induttivi e' t.c. n < x <= nn *) @@ -189,53 +265,89 @@ and does_not_occur n nn te = (*CSC dei controlli leggermente diversi. Viene invocata solamente dalla *) (*CSC strictly_positive *) (*CSC definizione (giusta???) tratta dalla mail di Hugo ;-) *) -and weakly_positive n nn uri te = +and weakly_positive context n nn uri te = let module C = Cic in +(*CSC: Che schifo! Bisogna capire meglio e trovare una soluzione ragionevole!*) + let dummy_mutind = + C.MutInd (UriManager.uri_of_string "cic:/Coq/Init/Datatypes/nat.ind",0,[]) + in (*CSC mettere in cicSubstitution *) - let rec subst_inductive_type_with_dummy_rel = + let rec subst_inductive_type_with_dummy_mutind = function - C.MutInd (uri',_,0) when UriManager.eq uri' uri -> - C.Rel 0 (* dummy rel *) - | C.Appl ((C.MutInd (uri',_,0))::tl) when UriManager.eq uri' uri -> - C.Rel 0 (* dummy rel *) - | C.Cast (te,ty) -> subst_inductive_type_with_dummy_rel te + C.MutInd (uri',0,_) when UriManager.eq uri' uri -> + dummy_mutind + | C.Appl ((C.MutInd (uri',0,_))::tl) when UriManager.eq uri' uri -> + dummy_mutind + | C.Cast (te,ty) -> subst_inductive_type_with_dummy_mutind te | C.Prod (name,so,ta) -> - C.Prod (name, subst_inductive_type_with_dummy_rel so, - subst_inductive_type_with_dummy_rel ta) + C.Prod (name, subst_inductive_type_with_dummy_mutind so, + subst_inductive_type_with_dummy_mutind ta) | C.Lambda (name,so,ta) -> - C.Lambda (name, subst_inductive_type_with_dummy_rel so, - subst_inductive_type_with_dummy_rel ta) + C.Lambda (name, subst_inductive_type_with_dummy_mutind so, + subst_inductive_type_with_dummy_mutind ta) | C.Appl tl -> - C.Appl (List.map subst_inductive_type_with_dummy_rel tl) - | C.MutCase (uri,cookingsno,i,outtype,term,pl) -> - C.MutCase (uri,cookingsno,i, - subst_inductive_type_with_dummy_rel outtype, - subst_inductive_type_with_dummy_rel term, - List.map subst_inductive_type_with_dummy_rel pl) + C.Appl (List.map subst_inductive_type_with_dummy_mutind tl) + | C.MutCase (uri,i,outtype,term,pl) -> + C.MutCase (uri,i, + subst_inductive_type_with_dummy_mutind outtype, + subst_inductive_type_with_dummy_mutind term, + List.map subst_inductive_type_with_dummy_mutind pl) | C.Fix (i,fl) -> C.Fix (i,List.map (fun (name,i,ty,bo) -> (name,i, - subst_inductive_type_with_dummy_rel ty, - subst_inductive_type_with_dummy_rel bo)) fl) + subst_inductive_type_with_dummy_mutind ty, + subst_inductive_type_with_dummy_mutind bo)) fl) | C.CoFix (i,fl) -> C.CoFix (i,List.map (fun (name,ty,bo) -> (name, - subst_inductive_type_with_dummy_rel ty, - subst_inductive_type_with_dummy_rel bo)) fl) + subst_inductive_type_with_dummy_mutind ty, + subst_inductive_type_with_dummy_mutind bo)) fl) + | C.Const (uri,exp_named_subst) -> + let exp_named_subst' = + List.map + (function (uri,t) -> (uri,subst_inductive_type_with_dummy_mutind t)) + exp_named_subst + in + C.Const (uri,exp_named_subst') + | C.MutInd (uri,typeno,exp_named_subst) -> + let exp_named_subst' = + List.map + (function (uri,t) -> (uri,subst_inductive_type_with_dummy_mutind t)) + exp_named_subst + in + C.MutInd (uri,typeno,exp_named_subst') + | C.MutConstruct (uri,typeno,consno,exp_named_subst) -> + let exp_named_subst' = + List.map + (function (uri,t) -> (uri,subst_inductive_type_with_dummy_mutind t)) + exp_named_subst + in + C.MutConstruct (uri,typeno,consno,exp_named_subst') | t -> t in - match CicReduction.whd te with - C.Appl ((C.MutInd (uri',_,0))::tl) when UriManager.eq uri' uri -> true - | C.MutInd (uri',_,0) when UriManager.eq uri' uri -> true - | C.Prod (C.Anonimous,source,dest) -> - strictly_positive n nn (subst_inductive_type_with_dummy_rel source) && - weakly_positive (n + 1) (nn + 1) uri dest - | C.Prod (name,source,dest) when does_not_occur 0 n dest -> - (* dummy abstraction, so we behave as in the anonimous case *) - strictly_positive n nn (subst_inductive_type_with_dummy_rel source) && - weakly_positive (n + 1) (nn + 1) uri dest - | C.Prod (_,source,dest) -> - does_not_occur n nn (subst_inductive_type_with_dummy_rel source) && - weakly_positive (n + 1) (nn + 1) uri dest - | _ -> raise (NotWellFormedTypeOfInductiveConstructor ("Guess where the error is ;-)")) + match CicReduction.whd context te with + C.Appl ((C.MutInd (uri',0,_))::tl) when UriManager.eq uri' uri -> true + | C.MutInd (uri',0,_) when UriManager.eq uri' uri -> true + | C.Prod (C.Anonymous,source,dest) -> + strictly_positive context n nn + (subst_inductive_type_with_dummy_mutind source) && + weakly_positive ((Some (C.Anonymous,(C.Decl source)))::context) + (n + 1) (nn + 1) uri dest + | C.Prod (name,source,dest) when + does_not_occur ((Some (name,(C.Decl source)))::context) 0 n dest -> + (* dummy abstraction, so we behave as in the anonimous case *) + strictly_positive context n nn + (subst_inductive_type_with_dummy_mutind source) && + weakly_positive ((Some (name,(C.Decl source)))::context) + (n + 1) (nn + 1) uri dest + | C.Prod (name,source,dest) -> + does_not_occur context n nn + (subst_inductive_type_with_dummy_mutind source)&& + weakly_positive ((Some (name,(C.Decl source)))::context) + (n + 1) (nn + 1) uri dest + | _ -> + raise + (TypeCheckerFailure + (NotWellFormedTypeOfInductiveConstructor + ("Guess where the error is ;-)"))) (* instantiate_parameters ps (x1:T1)...(xn:Tn)C *) (* returns ((x_|ps|:T_|ps|)...(xn:Tn)C){ps_1 / x1 ; ... ; ps_|ps| / x_|ps|} *) @@ -247,50 +359,58 @@ and instantiate_parameters params c = instantiate_parameters tl (CicSubstitution.subst he ta) | (C.Cast (te,_), _) -> instantiate_parameters params te - | (t,l) -> raise (Impossible 1) + | (t,l) -> raise (TypeCheckerFailure (Impossible 1)) -and strictly_positive n nn te = +and strictly_positive context n nn te = let module C = Cic in let module U = UriManager in - match CicReduction.whd te with + match CicReduction.whd context te with C.Rel _ -> true | C.Cast (te,ty) -> (*CSC: bisogna controllare ty????*) - strictly_positive n nn te - | C.Prod (_,so,ta) -> - does_not_occur n nn so && - strictly_positive (n+1) (nn+1) ta + strictly_positive context n nn te + | C.Prod (name,so,ta) -> + does_not_occur context n nn so && + strictly_positive ((Some (name,(C.Decl so)))::context) (n+1) (nn+1) ta | C.Appl ((C.Rel m)::tl) when m > n && m <= nn -> - List.fold_right (fun x i -> i && does_not_occur n nn x) tl true - | C.Appl ((C.MutInd (uri,_,i))::tl) -> - let (ok,paramsno,cl) = + List.fold_right (fun x i -> i && does_not_occur context n nn x) tl true + | C.Appl ((C.MutInd (uri,i,exp_named_subst))::tl) -> + let (ok,paramsno,ity,cl,name) = match CicEnvironment.get_obj uri with C.InductiveDefinition (tl,_,paramsno) -> - let (_,_,_,cl) = List.nth tl i in - (List.length tl = 1, paramsno, cl) - | _ -> raise(WrongUriToMutualInductiveDefinitions(U.string_of_uri uri)) + let (name,_,ity,cl) = List.nth tl i in + (List.length tl = 1, paramsno, ity, cl, name) + | _ -> + raise + (TypeCheckerFailure + (WrongUriToMutualInductiveDefinitions(U.string_of_uri uri))) in let (params,arguments) = split tl paramsno in let lifted_params = List.map (CicSubstitution.lift 1) params in let cl' = - List.map (fun (_,te,_) -> instantiate_parameters lifted_params te) cl + List.map + (fun (_,te) -> + instantiate_parameters lifted_params + (CicSubstitution.subst_vars exp_named_subst te) + ) cl in ok && List.fold_right - (fun x i -> i && does_not_occur n nn x) + (fun x i -> i && does_not_occur context n nn x) arguments true && (*CSC: MEGAPATCH3 (sara' quella giusta?)*) List.fold_right (fun x i -> i && - weakly_positive (n+1) (nn+1) uri x + weakly_positive + ((Some (C.Name name,(Cic.Decl ity)))::context) (n+1) (nn+1) uri x ) cl' true - | t -> does_not_occur n nn t + | t -> does_not_occur context n nn t (*CSC l'indice x dei tipi induttivi e' t.c. n < x <= nn *) -and are_all_occurrences_positive uri indparamsno i n nn te = +and are_all_occurrences_positive context uri indparamsno i n nn te = let module C = Cic in - match CicReduction.whd te with + match CicReduction.whd context te with C.Appl ((C.Rel m)::tl) when m = i -> (*CSC: riscrivere fermandosi a 0 *) (* let's check if the inductive type is applied at least to *) @@ -300,88 +420,116 @@ and are_all_occurrences_positive uri indparamsno i n nn te = (fun k x -> if k = 0 then 0 else - match CicReduction.whd x with + match CicReduction.whd context x with C.Rel m when m = n - (indparamsno - k) -> k - 1 - | _ -> raise (WrongRequiredArgument (UriManager.string_of_uri uri)) + | _ -> + raise + (TypeCheckerFailure + (WrongRequiredArgument (UriManager.string_of_uri uri))) ) indparamsno tl in if last = 0 then - List.fold_right (fun x i -> i && does_not_occur n nn x) tl true + List.fold_right (fun x i -> i && does_not_occur context n nn x) tl true else - raise (WrongRequiredArgument (UriManager.string_of_uri uri)) + raise + (TypeCheckerFailure + (WrongRequiredArgument (UriManager.string_of_uri uri))) | C.Rel m when m = i -> if indparamsno = 0 then true else - raise (WrongRequiredArgument (UriManager.string_of_uri uri)) - | C.Prod (C.Anonimous,source,dest) -> - strictly_positive n nn source && - are_all_occurrences_positive uri indparamsno (i+1) (n + 1) (nn + 1) dest - | C.Prod (name,source,dest) when does_not_occur 0 n dest -> + raise + (TypeCheckerFailure + (WrongRequiredArgument (UriManager.string_of_uri uri))) + | C.Prod (C.Anonymous,source,dest) -> + strictly_positive context n nn source && + are_all_occurrences_positive + ((Some (C.Anonymous,(C.Decl source)))::context) uri indparamsno + (i+1) (n + 1) (nn + 1) dest + | C.Prod (name,source,dest) when + does_not_occur ((Some (name,(C.Decl source)))::context) 0 n dest -> (* dummy abstraction, so we behave as in the anonimous case *) - strictly_positive n nn source && - are_all_occurrences_positive uri indparamsno (i+1) (n + 1) (nn + 1) dest - | C.Prod (_,source,dest) -> - does_not_occur n nn source && - are_all_occurrences_positive uri indparamsno (i+1) (n + 1) (nn + 1) dest - | _ -> raise (NotWellFormedTypeOfInductiveConstructor (UriManager.string_of_uri uri)) + strictly_positive context n nn source && + are_all_occurrences_positive + ((Some (name,(C.Decl source)))::context) uri indparamsno + (i+1) (n + 1) (nn + 1) dest + | C.Prod (name,source,dest) -> + does_not_occur context n nn source && + are_all_occurrences_positive ((Some (name,(C.Decl source)))::context) + uri indparamsno (i+1) (n + 1) (nn + 1) dest + | _ -> + raise + (TypeCheckerFailure + (NotWellFormedTypeOfInductiveConstructor (UriManager.string_of_uri uri))) -(*CSC: cambiare il nome, torna unit! *) -and cooked_mutual_inductive_defs uri = +(* Main function to checks the correctness of a mutual *) +(* inductive block definition. This is the function *) +(* exported to the proof-engine. *) +and typecheck_mutual_inductive_defs uri (itl,_,indparamsno) = let module U = UriManager in - function - Cic.InductiveDefinition (itl, _, indparamsno) -> - (* let's check if the arity of the inductive types are well *) - (* formed *) - List.iter (fun (_,_,x,_) -> let _ = type_of x in ()) itl ; + (* let's check if the arity of the inductive types are well *) + (* formed *) + List.iter (fun (_,_,x,_) -> let _ = type_of x in ()) itl ; - (* let's check if the types of the inductive constructors *) - (* are well formed. *) - (* In order not to use type_of_aux we put the types of the *) - (* mutual inductive types at the head of the types of the *) - (* constructors using Prods *) - (*CSC: piccola??? inefficienza *) - let len = List.length itl in - let _ = - List.fold_right - (fun (_,_,_,cl) i -> - List.iter - (fun (name,te,r) -> - let augmented_term = - List.fold_right - (fun (name,_,ty,_) i -> Cic.Prod (Cic.Name name, ty, i)) - itl te - in - let _ = type_of augmented_term in - (* let's check also the positivity conditions *) - if not (are_all_occurrences_positive uri indparamsno i 0 len te) - then - raise (NotPositiveOccurrences (U.string_of_uri uri)) - else - match !r with - Some _ -> raise (Impossible 2) - | None -> r := Some (recursive_args 0 len te) - ) cl ; - (i + 1) - ) itl 1 - in - () - | _ -> - raise (WrongUriToMutualInductiveDefinitions (U.string_of_uri uri)) + (* let's check if the types of the inductive constructors *) + (* are well formed. *) + (* In order not to use type_of_aux we put the types of the *) + (* mutual inductive types at the head of the types of the *) + (* constructors using Prods *) + let len = List.length itl in + let tys = + List.map (fun (n,_,ty,_) -> Some (Cic.Name n,(Cic.Decl ty))) itl in + let _ = + List.fold_right + (fun (_,_,_,cl) i -> + List.iter + (fun (name,te) -> + let debrujinedte = debrujin_constructor uri len te in + let augmented_term = + List.fold_right + (fun (name,_,ty,_) i -> Cic.Prod (Cic.Name name, ty, i)) + itl debrujinedte + in + let _ = type_of augmented_term in + (* let's check also the positivity conditions *) + if + not + (are_all_occurrences_positive tys uri indparamsno i 0 len + debrujinedte) + then + raise + (TypeCheckerFailure + (NotPositiveOccurrences (U.string_of_uri uri))) + ) cl ; + (i + 1) + ) itl 1 + in + () + +(* Main function to checks the correctness of a mutual *) +(* inductive block definition. *) +and check_mutual_inductive_defs uri = + function + Cic.InductiveDefinition (itl, params, indparamsno) -> + typecheck_mutual_inductive_defs uri (itl,params,indparamsno) + | _ -> + raise + (TypeCheckerFailure + (WrongUriToMutualInductiveDefinitions (UriManager.string_of_uri uri))) -and cooked_type_of_mutual_inductive_defs uri cookingsno i = +and type_of_mutual_inductive_defs uri i = let module C = Cic in let module R = CicReduction in let module U = UriManager in let cobj = - match CicEnvironment.is_type_checked uri cookingsno with + match CicEnvironment.is_type_checked ~trust:true uri with CicEnvironment.CheckedObj cobj -> cobj | CicEnvironment.UncheckedObj uobj -> - log (`Start_type_checking uri) ; - cooked_mutual_inductive_defs uri uobj ; + Logger.log (`Start_type_checking uri) ; + check_mutual_inductive_defs uri uobj ; CicEnvironment.set_type_checking_info uri ; - log (`Type_checking_completed uri) ; - (match CicEnvironment.is_type_checked uri cookingsno with + Logger.log (`Type_checking_completed uri) ; + (match CicEnvironment.is_type_checked ~trust:false uri with CicEnvironment.CheckedObj cobj -> cobj | CicEnvironment.UncheckedObj _ -> raise CicEnvironmentError ) @@ -390,21 +538,24 @@ and cooked_type_of_mutual_inductive_defs uri cookingsno i = C.InductiveDefinition (dl,_,_) -> let (_,_,arity,_) = List.nth dl i in arity - | _ -> raise (WrongUriToMutualInductiveDefinitions (U.string_of_uri uri)) + | _ -> + raise + (TypeCheckerFailure + (WrongUriToMutualInductiveDefinitions (U.string_of_uri uri))) -and cooked_type_of_mutual_inductive_constr uri cookingsno i j = +and type_of_mutual_inductive_constr uri i j = let module C = Cic in let module R = CicReduction in let module U = UriManager in let cobj = - match CicEnvironment.is_type_checked uri cookingsno with + match CicEnvironment.is_type_checked ~trust:true uri with CicEnvironment.CheckedObj cobj -> cobj | CicEnvironment.UncheckedObj uobj -> - log (`Start_type_checking uri) ; - cooked_mutual_inductive_defs uri uobj ; + Logger.log (`Start_type_checking uri) ; + check_mutual_inductive_defs uri uobj ; CicEnvironment.set_type_checking_info uri ; - log (`Type_checking_completed uri) ; - (match CicEnvironment.is_type_checked uri cookingsno with + Logger.log (`Type_checking_completed uri) ; + (match CicEnvironment.is_type_checked ~trust:false uri with CicEnvironment.CheckedObj cobj -> cobj | CicEnvironment.UncheckedObj _ -> raise CicEnvironmentError ) @@ -412,38 +563,44 @@ and cooked_type_of_mutual_inductive_constr uri cookingsno i j = match cobj with C.InductiveDefinition (dl,_,_) -> let (_,_,_,cl) = List.nth dl i in - let (_,ty,_) = List.nth cl (j-1) in + let (_,ty) = List.nth cl (j-1) in ty - | _ -> raise (WrongUriToMutualInductiveDefinitions (U.string_of_uri uri)) + | _ -> + raise + (TypeCheckerFailure + (WrongUriToMutualInductiveDefinitions (U.string_of_uri uri))) -and recursive_args n nn te = +and recursive_args context n nn te = let module C = Cic in - match CicReduction.whd te with + match CicReduction.whd context te with C.Rel _ -> [] | C.Var _ | C.Meta _ | C.Sort _ | C.Implicit - | C.Cast _ (*CSC ??? *) -> raise (Impossible 3) (* due to type-checking *) - | C.Prod (_,so,de) -> - (not (does_not_occur n nn so))::(recursive_args (n+1) (nn + 1) de) + | C.Cast _ (*CSC ??? *) -> + raise (TypeCheckerFailure (Impossible 3)) (* due to type-checking *) + | C.Prod (name,so,de) -> + (not (does_not_occur context n nn so)) :: + (recursive_args ((Some (name,(C.Decl so)))::context) (n+1) (nn + 1) de) | C.Lambda _ - | C.LetIn _ -> raise (Impossible 4) (* due to type-checking *) + | C.LetIn _ -> + raise (TypeCheckerFailure (Impossible 4)) (* due to type-checking *) | C.Appl _ -> [] - | C.Const _ - | C.Abst _ -> raise (Impossible 5) + | C.Const _ -> raise (TypeCheckerFailure (Impossible 5)) | C.MutInd _ | C.MutConstruct _ | C.MutCase _ | C.Fix _ - | C.CoFix _ -> raise (Impossible 6) (* due to type-checking *) + | C.CoFix _ -> + raise (TypeCheckerFailure (Impossible 6)) (* due to type-checking *) -and get_new_safes p c rl safes n nn x = +and get_new_safes context p c rl safes n nn x = let module C = Cic in let module U = UriManager in let module R = CicReduction in - match (R.whd c, R.whd p, rl) with - (C.Prod (_,_,ta1), C.Lambda (_,_,ta2), b::tl) -> + match (R.whd context c, R.whd context p, rl) with + (C.Prod (_,so,ta1), C.Lambda (name,_,ta2), b::tl) -> (* we are sure that the two sources are convertible because we *) (* have just checked this. So let's go along ... *) let safes' = @@ -452,46 +609,48 @@ and get_new_safes p c rl safes n nn x = let safes'' = if b then 1::safes' else safes' in - get_new_safes ta2 ta1 tl safes'' (n+1) (nn+1) (x+1) + get_new_safes ((Some (name,(C.Decl so)))::context) + ta2 ta1 tl safes'' (n+1) (nn+1) (x+1) | (C.Prod _, (C.MutConstruct _ as e), _) | (C.Prod _, (C.Rel _ as e), _) | (C.MutInd _, e, []) - | (C.Appl _, e, []) -> (e,safes,n,nn,x) + | (C.Appl _, e, []) -> (e,safes,n,nn,x,context) | (_,_,_) -> (* CSC: If the next exception is raised, it just means that *) (* CSC: the proof-assistant allows to use very strange things *) (* CSC: as a branch of a case whose type is a Prod. In *) (* CSC: particular, this means that a new (C.Prod, x,_) case *) (* CSC: must be considered in this match. (e.g. x = MutCase) *) - raise (Impossible 7) + raise (TypeCheckerFailure (Impossible 7)) -and split_prods n te = +and split_prods context n te = let module C = Cic in let module R = CicReduction in - match (n, R.whd te) with - (0, _) -> [],te - | (n, C.Prod (_,so,ta)) when n > 0 -> - let (l1,l2) = split_prods (n - 1) ta in - (so::l1,l2) - | (_, _) -> raise (Impossible 8) + match (n, R.whd context te) with + (0, _) -> context,te + | (n, C.Prod (name,so,ta)) when n > 0 -> + split_prods ((Some (name,(C.Decl so)))::context) (n - 1) ta + | (_, _) -> raise (TypeCheckerFailure (Impossible 8)) -and eat_lambdas n te = +and eat_lambdas context n te = let module C = Cic in let module R = CicReduction in - match (n, R.whd te) with - (0, _) -> (te, 0) - | (n, C.Lambda (_,_,ta)) when n > 0 -> - let (te, k) = eat_lambdas (n - 1) ta in - (te, k + 1) - | (_, _) -> raise (Impossible 9) + match (n, R.whd context te) with + (0, _) -> (te, 0, context) + | (n, C.Lambda (name,so,ta)) when n > 0 -> + let (te, k, context') = + eat_lambdas ((Some (name,(C.Decl so)))::context) (n - 1) ta + in + (te, k + 1, context') + | (_, _) -> raise (TypeCheckerFailure (Impossible 9)) (*CSC: Tutto quello che segue e' l'intuzione di luca ;-) *) -and check_is_really_smaller_arg n nn kl x safes te = +and check_is_really_smaller_arg context n nn kl x safes te = (*CSC: forse la whd si puo' fare solo quando serve veramente. *) (*CSC: cfr guarded_by_destructors *) let module C = Cic in let module U = UriManager in - match CicReduction.whd te with + match CicReduction.whd context te with C.Rel m when List.mem m safes -> true | C.Rel _ -> false | C.Var _ @@ -506,248 +665,279 @@ and check_is_really_smaller_arg n nn kl x safes te = check_is_really_smaller_arg n nn kl x safes so && check_is_really_smaller_arg (n+1) (nn+1) kl (x+1) (List.map (fun x -> x + 1) safes) ta*) - | C.Prod _ -> raise (Impossible 10) - | C.Lambda (_,so,ta) -> - check_is_really_smaller_arg n nn kl x safes so && - check_is_really_smaller_arg (n+1) (nn+1) kl (x+1) - (List.map (fun x -> x + 1) safes) ta - | C.LetIn (_,so,ta) -> - check_is_really_smaller_arg n nn kl x safes so && - check_is_really_smaller_arg (n+1) (nn+1) kl (x+1) - (List.map (fun x -> x + 1) safes) ta + | C.Prod _ -> raise (TypeCheckerFailure (Impossible 10)) + | C.Lambda (name,so,ta) -> + check_is_really_smaller_arg context n nn kl x safes so && + check_is_really_smaller_arg ((Some (name,(C.Decl so)))::context) + (n+1) (nn+1) kl (x+1) (List.map (fun x -> x + 1) safes) ta + | C.LetIn (name,so,ta) -> + check_is_really_smaller_arg context n nn kl x safes so && + check_is_really_smaller_arg ((Some (name,(C.Def so)))::context) + (n+1) (nn+1) kl (x+1) (List.map (fun x -> x + 1) safes) ta | C.Appl (he::_) -> (*CSC: sulla coda ci vogliono dei controlli? secondo noi no, ma *) (*CSC: solo perche' non abbiamo trovato controesempi *) - check_is_really_smaller_arg n nn kl x safes he - | C.Appl [] -> raise (Impossible 11) + check_is_really_smaller_arg context n nn kl x safes he + | C.Appl [] -> raise (TypeCheckerFailure (Impossible 11)) | C.Const _ - | C.Abst _ - | C.MutInd _ -> raise (Impossible 12) + | C.MutInd _ -> raise (TypeCheckerFailure (Impossible 12)) | C.MutConstruct _ -> false - | C.MutCase (uri,_,i,outtype,term,pl) -> + | C.MutCase (uri,i,outtype,term,pl) -> (match term with C.Rel m when List.mem m safes || m = x -> - let (isinductive,paramsno,cl) = + let (tys,len,isinductive,paramsno,cl) = match CicEnvironment.get_obj uri with C.InductiveDefinition (tl,_,paramsno) -> - let (_,isinductive,_,cl) = List.nth tl i in - let cl' = - List.map (fun (id,ty,r) -> (id, snd (split_prods paramsno ty), r)) cl - in - (isinductive,paramsno,cl') + let tys = + List.map (fun (n,_,ty,_) -> Some (Cic.Name n,(Cic.Decl ty))) tl + in + let (_,isinductive,_,cl) = List.nth tl i in + let cl' = + List.map + (fun (id,ty) -> + (id, snd (split_prods tys paramsno ty))) cl + in + (tys,List.length tl,isinductive,paramsno,cl') | _ -> - raise (WrongUriToMutualInductiveDefinitions(U.string_of_uri uri)) + raise + (TypeCheckerFailure + (WrongUriToMutualInductiveDefinitions(U.string_of_uri uri))) in if not isinductive then List.fold_right - (fun p i -> i && check_is_really_smaller_arg n nn kl x safes p) + (fun p i -> + i && check_is_really_smaller_arg context n nn kl x safes p) pl true else List.fold_right - (fun (p,(_,c,rl)) i -> + (fun (p,(_,c)) i -> let rl' = - match !rl with - Some rl' -> - let (_,rl'') = split rl' paramsno in - rl'' - | None -> raise (Impossible 13) + let debrujinedte = debrujin_constructor uri len c in + recursive_args tys 0 len debrujinedte in - let (e,safes',n',nn',x') = - get_new_safes p c rl' safes n nn x + let (e,safes',n',nn',x',context') = + get_new_safes context p c rl' safes n nn x in i && - check_is_really_smaller_arg n' nn' kl x' safes' e + check_is_really_smaller_arg context' n' nn' kl x' safes' e ) (List.combine pl cl) true | C.Appl ((C.Rel m)::tl) when List.mem m safes || m = x -> - let (isinductive,paramsno,cl) = + let (tys,len,isinductive,paramsno,cl) = match CicEnvironment.get_obj uri with C.InductiveDefinition (tl,_,paramsno) -> let (_,isinductive,_,cl) = List.nth tl i in - let cl' = - List.map (fun (id,ty,r) -> (id, snd (split_prods paramsno ty), r)) cl + let tys = + List.map (fun (n,_,ty,_) -> Some(Cic.Name n,(Cic.Decl ty))) tl in - (isinductive,paramsno,cl') + let cl' = + List.map + (fun (id,ty) -> + (id, snd (split_prods tys paramsno ty))) cl + in + (tys,List.length tl,isinductive,paramsno,cl') | _ -> - raise (WrongUriToMutualInductiveDefinitions(U.string_of_uri uri)) + raise + (TypeCheckerFailure + (WrongUriToMutualInductiveDefinitions(U.string_of_uri uri))) in if not isinductive then List.fold_right - (fun p i -> i && check_is_really_smaller_arg n nn kl x safes p) + (fun p i -> + i && check_is_really_smaller_arg context n nn kl x safes p) pl true else (*CSC: supponiamo come prima che nessun controllo sia necessario*) (*CSC: sugli argomenti di una applicazione *) List.fold_right - (fun (p,(_,c,rl)) i -> + (fun (p,(_,c)) i -> let rl' = - match !rl with - Some rl' -> - let (_,rl'') = split rl' paramsno in - rl'' - | None -> raise (Impossible 14) + let debrujinedte = debrujin_constructor uri len c in + recursive_args tys 0 len debrujinedte in - let (e, safes',n',nn',x') = - get_new_safes p c rl' safes n nn x + let (e, safes',n',nn',x',context') = + get_new_safes context p c rl' safes n nn x in i && - check_is_really_smaller_arg n' nn' kl x' safes' e + check_is_really_smaller_arg context' n' nn' kl x' safes' e ) (List.combine pl cl) true | _ -> List.fold_right - (fun p i -> i && check_is_really_smaller_arg n nn kl x safes p) - pl true + (fun p i -> + i && check_is_really_smaller_arg context n nn kl x safes p + ) pl true ) | C.Fix (_, fl) -> let len = List.length fl in let n_plus_len = n + len and nn_plus_len = nn + len and x_plus_len = x + len + and tys = List.map (fun (n,_,ty,_) -> Some (C.Name n,(C.Decl ty))) fl and safes' = List.map (fun x -> x + len) safes in List.fold_right (fun (_,_,ty,bo) i -> i && - check_is_really_smaller_arg n_plus_len nn_plus_len kl x_plus_len - safes' bo + check_is_really_smaller_arg (tys@context) n_plus_len nn_plus_len kl + x_plus_len safes' bo ) fl true | C.CoFix (_, fl) -> let len = List.length fl in let n_plus_len = n + len and nn_plus_len = nn + len and x_plus_len = x + len + and tys = List.map (fun (n,ty,_) -> Some (C.Name n,(C.Decl ty))) fl and safes' = List.map (fun x -> x + len) safes in List.fold_right (fun (_,ty,bo) i -> i && - check_is_really_smaller_arg n_plus_len nn_plus_len kl x_plus_len - safes' bo + check_is_really_smaller_arg (tys@context) n_plus_len nn_plus_len kl + x_plus_len safes' bo ) fl true -and guarded_by_destructors n nn kl x safes = +and guarded_by_destructors context n nn kl x safes = let module C = Cic in let module U = UriManager in function C.Rel m when m > n && m <= nn -> false - | C.Rel _ - | C.Var _ + | C.Rel n -> + (match List.nth context (n-1) with + Some (_,C.Decl _) -> true + | Some (_,C.Def bo) -> guarded_by_destructors context n nn kl x safes bo + | None -> raise (TypeCheckerFailure RelToHiddenHypothesis) + ) | C.Meta _ | C.Sort _ | C.Implicit -> true | C.Cast (te,ty) -> - guarded_by_destructors n nn kl x safes te && - guarded_by_destructors n nn kl x safes ty - | C.Prod (_,so,ta) -> - guarded_by_destructors n nn kl x safes so && - guarded_by_destructors (n+1) (nn+1) kl (x+1) - (List.map (fun x -> x + 1) safes) ta - | C.Lambda (_,so,ta) -> - guarded_by_destructors n nn kl x safes so && - guarded_by_destructors (n+1) (nn+1) kl (x+1) - (List.map (fun x -> x + 1) safes) ta - | C.LetIn (_,so,ta) -> - guarded_by_destructors n nn kl x safes so && - guarded_by_destructors (n+1) (nn+1) kl (x+1) - (List.map (fun x -> x + 1) safes) ta + guarded_by_destructors context n nn kl x safes te && + guarded_by_destructors context n nn kl x safes ty + | C.Prod (name,so,ta) -> + guarded_by_destructors context n nn kl x safes so && + guarded_by_destructors ((Some (name,(C.Decl so)))::context) + (n+1) (nn+1) kl (x+1) (List.map (fun x -> x + 1) safes) ta + | C.Lambda (name,so,ta) -> + guarded_by_destructors context n nn kl x safes so && + guarded_by_destructors ((Some (name,(C.Decl so)))::context) + (n+1) (nn+1) kl (x+1) (List.map (fun x -> x + 1) safes) ta + | C.LetIn (name,so,ta) -> + guarded_by_destructors context n nn kl x safes so && + guarded_by_destructors ((Some (name,(C.Def so)))::context) + (n+1) (nn+1) kl (x+1) (List.map (fun x -> x + 1) safes) ta | C.Appl ((C.Rel m)::tl) when m > n && m <= nn -> let k = List.nth kl (m - n - 1) in if not (List.length tl > k) then false else List.fold_right (fun param i -> - i && guarded_by_destructors n nn kl x safes param + i && guarded_by_destructors context n nn kl x safes param ) tl true && - check_is_really_smaller_arg n nn kl x safes (List.nth tl k) + check_is_really_smaller_arg context n nn kl x safes (List.nth tl k) | C.Appl tl -> - List.fold_right (fun t i -> i && guarded_by_destructors n nn kl x safes t) + List.fold_right + (fun t i -> i && guarded_by_destructors context n nn kl x safes t) tl true - | C.Const _ - | C.Abst _ - | C.MutInd _ - | C.MutConstruct _ -> true - | C.MutCase (uri,_,i,outtype,term,pl) -> + | C.Var (_,exp_named_subst) + | C.Const (_,exp_named_subst) + | C.MutInd (_,_,exp_named_subst) + | C.MutConstruct (_,_,_,exp_named_subst) -> + List.fold_right + (fun (_,t) i -> i && guarded_by_destructors context n nn kl x safes t) + exp_named_subst true + | C.MutCase (uri,i,outtype,term,pl) -> (match term with C.Rel m when List.mem m safes || m = x -> - let (isinductive,paramsno,cl) = + let (tys,len,isinductive,paramsno,cl) = match CicEnvironment.get_obj uri with C.InductiveDefinition (tl,_,paramsno) -> let (_,isinductive,_,cl) = List.nth tl i in - let cl' = - List.map (fun (id,ty,r) -> (id, snd (split_prods paramsno ty), r)) cl + let tys = + List.map (fun (n,_,ty,_) -> Some(Cic.Name n,(Cic.Decl ty))) tl in - (isinductive,paramsno,cl') + let cl' = + List.map + (fun (id,ty) -> + (id, snd (split_prods tys paramsno ty))) cl + in + (tys,List.length tl,isinductive,paramsno,cl') | _ -> - raise (WrongUriToMutualInductiveDefinitions(U.string_of_uri uri)) + raise + (TypeCheckerFailure + (WrongUriToMutualInductiveDefinitions(U.string_of_uri uri))) in if not isinductive then - guarded_by_destructors n nn kl x safes outtype && - guarded_by_destructors n nn kl x safes term && + guarded_by_destructors context n nn kl x safes outtype && + guarded_by_destructors context n nn kl x safes term && (*CSC: manca ??? il controllo sul tipo di term? *) List.fold_right - (fun p i -> i && guarded_by_destructors n nn kl x safes p) + (fun p i -> + i && guarded_by_destructors context n nn kl x safes p) pl true else - guarded_by_destructors n nn kl x safes outtype && + guarded_by_destructors context n nn kl x safes outtype && (*CSC: manca ??? il controllo sul tipo di term? *) List.fold_right - (fun (p,(_,c,rl)) i -> + (fun (p,(_,c)) i -> let rl' = - match !rl with - Some rl' -> - let (_,rl'') = split rl' paramsno in - rl'' - | None -> raise (Impossible 15) + let debrujinedte = debrujin_constructor uri len c in + recursive_args tys 0 len debrujinedte in - let (e,safes',n',nn',x') = - get_new_safes p c rl' safes n nn x + let (e,safes',n',nn',x',context') = + get_new_safes context p c rl' safes n nn x in i && - guarded_by_destructors n' nn' kl x' safes' e + guarded_by_destructors context' n' nn' kl x' safes' e ) (List.combine pl cl) true | C.Appl ((C.Rel m)::tl) when List.mem m safes || m = x -> - let (isinductive,paramsno,cl) = + let (tys,len,isinductive,paramsno,cl) = match CicEnvironment.get_obj uri with C.InductiveDefinition (tl,_,paramsno) -> let (_,isinductive,_,cl) = List.nth tl i in - let cl' = - List.map (fun (id,ty,r) -> (id, snd (split_prods paramsno ty), r)) cl + let tys = + List.map (fun (n,_,ty,_) -> Some(Cic.Name n,(Cic.Decl ty))) tl in - (isinductive,paramsno,cl') + let cl' = + List.map + (fun (id,ty) -> + (id, snd (split_prods tys paramsno ty))) cl + in + (tys,List.length tl,isinductive,paramsno,cl') | _ -> - raise (WrongUriToMutualInductiveDefinitions(U.string_of_uri uri)) + raise + (TypeCheckerFailure + (WrongUriToMutualInductiveDefinitions(U.string_of_uri uri))) in if not isinductive then - guarded_by_destructors n nn kl x safes outtype && - guarded_by_destructors n nn kl x safes term && + guarded_by_destructors context n nn kl x safes outtype && + guarded_by_destructors context n nn kl x safes term && (*CSC: manca ??? il controllo sul tipo di term? *) List.fold_right - (fun p i -> i && guarded_by_destructors n nn kl x safes p) + (fun p i -> + i && guarded_by_destructors context n nn kl x safes p) pl true else - guarded_by_destructors n nn kl x safes outtype && + guarded_by_destructors context n nn kl x safes outtype && (*CSC: manca ??? il controllo sul tipo di term? *) List.fold_right - (fun t i -> i && guarded_by_destructors n nn kl x safes t) + (fun t i -> + i && guarded_by_destructors context n nn kl x safes t) tl true && List.fold_right - (fun (p,(_,c,rl)) i -> + (fun (p,(_,c)) i -> let rl' = - match !rl with - Some rl' -> - let (_,rl'') = split rl' paramsno in - rl'' - | None -> raise (Impossible 16) + let debrujinedte = debrujin_constructor uri len c in + recursive_args tys 0 len debrujinedte in - let (e, safes',n',nn',x') = - get_new_safes p c rl' safes n nn x + let (e, safes',n',nn',x',context') = + get_new_safes context p c rl' safes n nn x in i && - guarded_by_destructors n' nn' kl x' safes' e + guarded_by_destructors context' n' nn' kl x' safes' e ) (List.combine pl cl) true | _ -> - guarded_by_destructors n nn kl x safes outtype && - guarded_by_destructors n nn kl x safes term && + guarded_by_destructors context n nn kl x safes outtype && + guarded_by_destructors context n nn kl x safes term && (*CSC: manca ??? il controllo sul tipo di term? *) List.fold_right - (fun p i -> i && guarded_by_destructors n nn kl x safes p) + (fun p i -> i && guarded_by_destructors context n nn kl x safes p) pl true ) | C.Fix (_, fl) -> @@ -755,133 +945,145 @@ and guarded_by_destructors n nn kl x safes = let n_plus_len = n + len and nn_plus_len = nn + len and x_plus_len = x + len + and tys = List.map (fun (n,_,ty,_) -> Some (C.Name n,(C.Decl ty))) fl and safes' = List.map (fun x -> x + len) safes in List.fold_right (fun (_,_,ty,bo) i -> - i && guarded_by_destructors n_plus_len nn_plus_len kl x_plus_len - safes' ty && - guarded_by_destructors n_plus_len nn_plus_len kl x_plus_len - safes' bo + i && guarded_by_destructors context n nn kl x_plus_len safes' ty && + guarded_by_destructors (tys@context) n_plus_len nn_plus_len kl + x_plus_len safes' bo ) fl true | C.CoFix (_, fl) -> let len = List.length fl in let n_plus_len = n + len and nn_plus_len = nn + len and x_plus_len = x + len + and tys = List.map (fun (n,ty,_) -> Some (C.Name n,(C.Decl ty))) fl and safes' = List.map (fun x -> x + len) safes in List.fold_right (fun (_,ty,bo) i -> - i && guarded_by_destructors n_plus_len nn_plus_len kl x_plus_len - safes' ty && - guarded_by_destructors n_plus_len nn_plus_len kl x_plus_len safes' - bo + i && + guarded_by_destructors context n nn kl x_plus_len safes' ty && + guarded_by_destructors (tys@context) n_plus_len nn_plus_len kl + x_plus_len safes' bo ) fl true (* the boolean h means already protected *) (* args is the list of arguments the type of the constructor that may be *) (* found in head position must be applied to. *) (*CSC: coInductiveTypeURI non cambia mai di ricorsione in ricorsione *) -and guarded_by_constructors n nn h te args coInductiveTypeURI = +and guarded_by_constructors context n nn h te args coInductiveTypeURI = let module C = Cic in (*CSC: There is a lot of code replication between the cases X and *) (*CSC: (C.Appl X tl). Maybe it will be better to define a function *) (*CSC: that maps X into (C.Appl X []) when X is not already a C.Appl *) - match CicReduction.whd te with + match CicReduction.whd context te with C.Rel m when m > n && m <= nn -> h - | C.Rel _ - | C.Var _ -> true + | C.Rel _ -> true | C.Meta _ | C.Sort _ | C.Implicit | C.Cast _ | C.Prod _ | C.LetIn _ -> - raise (Impossible 17) (* the term has just been type-checked *) - | C.Lambda (_,so,de) -> - does_not_occur n nn so && - guarded_by_constructors (n + 1) (nn + 1) h de args coInductiveTypeURI + (* the term has just been type-checked *) + raise (TypeCheckerFailure (Impossible 17)) + | C.Lambda (name,so,de) -> + does_not_occur context n nn so && + guarded_by_constructors ((Some (name,(C.Decl so)))::context) + (n + 1) (nn + 1) h de args coInductiveTypeURI | C.Appl ((C.Rel m)::tl) when m > n && m <= nn -> h && - List.fold_right (fun x i -> i && does_not_occur n nn x) tl true - | C.Appl ((C.MutConstruct (uri,cookingsno,i,j))::tl) -> + List.fold_right (fun x i -> i && does_not_occur context n nn x) tl true + | C.Appl ((C.MutConstruct (uri,i,j,exp_named_subst))::tl) -> let consty = - match CicEnvironment.get_cooked_obj uri cookingsno with + match CicEnvironment.get_cooked_obj ~trust:false uri with C.InductiveDefinition (itl,_,_) -> let (_,_,_,cl) = List.nth itl i in - let (_,cons,_) = List.nth cl (j - 1) in cons + let (_,cons) = List.nth cl (j - 1) in + CicSubstitution.subst_vars exp_named_subst cons | _ -> - raise (WrongUriToMutualInductiveDefinitions - (UriManager.string_of_uri uri)) + raise + (TypeCheckerFailure + (WrongUriToMutualInductiveDefinitions + (UriManager.string_of_uri uri))) in - let rec analyse_branch ty te = - match CicReduction.whd ty with - C.Meta _ -> raise (Impossible 34) + let rec analyse_branch context ty te = + match CicReduction.whd context ty with + C.Meta _ -> raise (TypeCheckerFailure (Impossible 34)) | C.Rel _ | C.Var _ | C.Sort _ -> - does_not_occur n nn te + does_not_occur context n nn te | C.Implicit - | C.Cast _ -> raise (Impossible 24) (* due to type-checking *) - | C.Prod (_,_,de) -> - analyse_branch de te + | C.Cast _ -> + raise (TypeCheckerFailure (Impossible 24))(* due to type-checking *) + | C.Prod (name,so,de) -> + analyse_branch ((Some (name,(C.Decl so)))::context) de te | C.Lambda _ - | C.LetIn _ -> raise (Impossible 25) (* due to type-checking *) - | C.Appl ((C.MutInd (uri,_,_))::tl) as ty + | C.LetIn _ -> + raise (TypeCheckerFailure (Impossible 25))(* due to type-checking *) + | C.Appl ((C.MutInd (uri,_,_))::_) as ty when uri == coInductiveTypeURI -> - guarded_by_constructors n nn true te [] coInductiveTypeURI - | C.Appl ((C.MutInd (uri,_,_))::tl) as ty -> - guarded_by_constructors n nn true te tl coInductiveTypeURI + guarded_by_constructors context n nn true te [] coInductiveTypeURI + | C.Appl ((C.MutInd (uri,_,_))::_) as ty -> + guarded_by_constructors context n nn true te tl coInductiveTypeURI | C.Appl _ -> - does_not_occur n nn te - | C.Const _ - | C.Abst _ -> raise (Impossible 26) + does_not_occur context n nn te + | C.Const _ -> raise (TypeCheckerFailure (Impossible 26)) | C.MutInd (uri,_,_) when uri == coInductiveTypeURI -> - guarded_by_constructors n nn true te [] coInductiveTypeURI + guarded_by_constructors context n nn true te [] coInductiveTypeURI | C.MutInd _ -> - does_not_occur n nn te - | C.MutConstruct _ -> raise (Impossible 27) + does_not_occur context n nn te + | C.MutConstruct _ -> raise (TypeCheckerFailure (Impossible 27)) (*CSC: we do not consider backbones with a MutCase, Fix, Cofix *) (*CSC: in head position. *) | C.MutCase _ | C.Fix _ - | C.CoFix _ -> raise (Impossible 28) (* due to type-checking *) + | C.CoFix _ -> + raise (TypeCheckerFailure (Impossible 28))(* due to type-checking *) in - let rec analyse_instantiated_type ty l = - match CicReduction.whd ty with + let rec analyse_instantiated_type context ty l = + match CicReduction.whd context ty with C.Rel _ | C.Var _ | C.Meta _ | C.Sort _ | C.Implicit - | C.Cast _ -> raise (Impossible 29) (* due to type-checking *) - | C.Prod (_,so,de) -> + | C.Cast _ -> + raise (TypeCheckerFailure (Impossible 29))(* due to type-checking *) + | C.Prod (name,so,de) -> begin match l with [] -> true | he::tl -> - analyse_branch so he && - analyse_instantiated_type de tl + analyse_branch context so he && + analyse_instantiated_type ((Some (name,(C.Decl so)))::context) + de tl end | C.Lambda _ - | C.LetIn _ -> raise (Impossible 30) (* due to type-checking *) + | C.LetIn _ -> + raise (TypeCheckerFailure (Impossible 30))(* due to type-checking *) | C.Appl _ -> - List.fold_left (fun i x -> i && does_not_occur n nn x) true l - | C.Const _ - | C.Abst _ -> raise (Impossible 31) + List.fold_left + (fun i x -> i && does_not_occur context n nn x) true l + | C.Const _ -> raise (TypeCheckerFailure (Impossible 31)) | C.MutInd _ -> - List.fold_left (fun i x -> i && does_not_occur n nn x) true l - | C.MutConstruct _ -> raise (Impossible 32) + List.fold_left + (fun i x -> i && does_not_occur context n nn x) true l + | C.MutConstruct _ -> raise (TypeCheckerFailure (Impossible 32)) (*CSC: we do not consider backbones with a MutCase, Fix, Cofix *) (*CSC: in head position. *) | C.MutCase _ | C.Fix _ - | C.CoFix _ -> raise (Impossible 33) (* due to type-checking *) + | C.CoFix _ -> + raise (TypeCheckerFailure (Impossible 33))(* due to type-checking *) in let rec instantiate_type args consty = function [] -> true | tlhe::tltl as l -> - let consty' = CicReduction.whd consty in + let consty' = CicReduction.whd context consty in match args with he::tl -> begin @@ -889,105 +1091,125 @@ and guarded_by_constructors n nn h te args coInductiveTypeURI = C.Prod (_,_,de) -> let instantiated_de = CicSubstitution.subst he de in (*CSC: siamo sicuri che non sia troppo forte? *) - does_not_occur n nn tlhe & + does_not_occur context n nn tlhe & instantiate_type tl instantiated_de tltl | _ -> (*CSC:We do not consider backbones with a MutCase, a *) (*CSC:FixPoint, a CoFixPoint and so on in head position.*) - raise (Impossible 23) + raise (TypeCheckerFailure (Impossible 23)) end - | [] -> analyse_instantiated_type consty' l + | [] -> analyse_instantiated_type context consty' l (* These are all the other cases *) in instantiate_type args consty tl | C.Appl ((C.CoFix (_,fl))::tl) -> - List.fold_left (fun i x -> i && does_not_occur n nn x) true tl && + List.fold_left (fun i x -> i && does_not_occur context n nn x) true tl && let len = List.length fl in let n_plus_len = n + len - and nn_plus_len = nn + len in + and nn_plus_len = nn + len + (*CSC: Is a Decl of the ty ok or should I use Def of a Fix? *) + and tys = List.map (fun (n,ty,_) -> Some (C.Name n,(C.Decl ty))) fl in List.fold_right (fun (_,ty,bo) i -> - i && does_not_occur n_plus_len nn_plus_len ty && - guarded_by_constructors n_plus_len nn_plus_len h bo args - coInductiveTypeURI + i && does_not_occur context n nn ty && + guarded_by_constructors (tys@context) n_plus_len nn_plus_len h bo + args coInductiveTypeURI ) fl true - | C.Appl ((C.MutCase (_,_,_,out,te,pl))::tl) -> - List.fold_left (fun i x -> i && does_not_occur n nn x) true tl && - does_not_occur n nn out && - does_not_occur n nn te && + | C.Appl ((C.MutCase (_,_,out,te,pl))::tl) -> + List.fold_left (fun i x -> i && does_not_occur context n nn x) true tl && + does_not_occur context n nn out && + does_not_occur context n nn te && List.fold_right (fun x i -> i && - guarded_by_constructors n nn h x args coInductiveTypeURI + guarded_by_constructors context n nn h x args coInductiveTypeURI ) pl true | C.Appl l -> - List.fold_right (fun x i -> i && does_not_occur n nn x) l true - | C.Const _ -> true - | C.Abst _ + List.fold_right (fun x i -> i && does_not_occur context n nn x) l true + | C.Var (_,exp_named_subst) + | C.Const (_,exp_named_subst) -> + List.fold_right + (fun (_,x) i -> i && does_not_occur context n nn x) exp_named_subst true | C.MutInd _ -> assert false - | C.MutConstruct _ -> true - | C.MutCase (_,_,_,out,te,pl) -> - does_not_occur n nn out && - does_not_occur n nn te && + | C.MutConstruct (_,_,_,exp_named_subst) -> + List.fold_right + (fun (_,x) i -> i && does_not_occur context n nn x) exp_named_subst true + | C.MutCase (_,_,out,te,pl) -> + does_not_occur context n nn out && + does_not_occur context n nn te && List.fold_right (fun x i -> i && - guarded_by_constructors n nn h x args coInductiveTypeURI + guarded_by_constructors context n nn h x args coInductiveTypeURI ) pl true | C.Fix (_,fl) -> let len = List.length fl in let n_plus_len = n + len - and nn_plus_len = nn + len in + and nn_plus_len = nn + len + (*CSC: Is a Decl of the ty ok or should I use Def of a Fix? *) + and tys = List.map (fun (n,_,ty,_) -> Some (C.Name n,(C.Decl ty))) fl in List.fold_right (fun (_,_,ty,bo) i -> - i && does_not_occur n_plus_len nn_plus_len ty && - does_not_occur n_plus_len nn_plus_len bo + i && does_not_occur context n nn ty && + does_not_occur (tys@context) n_plus_len nn_plus_len bo ) fl true | C.CoFix (_,fl) -> let len = List.length fl in let n_plus_len = n + len - and nn_plus_len = nn + len in + and nn_plus_len = nn + len + (*CSC: Is a Decl of the ty ok or should I use Def of a Fix? *) + and tys = List.map (fun (n,ty,_) -> Some (C.Name n,(C.Decl ty))) fl in List.fold_right (fun (_,ty,bo) i -> - i && does_not_occur n_plus_len nn_plus_len ty && - guarded_by_constructors n_plus_len nn_plus_len h bo args - coInductiveTypeURI + i && does_not_occur context n nn ty && + guarded_by_constructors (tys@context) n_plus_len nn_plus_len h bo + args coInductiveTypeURI ) fl true -and check_allowed_sort_elimination uri i need_dummy ind arity1 arity2 = +and check_allowed_sort_elimination context uri i need_dummy ind arity1 arity2 = let module C = Cic in let module U = UriManager in - match (CicReduction.whd arity1, CicReduction.whd arity2) with + match (CicReduction.whd context arity1, CicReduction.whd context arity2) with (C.Prod (_,so1,de1), C.Prod (_,so2,de2)) - when CicReduction.are_convertible so1 so2 -> - check_allowed_sort_elimination uri i need_dummy + when CicReduction.are_convertible context so1 so2 -> + check_allowed_sort_elimination context uri i need_dummy (C.Appl [CicSubstitution.lift 1 ind ; C.Rel 1]) de1 de2 | (C.Sort C.Prop, C.Sort C.Prop) when need_dummy -> true - | (C.Sort C.Prop, C.Sort C.Set) when need_dummy -> + | (C.Sort C.Prop, C.Sort C.Set) + | (C.Sort C.Prop, C.Sort C.Type) when need_dummy -> +(*CSC: WRONG. MISSING CONDITIONS ON THE ARGUMENTS OF THE CONSTRUTOR *) (match CicEnvironment.get_obj uri with C.InductiveDefinition (itl,_,_) -> let (_,_,_,cl) = List.nth itl i in - (* is a singleton definition? *) - List.length cl = 1 + (* is a singleton definition or the empty proposition? *) + List.length cl = 1 || List.length cl = 0 | _ -> - raise (WrongUriToMutualInductiveDefinitions (U.string_of_uri uri)) + raise + (TypeCheckerFailure + (WrongUriToMutualInductiveDefinitions (U.string_of_uri uri))) ) | (C.Sort C.Set, C.Sort C.Prop) when need_dummy -> true | (C.Sort C.Set, C.Sort C.Set) when need_dummy -> true | (C.Sort C.Set, C.Sort C.Type) when need_dummy -> (match CicEnvironment.get_obj uri with C.InductiveDefinition (itl,_,paramsno) -> - let (_,_,_,cl) = List.nth itl i in - List.fold_right (fun (_,x,_) i -> i && is_small paramsno x) cl true + let tys = + List.map (fun (n,_,ty,_) -> Some (Cic.Name n,(Cic.Decl ty))) itl + in + let (_,_,_,cl) = List.nth itl i in + List.fold_right + (fun (_,x) i -> i && is_small tys paramsno x) cl true | _ -> - raise (WrongUriToMutualInductiveDefinitions (U.string_of_uri uri)) + raise + (TypeCheckerFailure + (WrongUriToMutualInductiveDefinitions (U.string_of_uri uri))) ) | (C.Sort C.Type, C.Sort _) when need_dummy -> true - | (C.Sort C.Prop, C.Prod (_,so,ta)) when not need_dummy -> - let res = CicReduction.are_convertible so ind + | (C.Sort C.Prop, C.Prod (name,so,ta)) when not need_dummy -> + let res = CicReduction.are_convertible context so ind in res && - (match CicReduction.whd ta with + (match CicReduction.whd ((Some (name,(C.Decl so)))::context) ta with C.Sort C.Prop -> true | C.Sort C.Set -> (match CicEnvironment.get_obj uri with @@ -996,38 +1218,44 @@ and check_allowed_sort_elimination uri i need_dummy ind arity1 arity2 = (* is a singleton definition? *) List.length cl = 1 | _ -> - raise (WrongUriToMutualInductiveDefinitions - (U.string_of_uri uri)) + raise + (TypeCheckerFailure + (WrongUriToMutualInductiveDefinitions(U.string_of_uri uri))) ) | _ -> false ) - | (C.Sort C.Set, C.Prod (_,so,ta)) when not need_dummy -> - let res = CicReduction.are_convertible so ind + | (C.Sort C.Set, C.Prod (name,so,ta)) when not need_dummy -> + let res = CicReduction.are_convertible context so ind in res && - (match CicReduction.whd ta with + (match CicReduction.whd ((Some (name,(C.Decl so)))::context) ta with C.Sort C.Prop | C.Sort C.Set -> true | C.Sort C.Type -> (match CicEnvironment.get_obj uri with C.InductiveDefinition (itl,_,paramsno) -> let (_,_,_,cl) = List.nth itl i in - List.fold_right - (fun (_,x,_) i -> i && is_small paramsno x) cl true + let tys = + List.map + (fun (n,_,ty,_) -> Some (Cic.Name n,(Cic.Decl ty))) itl + in + List.fold_right + (fun (_,x) i -> i && is_small tys paramsno x) cl true | _ -> - raise (WrongUriToMutualInductiveDefinitions - (U.string_of_uri uri)) + raise + (TypeCheckerFailure + (WrongUriToMutualInductiveDefinitions(U.string_of_uri uri))) ) - | _ -> raise (Impossible 19) + | _ -> raise (TypeCheckerFailure (Impossible 19)) ) | (C.Sort C.Type, C.Prod (_,so,_)) when not need_dummy -> - CicReduction.are_convertible so ind + CicReduction.are_convertible context so ind | (_,_) -> false -and type_of_branch argsno need_dummy outtype term constype = +and type_of_branch context argsno need_dummy outtype term constype = let module C = Cic in let module R = CicReduction in - match R.whd constype with + match R.whd context constype with C.MutInd (_,_,_) -> if need_dummy then outtype @@ -1041,154 +1269,246 @@ and type_of_branch argsno need_dummy outtype term constype = else C.Appl (outtype::arguments@(if need_dummy then [] else [term])) | C.Prod (name,so,de) -> - C.Prod (C.Name "pippo",so,type_of_branch argsno need_dummy - (CicSubstitution.lift 1 outtype) - (C.Appl [CicSubstitution.lift 1 term ; C.Rel 1]) de) - | _ -> raise (Impossible 20) - - + let term' = + match CicSubstitution.lift 1 term with + C.Appl l -> C.Appl (l@[C.Rel 1]) + | t -> C.Appl [t ; C.Rel 1] + in + C.Prod (C.Anonymous,so,type_of_branch + ((Some (name,(C.Decl so)))::context) argsno need_dummy + (CicSubstitution.lift 1 outtype) term' de) + | _ -> raise (TypeCheckerFailure (Impossible 20)) + +(* check_metasenv_consistency checks that the "canonical" context of a +metavariable is consitent - up to relocation via the relocation list l - +with the actual context *) + +and check_metasenv_consistency metasenv context canonical_context l = + let module C = Cic in + let module R = CicReduction in + let module S = CicSubstitution in + let lifted_canonical_context = + let rec aux i = + function + [] -> [] + | (Some (n,C.Decl t))::tl -> + (Some (n,C.Decl (S.lift_meta l (S.lift i t))))::(aux (i+1) tl) + | (Some (n,C.Def t))::tl -> + (Some (n,C.Def (S.lift_meta l (S.lift i t))))::(aux (i+1) tl) + | None::tl -> None::(aux (i+1) tl) + in + aux 1 canonical_context + in + List.iter2 + (fun t ct -> + let res = + match (t,ct) with + _,None -> true + | Some t,Some (_,C.Def ct) -> + R.are_convertible context t ct + | Some t,Some (_,C.Decl ct) -> + R.are_convertible context (type_of_aux' metasenv context t) ct + | _, _ -> false + in + if not res then raise (TypeCheckerFailure MetasenvInconsistency) + ) l lifted_canonical_context + (* type_of_aux' is just another name (with a different scope) for type_of_aux *) -and type_of_aux' env t = - let rec type_of_aux env = +and type_of_aux' metasenv context t = + let rec type_of_aux context = let module C = Cic in let module R = CicReduction in let module S = CicSubstitution in let module U = UriManager in function C.Rel n -> - let t = - try - List.nth env (n - 1) + (try + match List.nth context (n - 1) with + Some (_,C.Decl t) -> S.lift n t + | Some (_,C.Def bo) -> type_of_aux context (S.lift n bo) + | None -> raise (TypeCheckerFailure RelToHiddenHypothesis) with - _ -> raise (NotWellTyped "Not a close term") - in - S.lift n t - | C.Var uri -> + _ -> raise (TypeCheckerFailure (NotWellTyped "Not a close term")) + ) + | C.Var (uri,exp_named_subst) -> incr fdebug ; - let ty = type_of_variable uri in + check_exp_named_subst context exp_named_subst ; + let ty = + CicSubstitution.subst_vars exp_named_subst (type_of_variable uri) + in decr fdebug ; ty - | C.Meta n -> raise NotImplemented + | C.Meta (n,l) -> + let (_,canonical_context,ty) = + List.find (function (m,_,_) -> n = m) metasenv + in + check_metasenv_consistency metasenv context canonical_context l; + CicSubstitution.lift_meta l ty | C.Sort s -> C.Sort C.Type (*CSC manca la gestione degli universi!!! *) - | C.Implicit -> raise (Impossible 21) + | C.Implicit -> raise (TypeCheckerFailure (Impossible 21)) | C.Cast (te,ty) -> - let _ = type_of ty in - if R.are_convertible (type_of_aux env te) ty then ty - else raise (NotWellTyped "Cast") - | C.Prod (_,s,t) -> - let sort1 = type_of_aux env s - and sort2 = type_of_aux (s::env) t in - sort_of_prod (sort1,sort2) + let _ = type_of_aux context ty in + if R.are_convertible context (type_of_aux context te) ty then ty + else raise (TypeCheckerFailure (NotWellTyped "Cast")) + | C.Prod (name,s,t) -> + let sort1 = type_of_aux context s + and sort2 = type_of_aux ((Some (name,(C.Decl s)))::context) t in + sort_of_prod context (name,s) (sort1,sort2) | C.Lambda (n,s,t) -> - let sort1 = type_of_aux env s - and type2 = type_of_aux (s::env) t in - let sort2 = type_of_aux (s::env) type2 in + let sort1 = type_of_aux context s + and type2 = type_of_aux ((Some (n,(C.Decl s)))::context) t in + let sort2 = type_of_aux ((Some (n,(C.Decl s)))::context) type2 in (* only to check if the product is well-typed *) - let _ = sort_of_prod (sort1,sort2) in + let _ = sort_of_prod context (n,s) (sort1,sort2) in C.Prod (n,s,type2) | C.LetIn (n,s,t) -> - let t' = CicSubstitution.subst s t in - type_of_aux env t' + (* only to check if s is well-typed *) + let _ = type_of_aux context s in + (* The type of a LetIn is a LetIn. Extremely slow since the computed + LetIn is later reduced and maybe also re-checked. + (C.LetIn (n,s, type_of_aux ((Some (n,(C.Def s)))::context) t)) + *) + (* The type of the LetIn is reduced. Much faster than the previous + solution. Moreover the inferred type is probably very different + from the expected one. + (CicReduction.whd context + (C.LetIn (n,s, type_of_aux ((Some (n,(C.Def s)))::context) t))) + *) + (* One-step LetIn reduction. Even faster than the previous solution. + Moreover the inferred type is closer to the expected one. *) + (CicSubstitution.subst s + (type_of_aux ((Some (n,(C.Def s)))::context) t)) | C.Appl (he::tl) when List.length tl > 0 -> - let hetype = type_of_aux env he - and tlbody_and_type = List.map (fun x -> (x, type_of_aux env x)) tl in - eat_prods hetype tlbody_and_type - | C.Appl _ -> raise (NotWellTyped "Appl: no arguments") - | C.Const (uri,cookingsno) -> + let hetype = type_of_aux context he + and tlbody_and_type = List.map (fun x -> (x, type_of_aux context x)) tl in + eat_prods context hetype tlbody_and_type + | C.Appl _ -> raise (TypeCheckerFailure (NotWellTyped "Appl: no arguments")) + | C.Const (uri,exp_named_subst) -> incr fdebug ; - let cty = cooked_type_of_constant uri cookingsno in + check_exp_named_subst context exp_named_subst ; + let cty = + CicSubstitution.subst_vars exp_named_subst (type_of_constant uri) + in decr fdebug ; cty - | C.Abst _ -> raise (Impossible 22) - | C.MutInd (uri,cookingsno,i) -> + | C.MutInd (uri,i,exp_named_subst) -> incr fdebug ; - let cty = cooked_type_of_mutual_inductive_defs uri cookingsno i in + check_exp_named_subst context exp_named_subst ; + let cty = + CicSubstitution.subst_vars exp_named_subst + (type_of_mutual_inductive_defs uri i) + in decr fdebug ; cty - | C.MutConstruct (uri,cookingsno,i,j) -> - let cty = cooked_type_of_mutual_inductive_constr uri cookingsno i j + | C.MutConstruct (uri,i,j,exp_named_subst) -> + check_exp_named_subst context exp_named_subst ; + let cty = + CicSubstitution.subst_vars exp_named_subst + (type_of_mutual_inductive_constr uri i j) in cty - | C.MutCase (uri,cookingsno,i,outtype,term,pl) -> - let outsort = type_of_aux env outtype in + | C.MutCase (uri,i,outtype,term,pl) -> + let outsort = type_of_aux context outtype in let (need_dummy, k) = - let rec guess_args t = - match CicReduction.whd t with + let rec guess_args context t = + match CicReduction.whd context t with C.Sort _ -> (true, 0) - | C.Prod (_, s, t) -> - let (b, n) = guess_args t in + | C.Prod (name, s, t) -> + let (b, n) = guess_args ((Some (name,(C.Decl s)))::context) t in if n = 0 then (* last prod before sort *) - match CicReduction.whd s with - (*CSC vedi nota delirante su cookingsno in cicReduction.ml *) - C.MutInd (uri',_,i') when U.eq uri' uri && i' = i -> (false, 1) - | C.Appl ((C.MutInd (uri',_,i')) :: _) + match CicReduction.whd context s with +(*CSC: for _ see comment below about the missing named_exp_subst ?????????? *) + C.MutInd (uri',i',_) when U.eq uri' uri && i' = i -> + (false, 1) +(*CSC: for _ see comment below about the missing named_exp_subst ?????????? *) + | C.Appl ((C.MutInd (uri',i',_)) :: _) when U.eq uri' uri && i' = i -> (false, 1) | _ -> (true, 1) else (b, n + 1) - | _ -> raise (NotWellTyped "MutCase: outtype ill-formed") + | _ -> + raise + (TypeCheckerFailure (NotWellTyped "MutCase: outtype ill-formed")) in (*CSC whd non serve dopo type_of_aux ? *) - let (b, k) = guess_args outsort in + let (b, k) = guess_args context outsort in if not b then (b, k - 1) else (b, k) in - let (parameters, arguments) = - match R.whd (type_of_aux env term) with + let (parameters, arguments, exp_named_subst) = + match R.whd context (type_of_aux context term) with (*CSC manca il caso dei CAST *) - C.MutInd (uri',_,i') -> - (*CSC vedi nota delirante sui cookingsno in cicReduction.ml*) - if U.eq uri uri' && i = i' then ([],[]) - else raise (NotWellTyped ("MutCase: the term is of type " ^ - (U.string_of_uri uri') ^ "," ^ string_of_int i' ^ - " instead of type " ^ (U.string_of_uri uri') ^ "," ^ - string_of_int i)) - | C.Appl (C.MutInd (uri',_,i') :: tl) -> - if U.eq uri uri' && i = i' then split tl (List.length tl - k) - else raise (NotWellTyped ("MutCase: the term is of type " ^ - (U.string_of_uri uri') ^ "," ^ string_of_int i' ^ - " instead of type " ^ (U.string_of_uri uri) ^ "," ^ - string_of_int i)) - | _ -> raise (NotWellTyped "MutCase: the term is not an inductive one") +(*CSC: ma servono i parametri (uri,i)? Se si', perche' non serve anche il *) +(*CSC: parametro exp_named_subst? Se no, perche' non li togliamo? *) +(*CSC: Hint: nella DTD servono per gli stylesheet. *) + C.MutInd (uri',i',exp_named_subst) as typ -> + if U.eq uri uri' && i = i' then ([],[],exp_named_subst) + else raise (TypeCheckerFailure + (NotWellTyped ("MutCase: the term is of type " ^ + CicPp.ppterm typ ^ + " instead of type " ^ (U.string_of_uri uri) ^ "#1/" ^ + string_of_int i ^ "{_}"))) + | C.Appl ((C.MutInd (uri',i',exp_named_subst) as typ):: tl) -> + if U.eq uri uri' && i = i' then + let params,args = + split tl (List.length tl - k) + in params,args,exp_named_subst + else raise (TypeCheckerFailure (NotWellTyped + ("MutCase: the term is of type " ^ + CicPp.ppterm typ ^ + " instead of type " ^ (U.string_of_uri uri) ^ "#1/" ^ + string_of_int i ^ "{_}"))) + | _ -> raise (TypeCheckerFailure + (NotWellTyped "MutCase: the term is not an inductive one")) in (* let's control if the sort elimination is allowed: [(I q1 ... qr)|B] *) let sort_of_ind_type = if parameters = [] then - C.MutInd (uri,cookingsno,i) + C.MutInd (uri,i,exp_named_subst) else - C.Appl ((C.MutInd (uri,cookingsno,i))::parameters) + C.Appl ((C.MutInd (uri,i,exp_named_subst))::parameters) in - if not (check_allowed_sort_elimination uri i need_dummy - sort_of_ind_type (type_of_aux env sort_of_ind_type) outsort) + if not (check_allowed_sort_elimination context uri i need_dummy + sort_of_ind_type (type_of_aux context sort_of_ind_type) outsort) then - raise (NotWellTyped "MutCase: not allowed sort elimination") ; + raise + (TypeCheckerFailure + (NotWellTyped "MutCase: not allowed sort elimination")) ; (* let's check if the type of branches are right *) - let (cl,parsno) = - match CicEnvironment.get_cooked_obj uri cookingsno with - C.InductiveDefinition (tl,_,parsno) -> - let (_,_,_,cl) = List.nth tl i in (cl,parsno) + let parsno = + match CicEnvironment.get_cooked_obj ~trust:false uri with + C.InductiveDefinition (_,_,parsno) -> parsno | _ -> - raise (WrongUriToMutualInductiveDefinitions (U.string_of_uri uri)) + raise + (TypeCheckerFailure + (WrongUriToMutualInductiveDefinitions (U.string_of_uri uri))) in let (_,branches_ok) = List.fold_left - (fun (j,b) (p,(_,c,_)) -> + (fun (j,b) p -> let cons = if parameters = [] then - (C.MutConstruct (uri,cookingsno,i,j)) + (C.MutConstruct (uri,i,j,exp_named_subst)) else - (C.Appl (C.MutConstruct (uri,cookingsno,i,j)::parameters)) + (C.Appl (C.MutConstruct (uri,i,j,exp_named_subst)::parameters)) in +(* (j + 1, b && - R.are_convertible (type_of_aux env p) - (type_of_branch parsno need_dummy outtype cons - (type_of_aux env cons)) +*) + (j + 1, +let res = b && + R.are_convertible context (type_of_aux context p) + (type_of_branch context parsno need_dummy outtype cons + (type_of_aux context cons)) +in if not res then prerr_endline ("#### " ^ CicPp.ppterm (type_of_aux context p) ^ " <==> " ^ CicPp.ppterm (type_of_branch context parsno need_dummy outtype cons (type_of_aux context cons))) ; res ) - ) (1,true) (List.combine pl cl) + ) (1,true) pl in if not branches_ok then - raise (NotWellTyped "MutCase: wrong type of a branch") ; + raise + (TypeCheckerFailure + (NotWellTyped "MutCase: wrong type of a branch")) ; if not need_dummy then C.Appl ((outtype::arguments)@[term]) @@ -1199,23 +1519,34 @@ and type_of_aux' env t = | C.Fix (i,fl) -> let types_times_kl = List.rev - (List.map (fun (_,k,ty,_) -> let _ = type_of_aux env ty in (ty,k)) fl) + (List.map + (fun (n,k,ty,_) -> + let _ = type_of_aux context ty in + (Some (C.Name n,(C.Decl ty)),k)) fl) in let (types,kl) = List.split types_times_kl in let len = List.length types in List.iter (fun (name,x,ty,bo) -> - if (R.are_convertible (type_of_aux (types @ env) bo) - (CicSubstitution.lift len ty)) + if + (R.are_convertible (types@context) (type_of_aux (types@context) bo) + (CicSubstitution.lift len ty)) then begin - let (m, eaten) = eat_lambdas (x + 1) bo in + let (m, eaten, context') = + eat_lambdas (types @ context) (x + 1) bo + in (*let's control the guarded by destructors conditions D{f,k,x,M}*) - if not (guarded_by_destructors eaten (len + eaten) kl 1 [] m) then - raise (NotWellTyped "Fix: not guarded by destructors") + if + not + (guarded_by_destructors context' eaten (len + eaten) kl 1 [] m) + then + raise + (TypeCheckerFailure + (NotWellTyped "Fix: not guarded by destructors")) end else - raise (NotWellTyped "Fix: ill-typed bodies") + raise (TypeCheckerFailure (NotWellTyped "Fix: ill-typed bodies")) ) fl ; (*CSC: controlli mancanti solo su D{f,k,x,M} *) @@ -1223,35 +1554,84 @@ and type_of_aux' env t = ty | C.CoFix (i,fl) -> let types = - List.rev (List.map (fun (_,ty,_) -> let _ = type_of_aux env ty in ty) fl) + List.rev + (List.map + (fun (n,ty,_) -> + let _ = type_of_aux context ty in Some (C.Name n,(C.Decl ty))) fl) in let len = List.length types in List.iter (fun (_,ty,bo) -> - if (R.are_convertible (type_of_aux (types @ env) bo) - (CicSubstitution.lift len ty)) + if + (R.are_convertible (types @ context) + (type_of_aux (types @ context) bo) (CicSubstitution.lift len ty)) then begin (* let's control that the returned type is coinductive *) - match returns_a_coinductive ty with + match returns_a_coinductive context ty with None -> - raise(NotWellTyped "CoFix: does not return a coinductive type") + raise + (TypeCheckerFailure + (NotWellTyped "CoFix: does not return a coinductive type")) | Some uri -> (*let's control the guarded by constructors conditions C{f,M}*) - if not (guarded_by_constructors 0 len false bo [] uri) then - raise (NotWellTyped "CoFix: not guarded by constructors") + if + not + (guarded_by_constructors (types @ context) 0 len false bo + [] uri) + then + raise + (TypeCheckerFailure + (NotWellTyped "CoFix: not guarded by constructors")) end else - raise (NotWellTyped "CoFix: ill-typed bodies") + raise + (TypeCheckerFailure + (NotWellTyped "CoFix: ill-typed bodies")) ) fl ; let (_,ty,_) = List.nth fl i in ty - and sort_of_prod (t1, t2) = + and check_exp_named_subst context = + let rec check_exp_named_subst_aux substs = + function + [] -> () + | ((uri,t) as subst)::tl -> + let typeofvar = + CicSubstitution.subst_vars substs (type_of_variable uri) in + (match CicEnvironment.get_cooked_obj ~trust:false uri with + Cic.Variable (_,Some bo,_,_) -> + raise + (TypeCheckerFailure + (NotWellTyped + "A variable with a body can not be explicit substituted")) + | Cic.Variable (_,None,_,_) -> () + | _ -> + raise + (TypeCheckerFailure + (WrongUriToVariable (UriManager.string_of_uri uri))) + ) ; + let typeoft = type_of_aux context t in + if CicReduction.are_convertible context typeoft typeofvar then + check_exp_named_subst_aux (substs@[subst]) tl + else + begin + CicReduction.fdebug := 0 ; + ignore (CicReduction.are_convertible context typeoft typeofvar) ; + fdebug := 0 ; + debug typeoft [typeofvar] ; + raise + (TypeCheckerFailure + (NotWellTyped "Wrong Explicit Named Substitution")) + end + in + check_exp_named_subst_aux [] + + and sort_of_prod context (name,s) (t1, t2) = let module C = Cic in - let t1' = CicReduction.whd t1 in - let t2' = CicReduction.whd t2 in + let t1' = CicReduction.whd context t1 in + let t2' = CicReduction.whd ((Some (name,C.Decl s))::context) t2 in match (t1', t2') with (C.Sort s1, C.Sort s2) when (s2 = C.Prop or s2 = C.Set) -> (* different from Coq manual!!! *) @@ -1259,114 +1639,147 @@ and type_of_aux' env t = | (C.Sort s1, C.Sort s2) -> C.Sort C.Type (*CSC manca la gestione degli universi!!! *) | (_,_) -> raise - (NotWellTyped - ("Prod: sort1= " ^ CicPp.ppterm t1' ^ " ; sort2= " ^ CicPp.ppterm t2')) + (TypeCheckerFailure + (NotWellTyped + ("Prod: sort1= " ^ CicPp.ppterm t1' ^ " ; sort2= "^ CicPp.ppterm t2'))) - and eat_prods hetype = + and eat_prods context hetype = (*CSC: siamo sicuri che le are_convertible non lavorino con termini non *) (*CSC: cucinati *) function [] -> hetype | (hete, hety)::tl -> - (match (CicReduction.whd hetype) with + (match (CicReduction.whd context hetype) with Cic.Prod (n,s,t) -> - if CicReduction.are_convertible s hety then + if CicReduction.are_convertible context s hety then (CicReduction.fdebug := -1 ; - eat_prods (CicSubstitution.subst hete t) tl + eat_prods context (CicSubstitution.subst hete t) tl ) else begin CicReduction.fdebug := 0 ; - ignore (CicReduction.are_convertible s hety) ; + ignore (CicReduction.are_convertible context s hety) ; fdebug := 0 ; debug s [hety] ; - raise (NotWellTyped "Appl: wrong parameter-type") + raise + (TypeCheckerFailure (NotWellTyped "Appl: wrong parameter-type")) end - | _ -> raise (NotWellTyped "Appl: wrong Prod-type") + | _ -> raise (TypeCheckerFailure (NotWellTyped "Appl: wrong Prod-type")) ) - and returns_a_coinductive ty = + and returns_a_coinductive context ty = let module C = Cic in - match CicReduction.whd ty with - C.MutInd (uri,cookingsno,i) -> + match CicReduction.whd context ty with + C.MutInd (uri,i,_) -> (*CSC: definire una funzioncina per questo codice sempre replicato *) - (match CicEnvironment.get_cooked_obj uri cookingsno with + (match CicEnvironment.get_cooked_obj ~trust:false uri with C.InductiveDefinition (itl,_,_) -> - let (_,is_inductive,_,cl) = List.nth itl i in + let (_,is_inductive,_,_) = List.nth itl i in if is_inductive then None else (Some uri) | _ -> - raise (WrongUriToMutualInductiveDefinitions - (UriManager.string_of_uri uri)) + raise + (TypeCheckerFailure (WrongUriToMutualInductiveDefinitions + (UriManager.string_of_uri uri))) ) - | C.Appl ((C.MutInd (uri,_,i))::_) -> + | C.Appl ((C.MutInd (uri,i,_))::_) -> (match CicEnvironment.get_obj uri with C.InductiveDefinition (itl,_,_) -> let (_,is_inductive,_,_) = List.nth itl i in if is_inductive then None else (Some uri) | _ -> - raise (WrongUriToMutualInductiveDefinitions - (UriManager.string_of_uri uri)) + raise + (TypeCheckerFailure + (WrongUriToMutualInductiveDefinitions + (UriManager.string_of_uri uri))) ) - | C.Prod (_,_,de) -> returns_a_coinductive de + | C.Prod (n,so,de) -> + returns_a_coinductive ((Some (n,C.Decl so))::context) de | _ -> None in - type_of_aux env t +(*CSC +prerr_endline ("INIZIO TYPE_OF_AUX " ^ CicPp.ppterm t) ; flush stderr ; +let res = +*) + type_of_aux context t +(* +in prerr_endline "FINE TYPE_OF_AUX" ; flush stderr ; res +*) (* is a small constructor? *) (*CSC: ottimizzare calcolando staticamente *) -and is_small paramsno c = - let rec is_small_aux env c = +and is_small context paramsno c = + let rec is_small_aux context c = let module C = Cic in - match CicReduction.whd c with - C.Prod (_,so,de) -> - let s = type_of_aux' env so in + match CicReduction.whd context c with + C.Prod (n,so,de) -> + (*CSC: [] is an empty metasenv. Is it correct? *) + let s = type_of_aux' [] context so in (s = C.Sort C.Prop || s = C.Sort C.Set) && - is_small_aux (so::env) de + is_small_aux ((Some (n,(C.Decl so)))::context) de | _ -> true (*CSC: we trust the type-checker *) in - let (sx,dx) = split_prods paramsno c in - is_small_aux (List.rev sx) dx + let (context',dx) = split_prods context paramsno c in + is_small_aux context' dx and type_of t = - type_of_aux' [] t +(*CSC +prerr_endline ("INIZIO TYPE_OF_AUX' " ^ CicPp.ppterm t) ; flush stderr ; +let res = +*) + type_of_aux' [] [] t +(*CSC +in prerr_endline "FINE TYPE_OF_AUX'" ; flush stderr ; res +*) ;; let typecheck uri = let module C = Cic in let module R = CicReduction in let module U = UriManager in - match CicEnvironment.is_type_checked uri 0 with + match CicEnvironment.is_type_checked ~trust:false uri with CicEnvironment.CheckedObj _ -> () | CicEnvironment.UncheckedObj uobj -> (* let's typecheck the uncooked object *) - log (`Start_type_checking uri) ; + Logger.log (`Start_type_checking uri) ; (match uobj with - C.Definition (_,te,ty,_) -> + C.Constant (_,Some te,ty,_) -> let _ = type_of ty in - if not (R.are_convertible (type_of te ) ty) then - raise (NotWellTyped ("Constant " ^ (U.string_of_uri uri))) - | C.Axiom (_,ty,_) -> + if not (R.are_convertible [] (type_of te ) ty) then + raise + (TypeCheckerFailure + (NotWellTyped ("Constant " ^ (U.string_of_uri uri)))) + | C.Constant (_,None,ty,_) -> (* only to check that ty is well-typed *) let _ = type_of ty in () - | C.CurrentProof (_,_,te,ty) -> - (*CSC [] wrong *) - let _ = type_of ty in - debug (type_of te) [] ; - if not (R.are_convertible (type_of te) ty) then - raise (NotWellTyped ("CurrentProof" ^ (U.string_of_uri uri))) - | C.Variable (_,bo,ty) -> + | C.CurrentProof (_,conjs,te,ty,_) -> + let _ = + List.fold_left + (fun metasenv ((_,context,ty) as conj) -> + ignore (type_of_aux' metasenv context ty) ; + metasenv @ [conj] + ) [] conjs + in + let _ = type_of_aux' conjs [] ty in + if not (R.are_convertible [] (type_of_aux' conjs [] te) ty) + then + raise + (TypeCheckerFailure + (NotWellTyped ("CurrentProof" ^ (U.string_of_uri uri)))) + | C.Variable (_,bo,ty,_) -> (* only to check that ty is well-typed *) let _ = type_of ty in (match bo with None -> () | Some bo -> - if not (R.are_convertible (type_of bo) ty) then - raise (NotWellTyped ("Variable" ^ (U.string_of_uri uri))) + if not (R.are_convertible [] (type_of bo) ty) then + raise + (TypeCheckerFailure + (NotWellTyped ("Variable" ^ (U.string_of_uri uri)))) ) | C.InductiveDefinition _ -> - cooked_mutual_inductive_defs uri uobj + check_mutual_inductive_defs uri uobj ) ; CicEnvironment.set_type_checking_info uri ; - log (`Type_checking_completed uri) + Logger.log (`Type_checking_completed uri) ;;