X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Focaml%2Fcic_proof_checking%2FcicTypeChecker.ml;h=5715778fb07cd91ba54ce9cc1ca5b180374fb4fc;hb=0c6a5aadb1a7746681a8e26fc0b009f847c10557;hp=b539508a1212f10672a08f46691e486be41ba97e;hpb=c929e791b0eca1e75694a663a2f6ada9f0ff9534;p=helm.git diff --git a/helm/ocaml/cic_proof_checking/cicTypeChecker.ml b/helm/ocaml/cic_proof_checking/cicTypeChecker.ml index b539508a1..5715778fb 100644 --- a/helm/ocaml/cic_proof_checking/cicTypeChecker.ml +++ b/helm/ocaml/cic_proof_checking/cicTypeChecker.ml @@ -23,98 +23,181 @@ * http://cs.unibo.it/helm/. *) -exception Impossible of int;; -exception NotWellTyped of string;; -exception WrongUriToConstant of string;; -exception WrongUriToVariable of string;; -exception WrongUriToMutualInductiveDefinitions of string;; -exception ListTooShort;; -exception NotPositiveOccurrences of string;; -exception NotWellFormedTypeOfInductiveConstructor of string;; -exception WrongRequiredArgument of string;; -exception RelToHiddenHypothesis;; -exception MetasenvInconsistency;; +(* TODO factorize functions to frequent errors (e.g. "Unknwon mutual inductive + * ...") *) + +open Printf + +exception AssertFailure of string;; +exception TypeCheckerFailure of string;; let fdebug = ref 0;; let debug t context = let rec debug_aux t i = let module C = Cic in let module U = UriManager in - CicPp.ppobj (C.Variable ("DEBUG", None, t)) ^ "\n" ^ i + CicPp.ppobj (C.Variable ("DEBUG", None, t, [])) ^ "\n" ^ i in if !fdebug = 0 then - raise (NotWellTyped ("\n" ^ List.fold_right debug_aux (t::context) "")) - (*print_endline ("\n" ^ List.fold_right debug_aux (t::context) "") ; flush stdout*) + raise (TypeCheckerFailure (List.fold_right debug_aux (t::context) "")) ;; +let debug_print = prerr_endline ;; + let rec split l n = match (l,n) with (l,0) -> ([], l) | (he::tl, n) -> let (l1,l2) = split tl (n-1) in (he::l1,l2) - | (_,_) -> raise ListTooShort + | (_,_) -> + raise (TypeCheckerFailure "Parameters number < left parameters number") +;; + +let debrujin_constructor uri number_of_types = + let rec aux k = + let module C = Cic in + function + C.Rel n as t when n <= k -> t + | C.Rel _ -> + raise (TypeCheckerFailure "unbound variable found in constructor type") + | C.Var (uri,exp_named_subst) -> + let exp_named_subst' = + List.map (function (uri,t) -> (uri,aux k t)) exp_named_subst + in + C.Var (uri,exp_named_subst') + | C.Meta _ -> assert false + | C.Sort _ + | C.Implicit _ as t -> t + | C.Cast (te,ty) -> C.Cast (aux k te, aux k ty) + | C.Prod (n,s,t) -> C.Prod (n, aux k s, aux (k+1) t) + | C.Lambda (n,s,t) -> C.Lambda (n, aux k s, aux (k+1) t) + | C.LetIn (n,s,t) -> C.LetIn (n, aux k s, aux (k+1) t) + | C.Appl l -> C.Appl (List.map (aux k) l) + | C.Const (uri,exp_named_subst) -> + let exp_named_subst' = + List.map (function (uri,t) -> (uri,aux k t)) exp_named_subst + in + C.Const (uri,exp_named_subst') + | C.MutInd (uri',tyno,exp_named_subst) when UriManager.eq uri uri' -> + if exp_named_subst != [] then + raise (TypeCheckerFailure + ("non-empty explicit named substitution is applied to "^ + "a mutual inductive type which is being defined")) ; + C.Rel (k + number_of_types - tyno) ; + | C.MutInd (uri',tyno,exp_named_subst) -> + let exp_named_subst' = + List.map (function (uri,t) -> (uri,aux k t)) exp_named_subst + in + C.MutInd (uri',tyno,exp_named_subst') + | C.MutConstruct (uri,tyno,consno,exp_named_subst) -> + let exp_named_subst' = + List.map (function (uri,t) -> (uri,aux k t)) exp_named_subst + in + C.MutConstruct (uri,tyno,consno,exp_named_subst') + | C.MutCase (sp,i,outty,t,pl) -> + C.MutCase (sp, i, aux k outty, aux k t, + List.map (aux k) pl) + | C.Fix (i, fl) -> + let len = List.length fl in + let liftedfl = + List.map + (fun (name, i, ty, bo) -> (name, i, aux k ty, aux (k+len) bo)) + fl + in + C.Fix (i, liftedfl) + | C.CoFix (i, fl) -> + let len = List.length fl in + let liftedfl = + List.map + (fun (name, ty, bo) -> (name, aux k ty, aux (k+len) bo)) + fl + in + C.CoFix (i, liftedfl) + in + aux 0 ;; exception CicEnvironmentError;; -let rec cooked_type_of_constant uri cookingsno = +let rec type_of_constant uri = let module C = Cic in let module R = CicReduction in let module U = UriManager in let cobj = - match CicEnvironment.is_type_checked uri cookingsno with + match CicEnvironment.is_type_checked ~trust:true uri with CicEnvironment.CheckedObj cobj -> cobj | CicEnvironment.UncheckedObj uobj -> - Logger.log (`Start_type_checking uri) ; + CicLogger.log (`Start_type_checking uri) ; + CicUniv.directly_to_env_begin (); (* let's typecheck the uncooked obj *) (match uobj with - C.Definition (_,te,ty,_) -> + C.Constant (_,Some te,ty,_) -> let _ = type_of ty in - if not (R.are_convertible [] (type_of te) ty) then - raise (NotWellTyped ("Constant " ^ (U.string_of_uri uri))) - | C.Axiom (_,ty,_) -> + let type_of_te = type_of te in + if not (R.are_convertible [] type_of_te ty) then + raise (TypeCheckerFailure (sprintf + "the constant %s is not well typed because the type %s of the body is not convertible to the declared type %s" + (U.string_of_uri uri) (CicPp.ppterm type_of_te) + (CicPp.ppterm ty))) + | C.Constant (_,None,ty,_) -> (* only to check that ty is well-typed *) let _ = type_of ty in () - | C.CurrentProof (_,conjs,te,ty) -> - (*CSC: bisogna controllare anche il metasenv!!! *) - let _ = type_of_aux' conjs [] ty in - if not (R.are_convertible [] (type_of_aux' conjs [] te) ty) - then - raise (NotWellTyped ("CurrentProof" ^ (U.string_of_uri uri))) - | _ -> raise (WrongUriToConstant (U.string_of_uri uri)) - ) ; + | C.CurrentProof (_,conjs,te,ty,_) -> + let _ = + List.fold_left + (fun metasenv ((_,context,ty) as conj) -> + ignore (type_of_aux' metasenv context ty) ; + metasenv @ [conj] + ) [] conjs + in + let _ = type_of_aux' conjs [] ty in + let type_of_te = type_of_aux' conjs [] te in + if not (R.are_convertible [] type_of_te ty) then + raise (TypeCheckerFailure (sprintf + "the current proof %s is not well typed because the type %s of the body is not convertible to the declared type %s" + (U.string_of_uri uri) (CicPp.ppterm type_of_te) + (CicPp.ppterm ty))) + | _ -> + raise (TypeCheckerFailure + ("Unknown constant:" ^ U.string_of_uri uri)) + ); CicEnvironment.set_type_checking_info uri ; - Logger.log (`Type_checking_completed uri) ; - match CicEnvironment.is_type_checked uri cookingsno with + CicUniv.directly_to_env_end (); + CicLogger.log (`Type_checking_completed uri) ; + match CicEnvironment.is_type_checked ~trust:false uri with CicEnvironment.CheckedObj cobj -> cobj | CicEnvironment.UncheckedObj _ -> raise CicEnvironmentError in match cobj with - C.Definition (_,_,ty,_) -> ty - | C.Axiom (_,ty,_) -> ty - | C.CurrentProof (_,_,_,ty) -> ty - | _ -> raise (WrongUriToConstant (U.string_of_uri uri)) + C.Constant (_,_,ty,_) -> ty + | C.CurrentProof (_,_,_,ty,_) -> ty + | _ -> + raise (TypeCheckerFailure ("Unknown constant:" ^ U.string_of_uri uri)) and type_of_variable uri = let module C = Cic in let module R = CicReduction in let module U = UriManager in (* 0 because a variable is never cooked => no partial cooking at one level *) - match CicEnvironment.is_type_checked uri 0 with - CicEnvironment.CheckedObj (C.Variable (_,_,ty)) -> ty - | CicEnvironment.UncheckedObj (C.Variable (_,bo,ty)) -> - Logger.log (`Start_type_checking uri) ; + match CicEnvironment.is_type_checked ~trust:true uri with + CicEnvironment.CheckedObj (C.Variable (_,_,ty,_)) -> ty + | CicEnvironment.UncheckedObj (C.Variable (_,bo,ty,_)) -> + CicLogger.log (`Start_type_checking uri) ; + CicUniv.directly_to_env_begin (); (* only to check that ty is well-typed *) let _ = type_of ty in (match bo with None -> () | Some bo -> if not (R.are_convertible [] (type_of bo) ty) then - raise (NotWellTyped ("Variable " ^ (U.string_of_uri uri))) + raise (TypeCheckerFailure + ("Unknown variable:" ^ U.string_of_uri uri)) ) ; CicEnvironment.set_type_checking_info uri ; - Logger.log (`Type_checking_completed uri) ; + CicUniv.directly_to_env_end (); + CicLogger.log (`Type_checking_completed uri) ; ty - | _ -> raise (WrongUriToVariable (UriManager.string_of_uri uri)) + | _ -> + raise (TypeCheckerFailure ("Unknown variable:" ^ U.string_of_uri uri)) and does_not_occur context n nn te = let module C = Cic in @@ -124,27 +207,32 @@ and does_not_occur context n nn te = match CicReduction.whd context te with C.Rel m when m > n && m <= nn -> false | C.Rel _ - | C.Var _ - | C.Meta _ + | C.Meta _ (* CSC: Are we sure? No recursion?*) | C.Sort _ - | C.Implicit -> true + | C.Implicit _ -> true | C.Cast (te,ty) -> does_not_occur context n nn te && does_not_occur context n nn ty | C.Prod (name,so,dest) -> does_not_occur context n nn so && - does_not_occur((Some (name,(C.Decl so)))::context) (n + 1) (nn + 1) dest + does_not_occur((Some (name,(C.Decl so)))::context) (n + 1) (nn + 1) + dest | C.Lambda (name,so,dest) -> does_not_occur context n nn so && - does_not_occur((Some (name,(C.Decl so)))::context) (n + 1) (nn + 1) dest + does_not_occur((Some (name,(C.Decl so)))::context) (n + 1) (nn + 1) + dest | C.LetIn (name,so,dest) -> does_not_occur context n nn so && - does_not_occur ((Some (name,(C.Def so)))::context) (n + 1) (nn + 1) dest + does_not_occur ((Some (name,(C.Def (so,None))))::context) + (n + 1) (nn + 1) dest | C.Appl l -> List.fold_right (fun x i -> i && does_not_occur context n nn x) l true - | C.Const _ - | C.MutInd _ - | C.MutConstruct _ -> true - | C.MutCase (_,_,_,out,te,pl) -> + | C.Var (_,exp_named_subst) + | C.Const (_,exp_named_subst) + | C.MutInd (_,_,exp_named_subst) + | C.MutConstruct (_,_,_,exp_named_subst) -> + List.fold_right (fun (_,x) i -> i && does_not_occur context n nn x) + exp_named_subst true + | C.MutCase (_,_,out,te,pl) -> does_not_occur context n nn out && does_not_occur context n nn te && List.fold_right (fun x i -> i && does_not_occur context n nn x) pl true | C.Fix (_,fl) -> @@ -181,14 +269,14 @@ and weakly_positive context n nn uri te = let module C = Cic in (*CSC: Che schifo! Bisogna capire meglio e trovare una soluzione ragionevole!*) let dummy_mutind = - C.MutInd (UriManager.uri_of_string "cic:/Coq/Init/Datatypes/nat.ind",0,0) + C.MutInd (HelmLibraryObjects.Datatypes.nat_URI,0,[]) in (*CSC mettere in cicSubstitution *) let rec subst_inductive_type_with_dummy_mutind = function - C.MutInd (uri',_,0) when UriManager.eq uri' uri -> + C.MutInd (uri',0,_) when UriManager.eq uri' uri -> dummy_mutind - | C.Appl ((C.MutInd (uri',_,0))::tl) when UriManager.eq uri' uri -> + | C.Appl ((C.MutInd (uri',0,_))::tl) when UriManager.eq uri' uri -> dummy_mutind | C.Cast (te,ty) -> subst_inductive_type_with_dummy_mutind te | C.Prod (name,so,ta) -> @@ -199,8 +287,8 @@ and weakly_positive context n nn uri te = subst_inductive_type_with_dummy_mutind ta) | C.Appl tl -> C.Appl (List.map subst_inductive_type_with_dummy_mutind tl) - | C.MutCase (uri,cookingsno,i,outtype,term,pl) -> - C.MutCase (uri,cookingsno,i, + | C.MutCase (uri,i,outtype,term,pl) -> + C.MutCase (uri,i, subst_inductive_type_with_dummy_mutind outtype, subst_inductive_type_with_dummy_mutind term, List.map subst_inductive_type_with_dummy_mutind pl) @@ -212,15 +300,36 @@ and weakly_positive context n nn uri te = C.CoFix (i,List.map (fun (name,ty,bo) -> (name, subst_inductive_type_with_dummy_mutind ty, subst_inductive_type_with_dummy_mutind bo)) fl) + | C.Const (uri,exp_named_subst) -> + let exp_named_subst' = + List.map + (function (uri,t) -> (uri,subst_inductive_type_with_dummy_mutind t)) + exp_named_subst + in + C.Const (uri,exp_named_subst') + | C.MutInd (uri,typeno,exp_named_subst) -> + let exp_named_subst' = + List.map + (function (uri,t) -> (uri,subst_inductive_type_with_dummy_mutind t)) + exp_named_subst + in + C.MutInd (uri,typeno,exp_named_subst') + | C.MutConstruct (uri,typeno,consno,exp_named_subst) -> + let exp_named_subst' = + List.map + (function (uri,t) -> (uri,subst_inductive_type_with_dummy_mutind t)) + exp_named_subst + in + C.MutConstruct (uri,typeno,consno,exp_named_subst') | t -> t in match CicReduction.whd context te with - C.Appl ((C.MutInd (uri',_,0))::tl) when UriManager.eq uri' uri -> true - | C.MutInd (uri',_,0) when UriManager.eq uri' uri -> true - | C.Prod (C.Anonimous,source,dest) -> + C.Appl ((C.MutInd (uri',0,_))::tl) when UriManager.eq uri' uri -> true + | C.MutInd (uri',0,_) when UriManager.eq uri' uri -> true + | C.Prod (C.Anonymous,source,dest) -> strictly_positive context n nn (subst_inductive_type_with_dummy_mutind source) && - weakly_positive ((Some (C.Anonimous,(C.Decl source)))::context) + weakly_positive ((Some (C.Anonymous,(C.Decl source)))::context) (n + 1) (nn + 1) uri dest | C.Prod (name,source,dest) when does_not_occur ((Some (name,(C.Decl source)))::context) 0 n dest -> @@ -234,7 +343,8 @@ and weakly_positive context n nn uri te = (subst_inductive_type_with_dummy_mutind source)&& weakly_positive ((Some (name,(C.Decl source)))::context) (n + 1) (nn + 1) uri dest - | _ -> raise (NotWellFormedTypeOfInductiveConstructor ("Guess where the error is ;-)")) + | _ -> + raise (TypeCheckerFailure "Malformed inductive constructor type") (* instantiate_parameters ps (x1:T1)...(xn:Tn)C *) (* returns ((x_|ps|:T_|ps|)...(xn:Tn)C){ps_1 / x1 ; ... ; ps_|ps| / x_|ps|} *) @@ -246,7 +356,7 @@ and instantiate_parameters params c = instantiate_parameters tl (CicSubstitution.subst he ta) | (C.Cast (te,_), _) -> instantiate_parameters params te - | (t,l) -> raise (Impossible 1) + | (t,l) -> raise (AssertFailure "1") and strictly_positive context n nn te = let module C = Cic in @@ -261,18 +371,24 @@ and strictly_positive context n nn te = strictly_positive ((Some (name,(C.Decl so)))::context) (n+1) (nn+1) ta | C.Appl ((C.Rel m)::tl) when m > n && m <= nn -> List.fold_right (fun x i -> i && does_not_occur context n nn x) tl true - | C.Appl ((C.MutInd (uri,_,i))::tl) -> + | C.Appl ((C.MutInd (uri,i,exp_named_subst))::tl) -> let (ok,paramsno,ity,cl,name) = match CicEnvironment.get_obj uri with C.InductiveDefinition (tl,_,paramsno) -> let (name,_,ity,cl) = List.nth tl i in (List.length tl = 1, paramsno, ity, cl, name) - | _ -> raise(WrongUriToMutualInductiveDefinitions(U.string_of_uri uri)) + | _ -> + raise (TypeCheckerFailure + ("Unknown inductive type:" ^ U.string_of_uri uri)) in let (params,arguments) = split tl paramsno in let lifted_params = List.map (CicSubstitution.lift 1) params in let cl' = - List.map (fun (_,te,_) -> instantiate_parameters lifted_params te) cl + List.map + (fun (_,te) -> + instantiate_parameters lifted_params + (CicSubstitution.subst_vars exp_named_subst te) + ) cl in ok && List.fold_right @@ -283,7 +399,8 @@ and strictly_positive context n nn te = (fun x i -> i && weakly_positive - ((Some (C.Name name,(Cic.Decl ity)))::context) (n+1) (nn+1) uri x + ((Some (C.Name name,(Cic.Decl ity)))::context) (n+1) (nn+1) uri + x ) cl' true | t -> does_not_occur context n nn t @@ -302,22 +419,29 @@ and are_all_occurrences_positive context uri indparamsno i n nn te = else match CicReduction.whd context x with C.Rel m when m = n - (indparamsno - k) -> k - 1 - | _ -> raise (WrongRequiredArgument (UriManager.string_of_uri uri)) + | _ -> + raise (TypeCheckerFailure + ("Non-positive occurence in mutual inductive definition(s) " ^ + UriManager.string_of_uri uri)) ) indparamsno tl in if last = 0 then List.fold_right (fun x i -> i && does_not_occur context n nn x) tl true else - raise (WrongRequiredArgument (UriManager.string_of_uri uri)) + raise (TypeCheckerFailure + ("Non-positive occurence in mutual inductive definition(s) " ^ + UriManager.string_of_uri uri)) | C.Rel m when m = i -> if indparamsno = 0 then true else - raise (WrongRequiredArgument (UriManager.string_of_uri uri)) - | C.Prod (C.Anonimous,source,dest) -> + raise (TypeCheckerFailure + ("Non-positive occurence in mutual inductive definition(s) " ^ + UriManager.string_of_uri uri)) + | C.Prod (C.Anonymous,source,dest) -> strictly_positive context n nn source && are_all_occurrences_positive - ((Some (C.Anonimous,(C.Decl source)))::context) uri indparamsno + ((Some (C.Anonymous,(C.Decl source)))::context) uri indparamsno (i+1) (n + 1) (nn + 1) dest | C.Prod (name,source,dest) when does_not_occur ((Some (name,(C.Decl source)))::context) 0 n dest -> @@ -330,71 +454,80 @@ and are_all_occurrences_positive context uri indparamsno i n nn te = does_not_occur context n nn source && are_all_occurrences_positive ((Some (name,(C.Decl source)))::context) uri indparamsno (i+1) (n + 1) (nn + 1) dest - | _ -> raise (NotWellFormedTypeOfInductiveConstructor (UriManager.string_of_uri uri)) + | _ -> + raise + (TypeCheckerFailure ("Malformed inductive constructor type " ^ + (UriManager.string_of_uri uri))) -(*CSC: cambiare il nome, torna unit! *) -and cooked_mutual_inductive_defs uri = +(* Main function to checks the correctness of a mutual *) +(* inductive block definition. This is the function *) +(* exported to the proof-engine. *) +and typecheck_mutual_inductive_defs uri (itl,_,indparamsno) = let module U = UriManager in - function - Cic.InductiveDefinition (itl, _, indparamsno) -> - (* let's check if the arity of the inductive types are well *) - (* formed *) - List.iter (fun (_,_,x,_) -> let _ = type_of x in ()) itl ; + (* let's check if the arity of the inductive types are well *) + (* formed *) + List.iter (fun (_,_,x,_) -> let _ = type_of x in ()) itl ; - (* let's check if the types of the inductive constructors *) - (* are well formed. *) - (* In order not to use type_of_aux we put the types of the *) - (* mutual inductive types at the head of the types of the *) - (* constructors using Prods *) - (*CSC: piccola??? inefficienza *) - let len = List.length itl in -(*CSC: siamo sicuri che non debba fare anche un List.rev? Il bug *) -(*CSC: si manifesterebbe solamene con tipi veramente mutualmente *) -(*CSC: induttivi... *) - let tys = - List.map (fun (n,_,ty,_) -> Some (Cic.Name n,(Cic.Decl ty))) itl in - let _ = - List.fold_right - (fun (_,_,_,cl) i -> - List.iter - (fun (name,te,r) -> - let augmented_term = - List.fold_right - (fun (name,_,ty,_) i -> Cic.Prod (Cic.Name name, ty, i)) - itl te - in - let _ = type_of augmented_term in - (* let's check also the positivity conditions *) - if - not - (are_all_occurrences_positive tys uri indparamsno i 0 len te) - then - raise (NotPositiveOccurrences (U.string_of_uri uri)) - else - match !r with - Some _ -> raise (Impossible 2) - | None -> r := Some (recursive_args tys 0 len te) - ) cl ; - (i + 1) - ) itl 1 - in - () - | _ -> - raise (WrongUriToMutualInductiveDefinitions (U.string_of_uri uri)) + (* let's check if the types of the inductive constructors *) + (* are well formed. *) + (* In order not to use type_of_aux we put the types of the *) + (* mutual inductive types at the head of the types of the *) + (* constructors using Prods *) + let len = List.length itl in + let tys = + List.map (fun (n,_,ty,_) -> Some (Cic.Name n,(Cic.Decl ty))) itl in + let _ = + List.fold_right + (fun (_,_,_,cl) i -> + List.iter + (fun (name,te) -> + let debrujinedte = debrujin_constructor uri len te in + let augmented_term = + List.fold_right + (fun (name,_,ty,_) i -> Cic.Prod (Cic.Name name, ty, i)) + itl debrujinedte + in + let _ = type_of augmented_term in + (* let's check also the positivity conditions *) + if + not + (are_all_occurrences_positive tys uri indparamsno i 0 len + debrujinedte) + then + raise + (TypeCheckerFailure ("Non positive occurence in " ^ + U.string_of_uri uri)) + ) cl ; + (i + 1) + ) itl 1 + in + () -and cooked_type_of_mutual_inductive_defs uri cookingsno i = +(* Main function to checks the correctness of a mutual *) +(* inductive block definition. *) +and check_mutual_inductive_defs uri = + function + Cic.InductiveDefinition (itl, params, indparamsno) -> + typecheck_mutual_inductive_defs uri (itl,params,indparamsno) + | _ -> + raise (TypeCheckerFailure ("Unknown mutual inductive definition:" ^ + UriManager.string_of_uri uri)) + +and type_of_mutual_inductive_defs uri i = let module C = Cic in let module R = CicReduction in let module U = UriManager in let cobj = - match CicEnvironment.is_type_checked uri cookingsno with + match CicEnvironment.is_type_checked ~trust:true uri with CicEnvironment.CheckedObj cobj -> cobj | CicEnvironment.UncheckedObj uobj -> - Logger.log (`Start_type_checking uri) ; - cooked_mutual_inductive_defs uri uobj ; + CicLogger.log (`Start_type_checking uri) ; + CicUniv.directly_to_env_begin (); + check_mutual_inductive_defs uri uobj ; CicEnvironment.set_type_checking_info uri ; - Logger.log (`Type_checking_completed uri) ; - (match CicEnvironment.is_type_checked uri cookingsno with + CicUniv.directly_to_env_end (); + CicLogger.log (`Type_checking_completed uri) ; + (match CicEnvironment.is_type_checked ~trust:false uri with CicEnvironment.CheckedObj cobj -> cobj | CicEnvironment.UncheckedObj _ -> raise CicEnvironmentError ) @@ -403,21 +536,25 @@ and cooked_type_of_mutual_inductive_defs uri cookingsno i = C.InductiveDefinition (dl,_,_) -> let (_,_,arity,_) = List.nth dl i in arity - | _ -> raise (WrongUriToMutualInductiveDefinitions (U.string_of_uri uri)) + | _ -> + raise (TypeCheckerFailure ("Unknown mutual inductive definition:" ^ + U.string_of_uri uri)) -and cooked_type_of_mutual_inductive_constr uri cookingsno i j = +and type_of_mutual_inductive_constr uri i j = let module C = Cic in let module R = CicReduction in let module U = UriManager in let cobj = - match CicEnvironment.is_type_checked uri cookingsno with + match CicEnvironment.is_type_checked ~trust:true uri with CicEnvironment.CheckedObj cobj -> cobj | CicEnvironment.UncheckedObj uobj -> - Logger.log (`Start_type_checking uri) ; - cooked_mutual_inductive_defs uri uobj ; + CicLogger.log (`Start_type_checking uri) ; + (*CicUniv.directly_to_env_begin ();*) + check_mutual_inductive_defs uri uobj ; CicEnvironment.set_type_checking_info uri ; - Logger.log (`Type_checking_completed uri) ; - (match CicEnvironment.is_type_checked uri cookingsno with + (*CicUniv.directly_to_env_end ();*) + CicLogger.log (`Type_checking_completed uri) ; + (match CicEnvironment.is_type_checked ~trust:false uri with CicEnvironment.CheckedObj cobj -> cobj | CicEnvironment.UncheckedObj _ -> raise CicEnvironmentError ) @@ -425,9 +562,11 @@ and cooked_type_of_mutual_inductive_constr uri cookingsno i j = match cobj with C.InductiveDefinition (dl,_,_) -> let (_,_,_,cl) = List.nth dl i in - let (_,ty,_) = List.nth cl (j-1) in + let (_,ty) = List.nth cl (j-1) in ty - | _ -> raise (WrongUriToMutualInductiveDefinitions (U.string_of_uri uri)) + | _ -> + raise (TypeCheckerFailure ("Unknown mutual inductive definition:" ^ + UriManager.string_of_uri uri)) and recursive_args context n nn te = let module C = Cic in @@ -436,26 +575,28 @@ and recursive_args context n nn te = | C.Var _ | C.Meta _ | C.Sort _ - | C.Implicit - | C.Cast _ (*CSC ??? *) -> raise (Impossible 3) (* due to type-checking *) + | C.Implicit _ + | C.Cast _ (*CSC ??? *) -> + raise (AssertFailure "3") (* due to type-checking *) | C.Prod (name,so,de) -> (not (does_not_occur context n nn so)) :: (recursive_args ((Some (name,(C.Decl so)))::context) (n+1) (nn + 1) de) | C.Lambda _ - | C.LetIn _ -> raise (Impossible 4) (* due to type-checking *) + | C.LetIn _ -> + raise (AssertFailure "4") (* due to type-checking *) | C.Appl _ -> [] - | C.Const _ -> raise (Impossible 5) + | C.Const _ -> raise (AssertFailure "5") | C.MutInd _ | C.MutConstruct _ | C.MutCase _ | C.Fix _ - | C.CoFix _ -> raise (Impossible 6) (* due to type-checking *) + | C.CoFix _ -> raise (AssertFailure "6") (* due to type-checking *) -and get_new_safes context p c rl safes n nn x = +and get_new_safes ?(subst = []) context p c rl safes n nn x = let module C = Cic in let module U = UriManager in let module R = CicReduction in - match (R.whd context c, R.whd context p, rl) with + match (R.whd ~subst context c, R.whd ~subst context p, rl) with (C.Prod (_,so,ta1), C.Lambda (name,_,ta2), b::tl) -> (* we are sure that the two sources are convertible because we *) (* have just checked this. So let's go along ... *) @@ -465,43 +606,47 @@ and get_new_safes context p c rl safes n nn x = let safes'' = if b then 1::safes' else safes' in - get_new_safes ((Some (name,(C.Decl so)))::context) + get_new_safes ~subst ((Some (name,(C.Decl so)))::context) ta2 ta1 tl safes'' (n+1) (nn+1) (x+1) | (C.Prod _, (C.MutConstruct _ as e), _) | (C.Prod _, (C.Rel _ as e), _) | (C.MutInd _, e, []) | (C.Appl _, e, []) -> (e,safes,n,nn,x,context) - | (_,_,_) -> + | (c,p,l) -> (* CSC: If the next exception is raised, it just means that *) (* CSC: the proof-assistant allows to use very strange things *) (* CSC: as a branch of a case whose type is a Prod. In *) (* CSC: particular, this means that a new (C.Prod, x,_) case *) (* CSC: must be considered in this match. (e.g. x = MutCase) *) - raise (Impossible 7) + raise + (AssertFailure + (Printf.sprintf "Get New Safes: c=%s ; p=%s" + (CicPp.ppterm c) (CicPp.ppterm p))) -and split_prods context n te = +and split_prods ?(subst = []) context n te = let module C = Cic in let module R = CicReduction in match (n, R.whd context te) with (0, _) -> context,te | (n, C.Prod (name,so,ta)) when n > 0 -> - split_prods ((Some (name,(C.Decl so)))::context) (n - 1) ta - | (_, _) -> raise (Impossible 8) + split_prods ~subst ((Some (name,(C.Decl so)))::context) (n - 1) ta + | (_, _) -> raise (AssertFailure "8") -and eat_lambdas context n te = +and eat_lambdas ?(subst = []) context n te = let module C = Cic in let module R = CicReduction in - match (n, R.whd context te) with + match (n, R.whd ~subst context te) with (0, _) -> (te, 0, context) | (n, C.Lambda (name,so,ta)) when n > 0 -> let (te, k, context') = - eat_lambdas ((Some (name,(C.Decl so)))::context) (n - 1) ta + eat_lambdas ~subst ((Some (name,(C.Decl so)))::context) (n - 1) ta in (te, k + 1, context') - | (_, _) -> raise (Impossible 9) + | (n, te) -> + raise (AssertFailure (sprintf "9 (%d, %s)" n (CicPp.ppterm te))) -(*CSC: Tutto quello che segue e' l'intuzione di luca ;-) *) -and check_is_really_smaller_arg context n nn kl x safes te = +(*CSC: Tutto quello che segue e' l'intuzione di luca ;-) *) +and check_is_really_smaller_arg ?(subst = []) context n nn kl x safes te = (*CSC: forse la whd si puo' fare solo quando serve veramente. *) (*CSC: cfr guarded_by_destructors *) let module C = Cic in @@ -512,116 +657,116 @@ and check_is_really_smaller_arg context n nn kl x safes te = | C.Var _ | C.Meta _ | C.Sort _ - | C.Implicit + | C.Implicit _ | C.Cast _ (* | C.Cast (te,ty) -> - check_is_really_smaller_arg n nn kl x safes te && - check_is_really_smaller_arg n nn kl x safes ty*) + check_is_really_smaller_arg ~subst n nn kl x safes te && + check_is_really_smaller_arg ~subst n nn kl x safes ty*) (* | C.Prod (_,so,ta) -> - check_is_really_smaller_arg n nn kl x safes so && - check_is_really_smaller_arg (n+1) (nn+1) kl (x+1) + check_is_really_smaller_arg ~subst n nn kl x safes so && + check_is_really_smaller_arg ~subst (n+1) (nn+1) kl (x+1) (List.map (fun x -> x + 1) safes) ta*) - | C.Prod _ -> raise (Impossible 10) + | C.Prod _ -> raise (AssertFailure "10") | C.Lambda (name,so,ta) -> - check_is_really_smaller_arg context n nn kl x safes so && - check_is_really_smaller_arg ((Some (name,(C.Decl so)))::context) + check_is_really_smaller_arg ~subst context n nn kl x safes so && + check_is_really_smaller_arg ~subst ((Some (name,(C.Decl so)))::context) (n+1) (nn+1) kl (x+1) (List.map (fun x -> x + 1) safes) ta | C.LetIn (name,so,ta) -> - check_is_really_smaller_arg context n nn kl x safes so && - check_is_really_smaller_arg ((Some (name,(C.Def so)))::context) + check_is_really_smaller_arg ~subst context n nn kl x safes so && + check_is_really_smaller_arg ~subst ((Some (name,(C.Def (so,None))))::context) (n+1) (nn+1) kl (x+1) (List.map (fun x -> x + 1) safes) ta | C.Appl (he::_) -> (*CSC: sulla coda ci vogliono dei controlli? secondo noi no, ma *) (*CSC: solo perche' non abbiamo trovato controesempi *) - check_is_really_smaller_arg context n nn kl x safes he - | C.Appl [] -> raise (Impossible 11) + check_is_really_smaller_arg ~subst context n nn kl x safes he + | C.Appl [] -> raise (AssertFailure "11") | C.Const _ - | C.MutInd _ -> raise (Impossible 12) + | C.MutInd _ -> raise (AssertFailure "12") | C.MutConstruct _ -> false - | C.MutCase (uri,_,i,outtype,term,pl) -> + | C.MutCase (uri,i,outtype,term,pl) -> (match term with C.Rel m when List.mem m safes || m = x -> - let (isinductive,paramsno,cl) = + let (tys,len,isinductive,paramsno,cl) = match CicEnvironment.get_obj uri with C.InductiveDefinition (tl,_,paramsno) -> let tys = - List.map (fun (n,_,ty,_) -> Some (Cic.Name n,(Cic.Decl ty))) tl + List.map + (fun (n,_,ty,_) -> Some (Cic.Name n,(Cic.Decl ty))) tl in let (_,isinductive,_,cl) = List.nth tl i in let cl' = List.map - (fun (id,ty,r) -> - (id, snd (split_prods tys paramsno ty), r)) cl + (fun (id,ty) -> + (id, snd (split_prods ~subst tys paramsno ty))) cl in - (isinductive,paramsno,cl') + (tys,List.length tl,isinductive,paramsno,cl') | _ -> - raise (WrongUriToMutualInductiveDefinitions(U.string_of_uri uri)) + raise (TypeCheckerFailure + ("Unknown mutual inductive definition:" ^ + UriManager.string_of_uri uri)) in if not isinductive then List.fold_right (fun p i -> - i && check_is_really_smaller_arg context n nn kl x safes p) + i && check_is_really_smaller_arg ~subst context n nn kl x safes p) pl true else List.fold_right - (fun (p,(_,c,rl)) i -> + (fun (p,(_,c)) i -> let rl' = - match !rl with - Some rl' -> - let (_,rl'') = split rl' paramsno in - rl'' - | None -> raise (Impossible 13) + let debrujinedte = debrujin_constructor uri len c in + recursive_args tys 0 len debrujinedte in let (e,safes',n',nn',x',context') = - get_new_safes context p c rl' safes n nn x + get_new_safes ~subst context p c rl' safes n nn x in i && - check_is_really_smaller_arg context' n' nn' kl x' safes' e + check_is_really_smaller_arg ~subst context' n' nn' kl x' safes' e ) (List.combine pl cl) true | C.Appl ((C.Rel m)::tl) when List.mem m safes || m = x -> - let (isinductive,paramsno,cl) = + let (tys,len,isinductive,paramsno,cl) = match CicEnvironment.get_obj uri with C.InductiveDefinition (tl,_,paramsno) -> let (_,isinductive,_,cl) = List.nth tl i in let tys = - List.map (fun (n,_,ty,_) -> Some(Cic.Name n,(Cic.Decl ty))) tl + List.map (fun (n,_,ty,_) -> + Some(Cic.Name n,(Cic.Decl ty))) tl in let cl' = List.map - (fun (id,ty,r) -> - (id, snd (split_prods tys paramsno ty), r)) cl + (fun (id,ty) -> + (id, snd (split_prods ~subst tys paramsno ty))) cl in - (isinductive,paramsno,cl') + (tys,List.length tl,isinductive,paramsno,cl') | _ -> - raise (WrongUriToMutualInductiveDefinitions(U.string_of_uri uri)) + raise (TypeCheckerFailure + ("Unknown mutual inductive definition:" ^ + UriManager.string_of_uri uri)) in if not isinductive then List.fold_right (fun p i -> - i && check_is_really_smaller_arg context n nn kl x safes p) + i && check_is_really_smaller_arg ~subst context n nn kl x safes p) pl true else (*CSC: supponiamo come prima che nessun controllo sia necessario*) (*CSC: sugli argomenti di una applicazione *) List.fold_right - (fun (p,(_,c,rl)) i -> + (fun (p,(_,c)) i -> let rl' = - match !rl with - Some rl' -> - let (_,rl'') = split rl' paramsno in - rl'' - | None -> raise (Impossible 14) + let debrujinedte = debrujin_constructor uri len c in + recursive_args tys 0 len debrujinedte in let (e, safes',n',nn',x',context') = get_new_safes context p c rl' safes n nn x in i && - check_is_really_smaller_arg context' n' nn' kl x' safes' e + check_is_really_smaller_arg ~subst context' n' nn' kl x' safes' e ) (List.combine pl cl) true | _ -> List.fold_right (fun p i -> - i && check_is_really_smaller_arg context n nn kl x safes p + i && check_is_really_smaller_arg ~subst context n nn kl x safes p ) pl true ) | C.Fix (_, fl) -> @@ -634,7 +779,7 @@ and check_is_really_smaller_arg context n nn kl x safes te = List.fold_right (fun (_,_,ty,bo) i -> i && - check_is_really_smaller_arg (tys@context) n_plus_len nn_plus_len kl + check_is_really_smaller_arg ~subst (tys@context) n_plus_len nn_plus_len kl x_plus_len safes' bo ) fl true | C.CoFix (_, fl) -> @@ -647,25 +792,26 @@ and check_is_really_smaller_arg context n nn kl x safes te = List.fold_right (fun (_,ty,bo) i -> i && - check_is_really_smaller_arg (tys@context) n_plus_len nn_plus_len kl + check_is_really_smaller_arg ~subst (tys@context) n_plus_len nn_plus_len kl x_plus_len safes' bo ) fl true -and guarded_by_destructors context n nn kl x safes = +and guarded_by_destructors ?(subst = []) context n nn kl x safes = let module C = Cic in let module U = UriManager in function C.Rel m when m > n && m <= nn -> false - | C.Rel n -> + | C.Rel m -> (match List.nth context (n-1) with Some (_,C.Decl _) -> true - | Some (_,C.Def bo) -> guarded_by_destructors context n nn kl x safes bo - | None -> raise RelToHiddenHypothesis + | Some (_,C.Def (bo,_)) -> + guarded_by_destructors context m nn kl x safes + (CicSubstitution.lift m bo) + | None -> raise (TypeCheckerFailure "Reference to deleted hypothesis") ) - | C.Var _ | C.Meta _ | C.Sort _ - | C.Implicit -> true + | C.Implicit _ -> true | C.Cast (te,ty) -> guarded_by_destructors context n nn kl x safes te && guarded_by_destructors context n nn kl x safes ty @@ -679,7 +825,7 @@ and guarded_by_destructors context n nn kl x safes = (n+1) (nn+1) kl (x+1) (List.map (fun x -> x + 1) safes) ta | C.LetIn (name,so,ta) -> guarded_by_destructors context n nn kl x safes so && - guarded_by_destructors ((Some (name,(C.Def so)))::context) + guarded_by_destructors ((Some (name,(C.Def (so,None))))::context) (n+1) (nn+1) kl (x+1) (List.map (fun x -> x + 1) safes) ta | C.Appl ((C.Rel m)::tl) when m > n && m <= nn -> let k = List.nth kl (m - n - 1) in @@ -689,32 +835,43 @@ and guarded_by_destructors context n nn kl x safes = (fun param i -> i && guarded_by_destructors context n nn kl x safes param ) tl true && - check_is_really_smaller_arg context n nn kl x safes (List.nth tl k) + check_is_really_smaller_arg ~subst context n nn kl x safes (List.nth tl k) | C.Appl tl -> List.fold_right (fun t i -> i && guarded_by_destructors context n nn kl x safes t) tl true - | C.Const _ - | C.MutInd _ - | C.MutConstruct _ -> true - | C.MutCase (uri,_,i,outtype,term,pl) -> + | C.Var (_,exp_named_subst) + | C.Const (_,exp_named_subst) + | C.MutInd (_,_,exp_named_subst) + | C.MutConstruct (_,_,_,exp_named_subst) -> + List.fold_right + (fun (_,t) i -> i && guarded_by_destructors context n nn kl x safes t) + exp_named_subst true + | C.MutCase (uri,i,outtype,term,pl) -> (match term with C.Rel m when List.mem m safes || m = x -> - let (isinductive,paramsno,cl) = + let (tys,len,isinductive,paramsno,cl) = match CicEnvironment.get_obj uri with C.InductiveDefinition (tl,_,paramsno) -> - let (_,isinductive,_,cl) = List.nth tl i in - let tys = - List.map (fun (n,_,ty,_) -> Some(Cic.Name n,(Cic.Decl ty))) tl - in - let cl' = - List.map - (fun (id,ty,r) -> - (id, snd (split_prods tys paramsno ty), r)) cl + let len = List.length tl in + let (_,isinductive,_,cl) = List.nth tl i in + let tys = + List.map (fun (n,_,ty,_) -> + Some(Cic.Name n,(Cic.Decl ty))) tl in - (isinductive,paramsno,cl') + let cl' = + List.map + (fun (id,ty) -> + let debrujinedty = debrujin_constructor uri len ty in + (id, snd (split_prods ~subst tys paramsno ty), + snd (split_prods ~subst tys paramsno debrujinedty) + )) cl + in + (tys,len,isinductive,paramsno,cl') | _ -> - raise (WrongUriToMutualInductiveDefinitions(U.string_of_uri uri)) + raise (TypeCheckerFailure + ("Unknown mutual inductive definition:" ^ + UriManager.string_of_uri uri)) in if not isinductive then guarded_by_destructors context n nn kl x safes outtype && @@ -728,14 +885,8 @@ and guarded_by_destructors context n nn kl x safes = guarded_by_destructors context n nn kl x safes outtype && (*CSC: manca ??? il controllo sul tipo di term? *) List.fold_right - (fun (p,(_,c,rl)) i -> - let rl' = - match !rl with - Some rl' -> - let (_,rl'') = split rl' paramsno in - rl'' - | None -> raise (Impossible 15) - in + (fun (p,(_,c,brujinedc)) i -> + let rl' = recursive_args tys 0 len brujinedc in let (e,safes',n',nn',x',context') = get_new_safes context p c rl' safes n nn x in @@ -743,21 +894,24 @@ and guarded_by_destructors context n nn kl x safes = guarded_by_destructors context' n' nn' kl x' safes' e ) (List.combine pl cl) true | C.Appl ((C.Rel m)::tl) when List.mem m safes || m = x -> - let (isinductive,paramsno,cl) = + let (tys,len,isinductive,paramsno,cl) = match CicEnvironment.get_obj uri with C.InductiveDefinition (tl,_,paramsno) -> let (_,isinductive,_,cl) = List.nth tl i in let tys = - List.map (fun (n,_,ty,_) -> Some(Cic.Name n,(Cic.Decl ty))) tl + List.map + (fun (n,_,ty,_) -> Some(Cic.Name n,(Cic.Decl ty))) tl in let cl' = List.map - (fun (id,ty,r) -> - (id, snd (split_prods tys paramsno ty), r)) cl + (fun (id,ty) -> + (id, snd (split_prods ~subst tys paramsno ty))) cl in - (isinductive,paramsno,cl') + (tys,List.length tl,isinductive,paramsno,cl') | _ -> - raise (WrongUriToMutualInductiveDefinitions(U.string_of_uri uri)) + raise (TypeCheckerFailure + ("Unknown mutual inductive definition:" ^ + UriManager.string_of_uri uri)) in if not isinductive then guarded_by_destructors context n nn kl x safes outtype && @@ -775,13 +929,10 @@ and guarded_by_destructors context n nn kl x safes = i && guarded_by_destructors context n nn kl x safes t) tl true && List.fold_right - (fun (p,(_,c,rl)) i -> + (fun (p,(_,c)) i -> let rl' = - match !rl with - Some rl' -> - let (_,rl'') = split rl' paramsno in - rl'' - | None -> raise (Impossible 16) + let debrujinedte = debrujin_constructor uri len c in + recursive_args tys 0 len debrujinedte in let (e, safes',n',nn',x',context') = get_new_safes context p c rl' safes n nn x @@ -836,15 +987,15 @@ and guarded_by_constructors context n nn h te args coInductiveTypeURI = (*CSC: that maps X into (C.Appl X []) when X is not already a C.Appl *) match CicReduction.whd context te with C.Rel m when m > n && m <= nn -> h - | C.Rel _ - | C.Var _ -> true + | C.Rel _ -> true | C.Meta _ | C.Sort _ - | C.Implicit + | C.Implicit _ | C.Cast _ | C.Prod _ | C.LetIn _ -> - raise (Impossible 17) (* the term has just been type-checked *) + (* the term has just been type-checked *) + raise (AssertFailure "17") | C.Lambda (name,so,de) -> does_not_occur context n nn so && guarded_by_constructors ((Some (name,(C.Decl so)))::context) @@ -852,47 +1003,51 @@ and guarded_by_constructors context n nn h te args coInductiveTypeURI = | C.Appl ((C.Rel m)::tl) when m > n && m <= nn -> h && List.fold_right (fun x i -> i && does_not_occur context n nn x) tl true - | C.Appl ((C.MutConstruct (uri,cookingsno,i,j))::tl) -> + | C.Appl ((C.MutConstruct (uri,i,j,exp_named_subst))::tl) -> let consty = - match CicEnvironment.get_cooked_obj uri cookingsno with + match CicEnvironment.get_cooked_obj ~trust:false uri with C.InductiveDefinition (itl,_,_) -> let (_,_,_,cl) = List.nth itl i in - let (_,cons,_) = List.nth cl (j - 1) in cons + let (_,cons) = List.nth cl (j - 1) in + CicSubstitution.subst_vars exp_named_subst cons | _ -> - raise (WrongUriToMutualInductiveDefinitions - (UriManager.string_of_uri uri)) + raise (TypeCheckerFailure ("Unknown mutual inductive definition:" ^ + UriManager.string_of_uri uri)) in let rec analyse_branch context ty te = match CicReduction.whd context ty with - C.Meta _ -> raise (Impossible 34) + C.Meta _ -> raise (AssertFailure "34") | C.Rel _ | C.Var _ | C.Sort _ -> does_not_occur context n nn te - | C.Implicit - | C.Cast _ -> raise (Impossible 24) (* due to type-checking *) + | C.Implicit _ + | C.Cast _ -> + raise (AssertFailure "24")(* due to type-checking *) | C.Prod (name,so,de) -> analyse_branch ((Some (name,(C.Decl so)))::context) de te | C.Lambda _ - | C.LetIn _ -> raise (Impossible 25) (* due to type-checking *) - | C.Appl ((C.MutInd (uri,_,_))::tl) as ty + | C.LetIn _ -> + raise (AssertFailure "25")(* due to type-checking *) + | C.Appl ((C.MutInd (uri,_,_))::_) as ty when uri == coInductiveTypeURI -> guarded_by_constructors context n nn true te [] coInductiveTypeURI - | C.Appl ((C.MutInd (uri,_,_))::tl) as ty -> + | C.Appl ((C.MutInd (uri,_,_))::_) as ty -> guarded_by_constructors context n nn true te tl coInductiveTypeURI | C.Appl _ -> does_not_occur context n nn te - | C.Const _ -> raise (Impossible 26) + | C.Const _ -> raise (AssertFailure "26") | C.MutInd (uri,_,_) when uri == coInductiveTypeURI -> guarded_by_constructors context n nn true te [] coInductiveTypeURI | C.MutInd _ -> does_not_occur context n nn te - | C.MutConstruct _ -> raise (Impossible 27) + | C.MutConstruct _ -> raise (AssertFailure "27") (*CSC: we do not consider backbones with a MutCase, Fix, Cofix *) (*CSC: in head position. *) | C.MutCase _ | C.Fix _ - | C.CoFix _ -> raise (Impossible 28) (* due to type-checking *) + | C.CoFix _ -> + raise (AssertFailure "28")(* due to type-checking *) in let rec analyse_instantiated_type context ty l = match CicReduction.whd context ty with @@ -900,32 +1055,34 @@ and guarded_by_constructors context n nn h te args coInductiveTypeURI = | C.Var _ | C.Meta _ | C.Sort _ - | C.Implicit - | C.Cast _ -> raise (Impossible 29) (* due to type-checking *) + | C.Implicit _ + | C.Cast _ -> raise (AssertFailure "29")(* due to type-checking *) | C.Prod (name,so,de) -> begin match l with [] -> true | he::tl -> analyse_branch context so he && - analyse_instantiated_type ((Some (name,(C.Decl so)))::context) - de tl + analyse_instantiated_type + ((Some (name,(C.Decl so)))::context) de tl end | C.Lambda _ - | C.LetIn _ -> raise (Impossible 30) (* due to type-checking *) + | C.LetIn _ -> + raise (AssertFailure "30")(* due to type-checking *) | C.Appl _ -> List.fold_left (fun i x -> i && does_not_occur context n nn x) true l - | C.Const _ -> raise (Impossible 31) + | C.Const _ -> raise (AssertFailure "31") | C.MutInd _ -> List.fold_left (fun i x -> i && does_not_occur context n nn x) true l - | C.MutConstruct _ -> raise (Impossible 32) + | C.MutConstruct _ -> raise (AssertFailure "32") (*CSC: we do not consider backbones with a MutCase, Fix, Cofix *) (*CSC: in head position. *) | C.MutCase _ | C.Fix _ - | C.CoFix _ -> raise (Impossible 33) (* due to type-checking *) + | C.CoFix _ -> + raise (AssertFailure "33")(* due to type-checking *) in let rec instantiate_type args consty = function @@ -944,7 +1101,7 @@ and guarded_by_constructors context n nn h te args coInductiveTypeURI = | _ -> (*CSC:We do not consider backbones with a MutCase, a *) (*CSC:FixPoint, a CoFixPoint and so on in head position.*) - raise (Impossible 23) + raise (AssertFailure "23") end | [] -> analyse_instantiated_type context consty' l (* These are all the other cases *) @@ -963,7 +1120,7 @@ and guarded_by_constructors context n nn h te args coInductiveTypeURI = guarded_by_constructors (tys@context) n_plus_len nn_plus_len h bo args coInductiveTypeURI ) fl true - | C.Appl ((C.MutCase (_,_,_,out,te,pl))::tl) -> + | C.Appl ((C.MutCase (_,_,out,te,pl))::tl) -> List.fold_left (fun i x -> i && does_not_occur context n nn x) true tl && does_not_occur context n nn out && does_not_occur context n nn te && @@ -974,10 +1131,15 @@ and guarded_by_constructors context n nn h te args coInductiveTypeURI = ) pl true | C.Appl l -> List.fold_right (fun x i -> i && does_not_occur context n nn x) l true - | C.Const _ -> true + | C.Var (_,exp_named_subst) + | C.Const (_,exp_named_subst) -> + List.fold_right + (fun (_,x) i -> i && does_not_occur context n nn x) exp_named_subst true | C.MutInd _ -> assert false - | C.MutConstruct _ -> true - | C.MutCase (_,_,_,out,te,pl) -> + | C.MutConstruct (_,_,_,exp_named_subst) -> + List.fold_right + (fun (_,x) i -> i && does_not_occur context n nn x) exp_named_subst true + | C.MutCase (_,_,out,te,pl) -> does_not_occur context n nn out && does_not_occur context n nn te && List.fold_right @@ -990,7 +1152,7 @@ and guarded_by_constructors context n nn h te args coInductiveTypeURI = let n_plus_len = n + len and nn_plus_len = nn + len (*CSC: Is a Decl of the ty ok or should I use Def of a Fix? *) - and tys = List.map (fun (n,_,ty,_) -> Some (C.Name n,(C.Decl ty))) fl in + and tys = List.map (fun (n,_,ty,_)-> Some (C.Name n,(C.Decl ty))) fl in List.fold_right (fun (_,_,ty,bo) i -> i && does_not_occur context n nn ty && @@ -1018,18 +1180,29 @@ and check_allowed_sort_elimination context uri i need_dummy ind arity1 arity2 = check_allowed_sort_elimination context uri i need_dummy (C.Appl [CicSubstitution.lift 1 ind ; C.Rel 1]) de1 de2 | (C.Sort C.Prop, C.Sort C.Prop) when need_dummy -> true - | (C.Sort C.Prop, C.Sort C.Set) when need_dummy -> + | (C.Sort C.Prop, C.Sort C.Set) + | (C.Sort C.Prop, C.Sort C.CProp) + | (C.Sort C.Prop, C.Sort (C.Type _) ) when need_dummy -> + (* TASSI: da verificare *) +(*CSC: WRONG. MISSING CONDITIONS ON THE ARGUMENTS OF THE CONSTRUTOR *) (match CicEnvironment.get_obj uri with C.InductiveDefinition (itl,_,_) -> let (_,_,_,cl) = List.nth itl i in - (* is a singleton definition? *) - List.length cl = 1 + (* is a singleton definition or the empty proposition? *) + List.length cl = 1 || List.length cl = 0 | _ -> - raise (WrongUriToMutualInductiveDefinitions (U.string_of_uri uri)) + raise (TypeCheckerFailure ("Unknown mutual inductive definition:" ^ + UriManager.string_of_uri uri)) ) | (C.Sort C.Set, C.Sort C.Prop) when need_dummy -> true + | (C.Sort C.CProp, C.Sort C.Prop) when need_dummy -> true | (C.Sort C.Set, C.Sort C.Set) when need_dummy -> true - | (C.Sort C.Set, C.Sort C.Type) when need_dummy -> + | (C.Sort C.Set, C.Sort C.CProp) when need_dummy -> true + | (C.Sort C.CProp, C.Sort C.Set) when need_dummy -> true + | (C.Sort C.CProp, C.Sort C.CProp) when need_dummy -> true + | ((C.Sort C.Set, C.Sort (C.Type _)) | (C.Sort C.CProp, C.Sort (C.Type _))) + (* TASSI: da verificare *) + when need_dummy -> (match CicEnvironment.get_obj uri with C.InductiveDefinition (itl,_,paramsno) -> let tys = @@ -1037,37 +1210,43 @@ and check_allowed_sort_elimination context uri i need_dummy ind arity1 arity2 = in let (_,_,_,cl) = List.nth itl i in List.fold_right - (fun (_,x,_) i -> i && is_small tys paramsno x) cl true + (fun (_,x) i -> i && is_small tys paramsno x) cl true | _ -> - raise (WrongUriToMutualInductiveDefinitions (U.string_of_uri uri)) + raise (TypeCheckerFailure ("Unknown mutual inductive definition:" ^ + UriManager.string_of_uri uri)) ) - | (C.Sort C.Type, C.Sort _) when need_dummy -> true + | (C.Sort (C.Type _), C.Sort _) when need_dummy -> true + (* TASSI: da verificare *) | (C.Sort C.Prop, C.Prod (name,so,ta)) when not need_dummy -> let res = CicReduction.are_convertible context so ind in res && (match CicReduction.whd ((Some (name,(C.Decl so)))::context) ta with C.Sort C.Prop -> true - | C.Sort C.Set -> + | (C.Sort C.Set | C.Sort C.CProp) -> (match CicEnvironment.get_obj uri with C.InductiveDefinition (itl,_,_) -> let (_,_,_,cl) = List.nth itl i in (* is a singleton definition? *) List.length cl = 1 | _ -> - raise (WrongUriToMutualInductiveDefinitions - (U.string_of_uri uri)) + raise (TypeCheckerFailure + ("Unknown mutual inductive definition:" ^ + UriManager.string_of_uri uri)) ) | _ -> false ) - | (C.Sort C.Set, C.Prod (name,so,ta)) when not need_dummy -> + | ((C.Sort C.Set, C.Prod (name,so,ta)) | (C.Sort C.CProp, C.Prod (name,so,ta))) + when not need_dummy -> let res = CicReduction.are_convertible context so ind in res && (match CicReduction.whd ((Some (name,(C.Decl so)))::context) ta with C.Sort C.Prop | C.Sort C.Set -> true - | C.Sort C.Type -> + | C.Sort C.CProp -> true + | C.Sort (C.Type _) -> + (* TASSI: da verificare *) (match CicEnvironment.get_obj uri with C.InductiveDefinition (itl,_,paramsno) -> let (_,_,_,cl) = List.nth itl i in @@ -1076,14 +1255,16 @@ and check_allowed_sort_elimination context uri i need_dummy ind arity1 arity2 = (fun (n,_,ty,_) -> Some (Cic.Name n,(Cic.Decl ty))) itl in List.fold_right - (fun (_,x,_) i -> i && is_small tys paramsno x) cl true + (fun (_,x) i -> i && is_small tys paramsno x) cl true | _ -> - raise (WrongUriToMutualInductiveDefinitions - (U.string_of_uri uri)) + raise (TypeCheckerFailure + ("Unknown mutual inductive definition:" ^ + UriManager.string_of_uri uri)) ) - | _ -> raise (Impossible 19) + | _ -> raise (AssertFailure "19") ) - | (C.Sort C.Type, C.Prod (_,so,_)) when not need_dummy -> + | (C.Sort (C.Type _), C.Prod (_,so,_)) when not need_dummy -> + (* TASSI: da verificare *) CicReduction.are_convertible context so ind | (_,_) -> false @@ -1109,47 +1290,66 @@ and type_of_branch context argsno need_dummy outtype term constype = C.Appl l -> C.Appl (l@[C.Rel 1]) | t -> C.Appl [t ; C.Rel 1] in - C.Prod (C.Anonimous,so,type_of_branch + C.Prod (C.Anonymous,so,type_of_branch ((Some (name,(C.Decl so)))::context) argsno need_dummy (CicSubstitution.lift 1 outtype) term' de) - | _ -> raise (Impossible 20) + | _ -> raise (AssertFailure "20") (* check_metasenv_consistency checks that the "canonical" context of a metavariable is consitent - up to relocation via the relocation list l - with the actual context *) -and check_metasenv_consistency metasenv context canonical_context l = +and check_metasenv_consistency ?(subst=[]) metasenv context canonical_context l = let module C = Cic in let module R = CicReduction in let module S = CicSubstitution in - let lifted_canonical_context = + let lifted_canonical_context = let rec aux i = function [] -> [] | (Some (n,C.Decl t))::tl -> (Some (n,C.Decl (S.lift_meta l (S.lift i t))))::(aux (i+1) tl) - | (Some (n,C.Def t))::tl -> - (Some (n,C.Def (S.lift_meta l (S.lift i t))))::(aux (i+1) tl) + | (Some (n,C.Def (t,None)))::tl -> + (Some (n,C.Def ((S.lift_meta l (S.lift i t)),None)))::(aux (i+1) tl) | None::tl -> None::(aux (i+1) tl) + | (Some (n,C.Def (t,Some ty)))::tl -> + (Some (n,C.Def ((S.lift_meta l (S.lift i t)),Some (S.lift_meta l (S.lift i ty)))))::(aux (i+1) tl) in - aux 1 canonical_context + aux 1 canonical_context in - List.iter2 - (fun t ct -> - let res = - match (t,ct) with - _,None -> true - | Some t,Some (_,C.Def ct) -> - R.are_convertible context t ct - | Some t,Some (_,C.Decl ct) -> - R.are_convertible context (type_of_aux' metasenv context t) ct - | _, _ -> false - in - if not res then raise MetasenvInconsistency - ) l lifted_canonical_context + List.iter2 + (fun t ct -> + match (t,ct) with + | _,None -> () + | Some t,Some (_,C.Def (ct,_)) -> + if not (R.are_convertible ~subst ~metasenv context t ct) then + raise (TypeCheckerFailure (sprintf + "Not well typed metavariable local context: expected a term convertible with %s, found %s" + (CicPp.ppterm ct) (CicPp.ppterm t))) + | Some t,Some (_,C.Decl ct) -> + let type_t = type_of_aux' ~subst metasenv context t in + if not (R.are_convertible ~subst ~metasenv context type_t ct) then + (* debug *) + ( + (* + (match type_t with + Cic.Meta (n,l) -> + try + let (cc, ecco) = CicUtil.lookup_subst n subst in + prerr_endline (CicPp.ppterm ecco) + with CicUtil.Subst_not_found _ -> + prerr_endline "Non lo trovo" + | _ -> ()); *) + raise (TypeCheckerFailure (sprintf + "Not well typed metavariable local context: expected a term of type %s, found %s of type %s" + (CicPp.ppterm ct) (CicPp.ppterm t) (CicPp.ppterm type_t)))) + | None, _ -> + raise (TypeCheckerFailure + "Not well typed metavariable local context: an hypothesis, that is not hidden, is not instantiated") + ) l lifted_canonical_context (* type_of_aux' is just another name (with a different scope) for type_of_aux *) -and type_of_aux' metasenv context t = +and type_of_aux' ?(subst = []) metasenv context t = let rec type_of_aux context = let module C = Cic in let module R = CicReduction in @@ -1160,276 +1360,397 @@ and type_of_aux' metasenv context t = (try match List.nth context (n - 1) with Some (_,C.Decl t) -> S.lift n t - | Some (_,C.Def bo) -> type_of_aux context (S.lift n bo) - | None -> raise RelToHiddenHypothesis + | Some (_,C.Def (_,Some ty)) -> S.lift n ty + | Some (_,C.Def (bo,None)) -> + debug_print "##### CASO DA INVESTIGARE E CAPIRE" ; + type_of_aux context (S.lift n bo) + | None -> raise (TypeCheckerFailure "Reference to deleted hypothesis") with - _ -> raise (NotWellTyped "Not a close term") + _ -> + raise (TypeCheckerFailure "unbound variable") ) - | C.Var uri -> + | C.Var (uri,exp_named_subst) -> incr fdebug ; - let ty = type_of_variable uri in + check_exp_named_subst ~subst context exp_named_subst ; + let ty = + CicSubstitution.subst_vars exp_named_subst (type_of_variable uri) + in decr fdebug ; ty | C.Meta (n,l) -> - let (_,canonical_context,ty) = - List.find (function (m,_,_) -> n = m) metasenv - in - check_metasenv_consistency metasenv context canonical_context l; - CicSubstitution.lift_meta l ty - | C.Sort s -> C.Sort C.Type (*CSC manca la gestione degli universi!!! *) - | C.Implicit -> raise (Impossible 21) - | C.Cast (te,ty) -> + (try + let (canonical_context, term) = CicUtil.lookup_subst n subst in + check_metasenv_consistency + ~subst metasenv context canonical_context l; + type_of_aux context (CicSubstitution.lift_meta l term) + with CicUtil.Subst_not_found _ -> + let (_,canonical_context,ty) = CicUtil.lookup_meta n metasenv in + check_metasenv_consistency + ~subst metasenv context canonical_context l; + CicSubstitution.lift_meta l ty) + (* TASSI: CONSTRAINTS *) + | C.Sort (C.Type t) -> + let t' = CicUniv.fresh() in + if not (CicUniv.add_gt t' t ) then + assert false (* t' is fresh! an error in CicUniv *) + else + C.Sort (C.Type t') + (* TASSI: CONSTRAINTS *) + | C.Sort s -> C.Sort (C.Type (CicUniv.fresh ())) + | C.Implicit _ -> raise (AssertFailure "21") + | C.Cast (te,ty) as t -> let _ = type_of_aux context ty in - if R.are_convertible context (type_of_aux context te) ty then ty - else raise (NotWellTyped "Cast") + if R.are_convertible ~subst ~metasenv context (type_of_aux context te) ty then + ty + else + raise (TypeCheckerFailure + (sprintf "Invalid cast %s" (CicPp.ppterm t))) | C.Prod (name,s,t) -> let sort1 = type_of_aux context s and sort2 = type_of_aux ((Some (name,(C.Decl s)))::context) t in - sort_of_prod context (name,s) (sort1,sort2) + let res = sort_of_prod ~subst context (name,s) (sort1,sort2) in + res | C.Lambda (n,s,t) -> - let sort1 = type_of_aux context s - and type2 = type_of_aux ((Some (n,(C.Decl s)))::context) t in - let sort2 = type_of_aux ((Some (n,(C.Decl s)))::context) type2 in - (* only to check if the product is well-typed *) - let _ = sort_of_prod context (n,s) (sort1,sort2) in - C.Prod (n,s,type2) + let sort1 = type_of_aux context s in + (match R.whd ~subst context sort1 with + C.Meta _ + | C.Sort _ -> () + | _ -> + raise + (TypeCheckerFailure (sprintf + "Not well-typed lambda-abstraction: the source %s should be a + type; instead it is a term of type %s" (CicPp.ppterm s) + (CicPp.ppterm sort1))) + ) ; + let type2 = type_of_aux ((Some (n,(C.Decl s)))::context) t in + C.Prod (n,s,type2) | C.LetIn (n,s,t) -> (* only to check if s is well-typed *) - let _ = type_of_aux context s in - C.LetIn (n,s, type_of_aux ((Some (n,(C.Def s)))::context) t) + let ty = type_of_aux context s in + (* The type of a LetIn is a LetIn. Extremely slow since the computed + LetIn is later reduced and maybe also re-checked. + (C.LetIn (n,s, type_of_aux ((Some (n,(C.Def s)))::context) t)) + *) + (* The type of the LetIn is reduced. Much faster than the previous + solution. Moreover the inferred type is probably very different + from the expected one. + (CicReduction.whd context + (C.LetIn (n,s, type_of_aux ((Some (n,(C.Def s)))::context) t))) + *) + (* One-step LetIn reduction. Even faster than the previous solution. + Moreover the inferred type is closer to the expected one. *) + (CicSubstitution.subst s + (type_of_aux ((Some (n,(C.Def (s,Some ty))))::context) t)) | C.Appl (he::tl) when List.length tl > 0 -> - let hetype = type_of_aux context he - and tlbody_and_type = List.map (fun x -> (x, type_of_aux context x)) tl in - eat_prods context hetype tlbody_and_type - | C.Appl _ -> raise (NotWellTyped "Appl: no arguments") - | C.Const (uri,cookingsno) -> + let hetype = type_of_aux context he in + let tlbody_and_type = List.map (fun x -> (x, type_of_aux context x)) tl in + eat_prods ~subst context hetype tlbody_and_type + | C.Appl _ -> raise (AssertFailure "Appl: no arguments") + | C.Const (uri,exp_named_subst) -> incr fdebug ; - let cty = cooked_type_of_constant uri cookingsno in + check_exp_named_subst ~subst context exp_named_subst ; + let cty = + CicSubstitution.subst_vars exp_named_subst (type_of_constant uri) + in decr fdebug ; cty - | C.MutInd (uri,cookingsno,i) -> + | C.MutInd (uri,i,exp_named_subst) -> incr fdebug ; - let cty = cooked_type_of_mutual_inductive_defs uri cookingsno i in + check_exp_named_subst ~subst context exp_named_subst ; + let cty = + CicSubstitution.subst_vars exp_named_subst + (type_of_mutual_inductive_defs uri i) + in decr fdebug ; cty - | C.MutConstruct (uri,cookingsno,i,j) -> - let cty = cooked_type_of_mutual_inductive_constr uri cookingsno i j + | C.MutConstruct (uri,i,j,exp_named_subst) -> + check_exp_named_subst ~subst context exp_named_subst ; + let cty = + CicSubstitution.subst_vars exp_named_subst + (type_of_mutual_inductive_constr uri i j) in cty - | C.MutCase (uri,cookingsno,i,outtype,term,pl) -> + | C.MutCase (uri,i,outtype,term,pl) -> let outsort = type_of_aux context outtype in let (need_dummy, k) = - let rec guess_args context t = - match CicReduction.whd context t with - C.Sort _ -> (true, 0) - | C.Prod (name, s, t) -> - let (b, n) = guess_args ((Some (name,(C.Decl s)))::context) t in - if n = 0 then - (* last prod before sort *) - match CicReduction.whd context s with - (*CSC vedi nota delirante su cookingsno in cicReduction.ml *) - C.MutInd (uri',_,i') when U.eq uri' uri && i' = i -> (false, 1) - | C.Appl ((C.MutInd (uri',_,i')) :: _) - when U.eq uri' uri && i' = i -> (false, 1) - | _ -> (true, 1) - else - (b, n + 1) - | _ -> raise (NotWellTyped "MutCase: outtype ill-formed") - in - (*CSC whd non serve dopo type_of_aux ? *) - let (b, k) = guess_args context outsort in - if not b then (b, k - 1) else (b, k) + let rec guess_args context t = + let outtype = CicReduction.whd ~subst context t in + match outtype with + C.Sort _ -> (true, 0) + | C.Prod (name, s, t) -> + let (b, n) = + guess_args ((Some (name,(C.Decl s)))::context) t in + if n = 0 then + (* last prod before sort *) + match CicReduction.whd ~subst context s with +(*CSC: for _ see comment below about the missing named_exp_subst ?????????? *) + C.MutInd (uri',i',_) when U.eq uri' uri && i' = i -> + (false, 1) +(*CSC: for _ see comment below about the missing named_exp_subst ?????????? *) + | C.Appl ((C.MutInd (uri',i',_)) :: _) + when U.eq uri' uri && i' = i -> (false, 1) + | _ -> (true, 1) + else + (b, n + 1) + | _ -> + raise + (TypeCheckerFailure + (sprintf + "Malformed case analasys' output type %s" + (CicPp.ppterm outtype))) in - let (parameters, arguments) = - match R.whd context (type_of_aux context term) with - (*CSC manca il caso dei CAST *) - C.MutInd (uri',_,i') -> - (*CSC vedi nota delirante sui cookingsno in cicReduction.ml*) - if U.eq uri uri' && i = i' then ([],[]) - else raise (NotWellTyped ("MutCase: the term is of type " ^ - (U.string_of_uri uri') ^ "," ^ string_of_int i' ^ - " instead of type " ^ (U.string_of_uri uri') ^ "," ^ - string_of_int i)) - | C.Appl (C.MutInd (uri',_,i') :: tl) -> - if U.eq uri uri' && i = i' then split tl (List.length tl - k) - else raise (NotWellTyped ("MutCase: the term is of type " ^ - (U.string_of_uri uri') ^ "," ^ string_of_int i' ^ - " instead of type " ^ (U.string_of_uri uri) ^ "," ^ - string_of_int i)) - | _ -> raise (NotWellTyped "MutCase: the term is not an inductive one") + let (b, k) = guess_args context outsort in + if not b then (b, k - 1) else (b, k) in + let (parameters, arguments, exp_named_subst) = + match R.whd ~subst context (type_of_aux context term) with + C.MutInd (uri',i',exp_named_subst) as typ -> + if U.eq uri uri' && i = i' then ([],[],exp_named_subst) + else raise + (TypeCheckerFailure + (sprintf + "Case analysys: analysed term type is %s, + but is expected to be (an application of) %s#1/%d{_}" + (CicPp.ppterm typ) (U.string_of_uri uri) i)) + | C.Appl ((C.MutInd (uri',i',exp_named_subst) as typ):: tl) as typ' -> + if U.eq uri uri' && i = i' then + let params,args = + split tl (List.length tl - k) + in params,args,exp_named_subst + else raise + (TypeCheckerFailure + (sprintf + "Case analysys: analysed term type is %s, + but is expected to be (an application of) %s#1/%d{_}" + (CicPp.ppterm typ') (U.string_of_uri uri) i)) + | _ -> + raise + (TypeCheckerFailure + (sprintf + "Case analysis: analysed term %s is not an inductive one" + (CicPp.ppterm term))) in - (* let's control if the sort elimination is allowed: [(I q1 ... qr)|B] *) - let sort_of_ind_type = + (* let's control if the sort elimination is allowed: [(I q1 ... qr)|B] *) + let sort_of_ind_type = if parameters = [] then - C.MutInd (uri,cookingsno,i) + C.MutInd (uri,i,exp_named_subst) else - C.Appl ((C.MutInd (uri,cookingsno,i))::parameters) - in - if not (check_allowed_sort_elimination context uri i need_dummy - sort_of_ind_type (type_of_aux context sort_of_ind_type) outsort) - then - raise (NotWellTyped "MutCase: not allowed sort elimination") ; - + C.Appl ((C.MutInd (uri,i,exp_named_subst))::parameters) in + if not + (check_allowed_sort_elimination context uri i need_dummy + sort_of_ind_type (type_of_aux context sort_of_ind_type) outsort) + then + raise + (TypeCheckerFailure ("Case analasys: sort elimination not allowed")); (* let's check if the type of branches are right *) - let (cl,parsno) = - match CicEnvironment.get_cooked_obj uri cookingsno with - C.InductiveDefinition (tl,_,parsno) -> - let (_,_,_,cl) = List.nth tl i in (cl,parsno) + let parsno = + match CicEnvironment.get_cooked_obj ~trust:false uri with + C.InductiveDefinition (_,_,parsno) -> parsno | _ -> - raise (WrongUriToMutualInductiveDefinitions (U.string_of_uri uri)) - in - let (_,branches_ok) = - List.fold_left - (fun (j,b) (p,(_,c,_)) -> + raise (TypeCheckerFailure + ("Unknown mutual inductive definition:" ^ + UriManager.string_of_uri uri)) + in + let (_,branches_ok) = + List.fold_left + (fun (j,b) p -> let cons = - if parameters = [] then - (C.MutConstruct (uri,cookingsno,i,j)) - else - (C.Appl (C.MutConstruct (uri,cookingsno,i,j)::parameters)) - in - (j + 1, b && - R.are_convertible context (type_of_aux context p) - (type_of_branch context parsno need_dummy outtype cons - (type_of_aux context cons)) - ) - ) (1,true) (List.combine pl cl) - in - if not branches_ok then - raise (NotWellTyped "MutCase: wrong type of a branch") ; - - if not need_dummy then - C.Appl ((outtype::arguments)@[term]) - else if arguments = [] then - outtype - else - C.Appl (outtype::arguments) + if parameters = [] then + (C.MutConstruct (uri,i,j,exp_named_subst)) + else + (C.Appl + (C.MutConstruct (uri,i,j,exp_named_subst)::parameters)) in + (j + 1, + let res = + b && + R.are_convertible + ~subst ~metasenv context (type_of_aux context p) + (type_of_branch context parsno need_dummy outtype cons + (type_of_aux context cons)) in + if not res then + debug_print ("#### " ^ CicPp.ppterm (type_of_aux context p) ^ " <==> " ^ CicPp.ppterm (type_of_branch context parsno need_dummy outtype cons (type_of_aux context cons))) ; res + ) + ) (1,true) pl + in + if not branches_ok then + raise + (TypeCheckerFailure "Case analysys: wrong branch type"); + if not need_dummy then + C.Appl ((outtype::arguments)@[term]) + else if arguments = [] then + outtype + else + C.Appl (outtype::arguments) | C.Fix (i,fl) -> - let types_times_kl = + let types_times_kl = List.rev - (List.map - (fun (n,k,ty,_) -> - let _ = type_of_aux context ty in - (Some (C.Name n,(C.Decl ty)),k)) fl) - in - let (types,kl) = List.split types_times_kl in + (List.map + (fun (n,k,ty,_) -> + let _ = type_of_aux context ty in + (Some (C.Name n,(C.Decl ty)),k)) fl) + in + let (types,kl) = List.split types_times_kl in let len = List.length types in - List.iter - (fun (name,x,ty,bo) -> - if - (R.are_convertible (types@context) (type_of_aux (types@context) bo) - (CicSubstitution.lift len ty)) - then - begin - let (m, eaten, context') = - eat_lambdas (types @ context) (x + 1) bo - in - (*let's control the guarded by destructors conditions D{f,k,x,M}*) + List.iter + (fun (name,x,ty,bo) -> if - not - (guarded_by_destructors context' eaten (len + eaten) kl 1 [] m) + (R.are_convertible + ~subst ~metasenv (types@context) (type_of_aux (types@context) bo) + (CicSubstitution.lift len ty)) then - raise (NotWellTyped "Fix: not guarded by destructors") - end - else - raise (NotWellTyped "Fix: ill-typed bodies") - ) fl ; - + begin + let (m, eaten, context') = + eat_lambdas ~subst (types @ context) (x + 1) bo in + (*let's control the guarded by destructors conditions D{f,k,x,M}*) + if + not (guarded_by_destructors context' + eaten (len + eaten) kl 1 [] m) + then + raise + (TypeCheckerFailure ("Fix: not guarded by destructors")) + end + else + raise (TypeCheckerFailure ("Fix: ill-typed bodies")) + ) fl ; (*CSC: controlli mancanti solo su D{f,k,x,M} *) - let (_,_,ty,_) = List.nth fl i in - ty + let (_,_,ty,_) = List.nth fl i in + ty | C.CoFix (i,fl) -> - let types = + let types = List.rev (List.map (fun (n,ty,_) -> - let _ = type_of_aux context ty in Some (C.Name n,(C.Decl ty))) fl) - in + let _ = type_of_aux context ty in Some (C.Name n,(C.Decl ty))) fl) + in let len = List.length types in - List.iter + List.iter (fun (_,ty,bo) -> - if - (R.are_convertible (types @ context) - (type_of_aux (types @ context) bo) (CicSubstitution.lift len ty)) - then - begin - (* let's control that the returned type is coinductive *) - match returns_a_coinductive context ty with - None -> - raise(NotWellTyped "CoFix: does not return a coinductive type") - | Some uri -> - (*let's control the guarded by constructors conditions C{f,M}*) - if - not - (guarded_by_constructors (types @ context) 0 len false bo - [] uri) - then - raise (NotWellTyped "CoFix: not guarded by constructors") - end - else - raise (NotWellTyped "CoFix: ill-typed bodies") + if + (R.are_convertible + ~subst ~metasenv (types @ context) + (type_of_aux (types @ context) bo) (CicSubstitution.lift len ty)) + then + begin + (* let's control that the returned type is coinductive *) + match returns_a_coinductive context ty with + None -> + raise + (TypeCheckerFailure + ("CoFix: does not return a coinductive type")) + | Some uri -> + (*let's control the guarded by constructors conditions C{f,M}*) + if + not + (guarded_by_constructors + (types @ context) 0 len false bo [] uri) + then + raise + (TypeCheckerFailure ("CoFix: not guarded by constructors")) + end + else + raise + (TypeCheckerFailure ("CoFix: ill-typed bodies")) ) fl ; - - let (_,ty,_) = List.nth fl i in + let (_,ty,_) = List.nth fl i in ty - and sort_of_prod context (name,s) (t1, t2) = + and check_exp_named_subst ?(subst = []) context = + let rec check_exp_named_subst_aux esubsts = + function + [] -> () + | ((uri,t) as item)::tl -> + let typeofvar = + CicSubstitution.subst_vars esubsts (type_of_variable uri) in + let typeoft = type_of_aux context t in + if CicReduction.are_convertible + ~subst ~metasenv context typeoft typeofvar then + check_exp_named_subst_aux (esubsts@[item]) tl + else + begin + CicReduction.fdebug := 0 ; + ignore (CicReduction.are_convertible ~subst ~metasenv context typeoft typeofvar) ; + fdebug := 0 ; + debug typeoft [typeofvar] ; + raise (TypeCheckerFailure "Wrong Explicit Named Substitution") + end + in + check_exp_named_subst_aux [] + + and sort_of_prod ?(subst = []) context (name,s) (t1, t2) = let module C = Cic in - let t1' = CicReduction.whd context t1 in - let t2' = CicReduction.whd ((Some (name,C.Decl s))::context) t2 in + let t1' = CicReduction.whd ~subst context t1 in + let t2' = CicReduction.whd ~subst ((Some (name,C.Decl s))::context) t2 in match (t1', t2') with (C.Sort s1, C.Sort s2) - when (s2 = C.Prop or s2 = C.Set) -> (* different from Coq manual!!! *) + when (s2 = C.Prop or s2 = C.Set or s2 = C.CProp) -> + (* different from Coq manual!!! *) C.Sort s2 - | (C.Sort s1, C.Sort s2) -> C.Sort C.Type (*CSC manca la gestione degli universi!!! *) - | (_,_) -> - raise - (NotWellTyped - ("Prod: sort1= " ^ CicPp.ppterm t1' ^ " ; sort2= " ^ CicPp.ppterm t2')) + | (C.Sort (C.Type t1), C.Sort (C.Type t2)) -> + (* TASSI: CONSRTAINTS: the same in doubletypeinference, cicrefine *) + let t' = CicUniv.fresh() in + if not (CicUniv.add_ge t' t1) || not (CicUniv.add_ge t' t2) then + assert false ; (* not possible, error in CicUniv *) + C.Sort (C.Type t') + | (C.Sort _,C.Sort (C.Type t1)) -> + (* TASSI: CONSRTAINTS: the same in doubletypeinference, cicrefine *) + C.Sort (C.Type t1) (* c'e' bisogno di un fresh? *) + | (C.Meta _, C.Sort _) -> t2' + | (C.Meta _, (C.Meta (_,_) as t)) + | (C.Sort _, (C.Meta (_,_) as t)) when CicUtil.is_closed t -> + t2' + | (_,_) -> raise (TypeCheckerFailure (sprintf + "Prod: expected two sorts, found = %s, %s" (CicPp.ppterm t1') + (CicPp.ppterm t2'))) - and eat_prods context hetype = + and eat_prods ?(subst = []) context hetype = (*CSC: siamo sicuri che le are_convertible non lavorino con termini non *) (*CSC: cucinati *) function [] -> hetype | (hete, hety)::tl -> - (match (CicReduction.whd context hetype) with + (match (CicReduction.whd ~subst context hetype) with Cic.Prod (n,s,t) -> - if CicReduction.are_convertible context s hety then + if CicReduction.are_convertible ~subst ~metasenv context hety s then (CicReduction.fdebug := -1 ; - eat_prods context (CicSubstitution.subst hete t) tl + eat_prods ~subst context (CicSubstitution.subst hete t) tl ) else begin CicReduction.fdebug := 0 ; - ignore (CicReduction.are_convertible context s hety) ; + ignore (CicReduction.are_convertible ~subst ~metasenv context s hety) ; fdebug := 0 ; debug s [hety] ; - raise (NotWellTyped "Appl: wrong parameter-type") + raise (TypeCheckerFailure (sprintf + "Appl: wrong parameter-type, expected %s, found %s" + (CicPp.ppterm hetype) (CicPp.ppterm s))) end - | _ -> raise (NotWellTyped "Appl: wrong Prod-type") + | _ -> + raise (TypeCheckerFailure + "Appl: this is not a function, it cannot be applied") ) and returns_a_coinductive context ty = let module C = Cic in match CicReduction.whd context ty with - C.MutInd (uri,cookingsno,i) -> + C.MutInd (uri,i,_) -> (*CSC: definire una funzioncina per questo codice sempre replicato *) - (match CicEnvironment.get_cooked_obj uri cookingsno with + (match CicEnvironment.get_cooked_obj ~trust:false uri with C.InductiveDefinition (itl,_,_) -> - let (_,is_inductive,_,cl) = List.nth itl i in + let (_,is_inductive,_,_) = List.nth itl i in if is_inductive then None else (Some uri) | _ -> - raise (WrongUriToMutualInductiveDefinitions - (UriManager.string_of_uri uri)) + raise (TypeCheckerFailure + ("Unknown mutual inductive definition:" ^ + UriManager.string_of_uri uri)) ) - | C.Appl ((C.MutInd (uri,_,i))::_) -> + | C.Appl ((C.MutInd (uri,i,_))::_) -> (match CicEnvironment.get_obj uri with C.InductiveDefinition (itl,_,_) -> let (_,is_inductive,_,_) = List.nth itl i in if is_inductive then None else (Some uri) | _ -> - raise (WrongUriToMutualInductiveDefinitions - (UriManager.string_of_uri uri)) + raise (TypeCheckerFailure + ("Unknown mutual inductive definition:" ^ + UriManager.string_of_uri uri)) ) | C.Prod (n,so,de) -> returns_a_coinductive ((Some (n,C.Decl so))::context) de @@ -1437,12 +1758,12 @@ and type_of_aux' metasenv context t = in (*CSC -prerr_endline ("INIZIO TYPE_OF_AUX " ^ CicPp.ppterm t) ; flush stderr ; +debug_print ("INIZIO TYPE_OF_AUX " ^ CicPp.ppterm t) ; flush stderr ; let res = *) type_of_aux context t (* -in prerr_endline "FINE TYPE_OF_AUX" ; flush stderr ; res +in debug_print "FINE TYPE_OF_AUX" ; flush stderr ; res *) (* is a small constructor? *) @@ -1454,7 +1775,7 @@ and is_small context paramsno c = C.Prod (n,so,de) -> (*CSC: [] is an empty metasenv. Is it correct? *) let s = type_of_aux' [] context so in - (s = C.Sort C.Prop || s = C.Sort C.Set) && + (s = C.Sort C.Prop || s = C.Sort C.Set || s = C.Sort C.CProp) && is_small_aux ((Some (n,(C.Decl so)))::context) de | _ -> true (*CSC: we trust the type-checker *) in @@ -1463,50 +1784,67 @@ and is_small context paramsno c = and type_of t = (*CSC -prerr_endline ("INIZIO TYPE_OF_AUX' " ^ CicPp.ppterm t) ; flush stderr ; +debug_print ("INIZIO TYPE_OF_AUX' " ^ CicPp.ppterm t) ; flush stderr ; let res = *) type_of_aux' [] [] t (*CSC -in prerr_endline "FINE TYPE_OF_AUX'" ; flush stderr ; res +in debug_print "FINE TYPE_OF_AUX'" ; flush stderr ; res *) ;; +(* tassi FIXME: not sure where is this called... no history here... *) let typecheck uri = let module C = Cic in let module R = CicReduction in let module U = UriManager in - match CicEnvironment.is_type_checked uri 0 with - CicEnvironment.CheckedObj _ -> () + (*match CicEnvironment.is_type_checked ~trust:false uri with*) + match CicEnvironment.is_type_checked ~trust:true uri with + CicEnvironment.CheckedObj cobj -> cobj | CicEnvironment.UncheckedObj uobj -> (* let's typecheck the uncooked object *) - Logger.log (`Start_type_checking uri) ; + CicLogger.log (`Start_type_checking uri) ; + CicUniv.directly_to_env_begin (); (match uobj with - C.Definition (_,te,ty,_) -> + C.Constant (_,Some te,ty,_) -> let _ = type_of ty in if not (R.are_convertible [] (type_of te ) ty) then - raise (NotWellTyped ("Constant " ^ (U.string_of_uri uri))) - | C.Axiom (_,ty,_) -> + raise (TypeCheckerFailure + ("Unknown constant:" ^ U.string_of_uri uri)) + | C.Constant (_,None,ty,_) -> (* only to check that ty is well-typed *) let _ = type_of ty in () - | C.CurrentProof (_,conjs,te,ty) -> - (*CSC: bisogna controllare anche il metasenv!!! *) + | C.CurrentProof (_,conjs,te,ty,_) -> + let _ = + List.fold_left + (fun metasenv ((_,context,ty) as conj) -> + ignore (type_of_aux' metasenv context ty) ; + metasenv @ [conj] + ) [] conjs + in let _ = type_of_aux' conjs [] ty in - debug (type_of_aux' conjs [] te) [] ; - if not (R.are_convertible [] (type_of_aux' conjs [] te) ty) then - raise (NotWellTyped ("CurrentProof" ^ (U.string_of_uri uri))) - | C.Variable (_,bo,ty) -> + let type_of_te = type_of_aux' conjs [] te in + if not (R.are_convertible [] type_of_te ty) + then + raise (TypeCheckerFailure (sprintf + "the current proof %s is not well typed because the type %s of the body is not convertible to the declared type %s" + (U.string_of_uri uri) (CicPp.ppterm type_of_te) + (CicPp.ppterm ty))) + | C.Variable (_,bo,ty,_) -> (* only to check that ty is well-typed *) let _ = type_of ty in (match bo with None -> () | Some bo -> if not (R.are_convertible [] (type_of bo) ty) then - raise (NotWellTyped ("Variable" ^ (U.string_of_uri uri))) + raise (TypeCheckerFailure + ("Unknown variable:" ^ U.string_of_uri uri)) ) | C.InductiveDefinition _ -> - cooked_mutual_inductive_defs uri uobj + check_mutual_inductive_defs uri uobj ) ; CicEnvironment.set_type_checking_info uri ; - Logger.log (`Type_checking_completed uri) + CicUniv.directly_to_env_end (); + CicLogger.log (`Type_checking_completed uri); + uobj ;;