X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Focaml%2Fcic_proof_checking%2FcicTypeChecker.ml;h=af98ff0efc72b53acfd7d7e8b225e45272a166f4;hb=4167cea65ca58897d1a3dbb81ff95de5074700cc;hp=3959795055c0d8b9a2be4a9009c0f588b4419de5;hpb=fbe2b073c8a78abd5e8c65eff92158357997e370;p=helm.git diff --git a/helm/ocaml/cic_proof_checking/cicTypeChecker.ml b/helm/ocaml/cic_proof_checking/cicTypeChecker.ml index 395979505..af98ff0ef 100644 --- a/helm/ocaml/cic_proof_checking/cicTypeChecker.ml +++ b/helm/ocaml/cic_proof_checking/cicTypeChecker.ml @@ -28,28 +28,28 @@ open Printf -exception AssertFailure of string;; -exception TypeCheckerFailure of string;; +exception AssertFailure of string Lazy.t;; +exception TypeCheckerFailure of string Lazy.t;; let fdebug = ref 0;; let debug t context = let rec debug_aux t i = let module C = Cic in let module U = UriManager in - CicPp.ppobj (C.Variable ("DEBUG", None, t, [])) ^ "\n" ^ i + CicPp.ppobj (C.Variable ("DEBUG", None, t, [], [])) ^ "\n" ^ i in if !fdebug = 0 then - raise (TypeCheckerFailure (List.fold_right debug_aux (t::context) "")) + raise (TypeCheckerFailure (lazy (List.fold_right debug_aux (t::context) ""))) ;; -let debug_print = prerr_endline ;; +let debug_print = fun _ -> () ;; let rec split l n = match (l,n) with (l,0) -> ([], l) | (he::tl, n) -> let (l1,l2) = split tl (n-1) in (he::l1,l2) | (_,_) -> - raise (TypeCheckerFailure "Parameters number < left parameters number") + raise (TypeCheckerFailure (lazy "Parameters number < left parameters number")) ;; let debrujin_constructor uri number_of_types = @@ -58,15 +58,17 @@ let debrujin_constructor uri number_of_types = function C.Rel n as t when n <= k -> t | C.Rel _ -> - raise (TypeCheckerFailure "unbound variable found in constructor type") + raise (TypeCheckerFailure (lazy "unbound variable found in constructor type")) | C.Var (uri,exp_named_subst) -> let exp_named_subst' = List.map (function (uri,t) -> (uri,aux k t)) exp_named_subst in C.Var (uri,exp_named_subst') - | C.Meta _ -> assert false + | C.Meta (i,l) -> + let l' = List.map (function None -> None | Some t -> Some (aux k t)) l in + C.Meta (i,l) | C.Sort _ - | C.Implicit as t -> t + | C.Implicit _ as t -> t | C.Cast (te,ty) -> C.Cast (aux k te, aux k ty) | C.Prod (n,s,t) -> C.Prod (n, aux k s, aux (k+1) t) | C.Lambda (n,s,t) -> C.Lambda (n, aux k s, aux (k+1) t) @@ -80,8 +82,8 @@ let debrujin_constructor uri number_of_types = | C.MutInd (uri',tyno,exp_named_subst) when UriManager.eq uri uri' -> if exp_named_subst != [] then raise (TypeCheckerFailure - ("non-empty explicit named substitution is applied to "^ - "a mutual inductive type which is being defined")) ; + (lazy ("non-empty explicit named substitution is applied to "^ + "a mutual inductive type which is being defined"))) ; C.Rel (k + number_of_types - tyno) ; | C.MutInd (uri',tyno,exp_named_subst) -> let exp_named_subst' = @@ -118,119 +120,159 @@ let debrujin_constructor uri number_of_types = exception CicEnvironmentError;; -let rec type_of_constant uri = +let rec type_of_constant ~logger uri ugraph = let module C = Cic in let module R = CicReduction in let module U = UriManager in - let cobj = - match CicEnvironment.is_type_checked ~trust:true uri with - CicEnvironment.CheckedObj cobj -> cobj + let cobj,ugraph = + match CicEnvironment.is_type_checked ~trust:true ugraph uri with + CicEnvironment.CheckedObj (cobj,ugraph') -> cobj,ugraph' | CicEnvironment.UncheckedObj uobj -> - CicLogger.log (`Start_type_checking uri) ; + logger#log (`Start_type_checking uri) ; (* let's typecheck the uncooked obj *) - (match uobj with - C.Constant (_,Some te,ty,_) -> - let _ = type_of ty in - let type_of_te = type_of te in - if not (R.are_convertible [] type_of_te ty) then - raise (TypeCheckerFailure (sprintf + +(**************************************************************** + TASSI: FIXME qui e' inutile ricordarselo, + tanto poi lo richiediamo alla cache che da quello su disco +*****************************************************************) + + let ugraph_dust = + (match uobj with + C.Constant (_,Some te,ty,_,_) -> + let _,ugraph = type_of ~logger ty ugraph in + let type_of_te,ugraph' = type_of ~logger te ugraph in + let b',ugraph'' = (R.are_convertible [] type_of_te ty ugraph') in + if not b' then + raise (TypeCheckerFailure (lazy (sprintf "the constant %s is not well typed because the type %s of the body is not convertible to the declared type %s" (U.string_of_uri uri) (CicPp.ppterm type_of_te) - (CicPp.ppterm ty))) - | C.Constant (_,None,ty,_) -> + (CicPp.ppterm ty)))) + else + ugraph' + | C.Constant (_,None,ty,_,_) -> (* only to check that ty is well-typed *) - let _ = type_of ty in () - | C.CurrentProof (_,conjs,te,ty,_) -> - let _ = + let _,ugraph' = type_of ~logger ty ugraph in + ugraph' + | C.CurrentProof (_,conjs,te,ty,_,_) -> + let _,ugraph1 = List.fold_left - (fun metasenv ((_,context,ty) as conj) -> - ignore (type_of_aux' metasenv context ty) ; - metasenv @ [conj] - ) [] conjs + (fun (metasenv,ugraph) ((_,context,ty) as conj) -> + let _,ugraph' = + type_of_aux' ~logger metasenv context ty ugraph + in + (metasenv @ [conj],ugraph') + ) ([],ugraph) conjs in - let _ = type_of_aux' conjs [] ty in - let type_of_te = type_of_aux' conjs [] te in - if not (R.are_convertible [] type_of_te ty) then - raise (TypeCheckerFailure (sprintf + let _,ugraph2 = type_of_aux' ~logger conjs [] ty ugraph1 in + let type_of_te,ugraph3 = + type_of_aux' ~logger conjs [] te ugraph2 + in + let b,ugraph4 = (R.are_convertible [] type_of_te ty ugraph3) in + if not b then + raise (TypeCheckerFailure (lazy (sprintf "the current proof %s is not well typed because the type %s of the body is not convertible to the declared type %s" (U.string_of_uri uri) (CicPp.ppterm type_of_te) - (CicPp.ppterm ty))) + (CicPp.ppterm ty)))) + else + ugraph4 | _ -> - raise (TypeCheckerFailure - ("Unknown constant:" ^ U.string_of_uri uri)) - ); - CicEnvironment.set_type_checking_info uri ; - CicLogger.log (`Type_checking_completed uri) ; - match CicEnvironment.is_type_checked ~trust:false uri with - CicEnvironment.CheckedObj cobj -> cobj - | CicEnvironment.UncheckedObj _ -> raise CicEnvironmentError + raise + (TypeCheckerFailure (lazy ("Unknown constant:" ^ U.string_of_uri uri)))) + in + try + CicEnvironment.set_type_checking_info uri; + logger#log (`Type_checking_completed uri) ; + match CicEnvironment.is_type_checked ~trust:false ugraph uri with + CicEnvironment.CheckedObj (cobj,ugraph') -> cobj,ugraph' + | CicEnvironment.UncheckedObj _ -> raise CicEnvironmentError + with Invalid_argument s -> + (*debug_print (lazy s);*) + uobj,ugraph_dust in - match cobj with - C.Constant (_,_,ty,_) -> ty - | C.CurrentProof (_,_,_,ty,_) -> ty + match cobj,ugraph with + (C.Constant (_,_,ty,_,_)),g -> ty,g + | (C.CurrentProof (_,_,_,ty,_,_)),g -> ty,g | _ -> - raise (TypeCheckerFailure ("Unknown constant:" ^ U.string_of_uri uri)) + raise (TypeCheckerFailure (lazy ("Unknown constant:" ^ U.string_of_uri uri))) -and type_of_variable uri = +and type_of_variable ~logger uri ugraph = let module C = Cic in let module R = CicReduction in let module U = UriManager in (* 0 because a variable is never cooked => no partial cooking at one level *) - match CicEnvironment.is_type_checked ~trust:true uri with - CicEnvironment.CheckedObj (C.Variable (_,_,ty,_)) -> ty - | CicEnvironment.UncheckedObj (C.Variable (_,bo,ty,_)) -> - CicLogger.log (`Start_type_checking uri) ; + match CicEnvironment.is_type_checked ~trust:true ugraph uri with + CicEnvironment.CheckedObj ((C.Variable (_,_,ty,_,_)),ugraph') -> ty,ugraph' + | CicEnvironment.UncheckedObj (C.Variable (_,bo,ty,_,_)) -> + logger#log (`Start_type_checking uri) ; (* only to check that ty is well-typed *) - let _ = type_of ty in + let _,ugraph1 = type_of ~logger ty ugraph in + let ugraph2 = (match bo with - None -> () + None -> ugraph | Some bo -> - if not (R.are_convertible [] (type_of bo) ty) then + let ty_bo,ugraph' = type_of ~logger bo ugraph1 in + let b,ugraph'' = (R.are_convertible [] ty_bo ty ugraph') in + if not b then raise (TypeCheckerFailure - ("Unknown variable:" ^ U.string_of_uri uri)) - ) ; - CicEnvironment.set_type_checking_info uri ; - CicLogger.log (`Type_checking_completed uri) ; - ty + (lazy ("Unknown variable:" ^ U.string_of_uri uri))) + else + ugraph'') + in + (try + CicEnvironment.set_type_checking_info uri ; + logger#log (`Type_checking_completed uri) ; + match CicEnvironment.is_type_checked ~trust:false ugraph uri with + CicEnvironment.CheckedObj ((C.Variable (_,_,ty,_,_)),ugraph') -> + ty,ugraph' + | CicEnvironment.CheckedObj _ + | CicEnvironment.UncheckedObj _ -> raise CicEnvironmentError + with Invalid_argument s -> + (*debug_print (lazy s);*) + ty,ugraph2) | _ -> - raise (TypeCheckerFailure ("Unknown variable:" ^ U.string_of_uri uri)) + raise (TypeCheckerFailure (lazy ("Unknown variable:" ^ U.string_of_uri uri))) -and does_not_occur context n nn te = +and does_not_occur ?(subst=[]) context n nn te = let module C = Cic in (*CSC: whd sembra essere superflua perche' un caso in cui l'occorrenza *) (*CSC: venga mangiata durante la whd sembra presentare problemi di *) (*CSC: universi *) - match CicReduction.whd context te with + match CicReduction.whd ~subst context te with C.Rel m when m > n && m <= nn -> false | C.Rel _ - | C.Meta _ | C.Sort _ - | C.Implicit -> true + | C.Implicit _ -> true + | C.Meta (_,l) -> + List.fold_right + (fun x i -> + match x with + None -> i + | Some x -> i && does_not_occur ~subst context n nn x) l true | C.Cast (te,ty) -> - does_not_occur context n nn te && does_not_occur context n nn ty + does_not_occur ~subst context n nn te && does_not_occur ~subst context n nn ty | C.Prod (name,so,dest) -> - does_not_occur context n nn so && - does_not_occur((Some (name,(C.Decl so)))::context) (n + 1) (nn + 1) - dest + does_not_occur ~subst context n nn so && + does_not_occur ~subst ((Some (name,(C.Decl so)))::context) (n + 1) + (nn + 1) dest | C.Lambda (name,so,dest) -> - does_not_occur context n nn so && - does_not_occur((Some (name,(C.Decl so)))::context) (n + 1) (nn + 1) + does_not_occur ~subst context n nn so && + does_not_occur ~subst ((Some (name,(C.Decl so)))::context) (n + 1) (nn + 1) dest | C.LetIn (name,so,dest) -> - does_not_occur context n nn so && - does_not_occur ((Some (name,(C.Def (so,None))))::context) + does_not_occur ~subst context n nn so && + does_not_occur ~subst ((Some (name,(C.Def (so,None))))::context) (n + 1) (nn + 1) dest | C.Appl l -> - List.fold_right (fun x i -> i && does_not_occur context n nn x) l true + List.fold_right (fun x i -> i && does_not_occur ~subst context n nn x) l true | C.Var (_,exp_named_subst) | C.Const (_,exp_named_subst) | C.MutInd (_,_,exp_named_subst) | C.MutConstruct (_,_,_,exp_named_subst) -> - List.fold_right (fun (_,x) i -> i && does_not_occur context n nn x) + List.fold_right (fun (_,x) i -> i && does_not_occur ~subst context n nn x) exp_named_subst true | C.MutCase (_,_,out,te,pl) -> - does_not_occur context n nn out && does_not_occur context n nn te && - List.fold_right (fun x i -> i && does_not_occur context n nn x) pl true + does_not_occur ~subst context n nn out && does_not_occur ~subst context n nn te && + List.fold_right (fun x i -> i && does_not_occur ~subst context n nn x) pl true | C.Fix (_,fl) -> let len = List.length fl in let n_plus_len = n + len in @@ -240,8 +282,8 @@ and does_not_occur context n nn te = in List.fold_right (fun (_,_,ty,bo) i -> - i && does_not_occur context n nn ty && - does_not_occur (tys @ context) n_plus_len nn_plus_len bo + i && does_not_occur ~subst context n nn ty && + does_not_occur ~subst (tys @ context) n_plus_len nn_plus_len bo ) fl true | C.CoFix (_,fl) -> let len = List.length fl in @@ -252,8 +294,8 @@ and does_not_occur context n nn te = in List.fold_right (fun (_,ty,bo) i -> - i && does_not_occur context n nn ty && - does_not_occur (tys @ context) n_plus_len nn_plus_len bo + i && does_not_occur ~subst context n nn ty && + does_not_occur ~subst (tys @ context) n_plus_len nn_plus_len bo ) fl true (*CSC l'indice x dei tipi induttivi e' t.c. n < x <= nn *) @@ -265,9 +307,9 @@ and weakly_positive context n nn uri te = let module C = Cic in (*CSC: Che schifo! Bisogna capire meglio e trovare una soluzione ragionevole!*) let dummy_mutind = - C.MutInd (UriManager.uri_of_string "cic:/Coq/Init/Datatypes/nat.ind",0,[]) + C.MutInd (HelmLibraryObjects.Datatypes.nat_URI,0,[]) in - (*CSC mettere in cicSubstitution *) + (*CSC: mettere in cicSubstitution *) let rec subst_inductive_type_with_dummy_mutind = function C.MutInd (uri',0,_) when UriManager.eq uri' uri -> @@ -340,7 +382,7 @@ and weakly_positive context n nn uri te = weakly_positive ((Some (name,(C.Decl source)))::context) (n + 1) (nn + 1) uri dest | _ -> - raise (TypeCheckerFailure "Malformed inductive constructor type") + raise (TypeCheckerFailure (lazy "Malformed inductive constructor type")) (* instantiate_parameters ps (x1:T1)...(xn:Tn)C *) (* returns ((x_|ps|:T_|ps|)...(xn:Tn)C){ps_1 / x1 ; ... ; ps_|ps| / x_|ps|} *) @@ -352,7 +394,7 @@ and instantiate_parameters params c = instantiate_parameters tl (CicSubstitution.subst he ta) | (C.Cast (te,_), _) -> instantiate_parameters params te - | (t,l) -> raise (AssertFailure "1") + | (t,l) -> raise (AssertFailure (lazy "1")) and strictly_positive context n nn te = let module C = Cic in @@ -369,13 +411,14 @@ and strictly_positive context n nn te = List.fold_right (fun x i -> i && does_not_occur context n nn x) tl true | C.Appl ((C.MutInd (uri,i,exp_named_subst))::tl) -> let (ok,paramsno,ity,cl,name) = - match CicEnvironment.get_obj uri with - C.InductiveDefinition (tl,_,paramsno) -> + let o,_ = CicEnvironment.get_obj CicUniv.empty_ugraph uri in + match o with + C.InductiveDefinition (tl,_,paramsno,_) -> let (name,_,ity,cl) = List.nth tl i in (List.length tl = 1, paramsno, ity, cl, name) | _ -> raise (TypeCheckerFailure - ("Unknown inductive type:" ^ U.string_of_uri uri)) + (lazy ("Unknown inductive type:" ^ U.string_of_uri uri))) in let (params,arguments) = split tl paramsno in let lifted_params = List.map (CicSubstitution.lift 1) params in @@ -400,7 +443,7 @@ and strictly_positive context n nn te = ) cl' true | t -> does_not_occur context n nn t -(*CSC l'indice x dei tipi induttivi e' t.c. n < x <= nn *) +(* the inductive type indexes are s.t. n < x <= nn *) and are_all_occurrences_positive context uri indparamsno i n nn te = let module C = Cic in match CicReduction.whd context te with @@ -417,23 +460,24 @@ and are_all_occurrences_positive context uri indparamsno i n nn te = C.Rel m when m = n - (indparamsno - k) -> k - 1 | _ -> raise (TypeCheckerFailure - ("Non-positive occurence in mutual inductive definition(s) " ^ - UriManager.string_of_uri uri)) + (lazy + ("Non-positive occurence in mutual inductive definition(s) [1]" ^ + UriManager.string_of_uri uri))) ) indparamsno tl in if last = 0 then List.fold_right (fun x i -> i && does_not_occur context n nn x) tl true else raise (TypeCheckerFailure - ("Non-positive occurence in mutual inductive definition(s) " ^ - UriManager.string_of_uri uri)) + (lazy ("Non-positive occurence in mutual inductive definition(s) [2]"^ + UriManager.string_of_uri uri))) | C.Rel m when m = i -> if indparamsno = 0 then true else raise (TypeCheckerFailure - ("Non-positive occurence in mutual inductive definition(s) " ^ - UriManager.string_of_uri uri)) + (lazy ("Non-positive occurence in mutual inductive definition(s) [3]"^ + UriManager.string_of_uri uri))) | C.Prod (C.Anonymous,source,dest) -> strictly_positive context n nn source && are_all_occurrences_positive @@ -452,17 +496,20 @@ and are_all_occurrences_positive context uri indparamsno i n nn te = uri indparamsno (i+1) (n + 1) (nn + 1) dest | _ -> raise - (TypeCheckerFailure ("Malformed inductive constructor type " ^ - (UriManager.string_of_uri uri))) + (TypeCheckerFailure (lazy ("Malformed inductive constructor type " ^ + (UriManager.string_of_uri uri)))) (* Main function to checks the correctness of a mutual *) (* inductive block definition. This is the function *) (* exported to the proof-engine. *) -and typecheck_mutual_inductive_defs uri (itl,_,indparamsno) = +and typecheck_mutual_inductive_defs ~logger uri (itl,_,indparamsno) ugraph = let module U = UriManager in (* let's check if the arity of the inductive types are well *) (* formed *) - List.iter (fun (_,_,x,_) -> let _ = type_of x in ()) itl ; + let ugrap1 = List.fold_left + (fun ugraph (_,_,x,_) -> let _,ugraph' = + type_of ~logger x ugraph in ugraph') + ugraph itl in (* let's check if the types of the inductive constructors *) (* are well formed. *) @@ -470,95 +517,117 @@ and typecheck_mutual_inductive_defs uri (itl,_,indparamsno) = (* mutual inductive types at the head of the types of the *) (* constructors using Prods *) let len = List.length itl in - let tys = + let tys = List.map (fun (n,_,ty,_) -> Some (Cic.Name n,(Cic.Decl ty))) itl in - let _ = + let _,ugraph2 = List.fold_right - (fun (_,_,_,cl) i -> - List.iter - (fun (name,te) -> - let debrujinedte = debrujin_constructor uri len te in - let augmented_term = - List.fold_right - (fun (name,_,ty,_) i -> Cic.Prod (Cic.Name name, ty, i)) - itl debrujinedte - in - let _ = type_of augmented_term in - (* let's check also the positivity conditions *) - if - not - (are_all_occurrences_positive tys uri indparamsno i 0 len - debrujinedte) - then - raise - (TypeCheckerFailure ("Non positive occurence in " ^ - U.string_of_uri uri)) - ) cl ; - (i + 1) - ) itl 1 - in - () + (fun (_,_,_,cl) (i,ugraph) -> + let ugraph'' = + List.fold_left + (fun ugraph (name,te) -> + let debrujinedte = debrujin_constructor uri len te in + let augmented_term = + List.fold_right + (fun (name,_,ty,_) i -> Cic.Prod (Cic.Name name, ty, i)) + itl debrujinedte + in + let _,ugraph' = type_of ~logger augmented_term ugraph in + (* let's check also the positivity conditions *) + if + not + (are_all_occurrences_positive tys uri indparamsno i 0 len + debrujinedte) + then + raise + (TypeCheckerFailure + (lazy ("Non positive occurence in " ^ U.string_of_uri uri))) + else + ugraph' + ) ugraph cl in + (i + 1),ugraph'' + ) itl (1,ugraph) + in + ugraph2 (* Main function to checks the correctness of a mutual *) (* inductive block definition. *) -and check_mutual_inductive_defs uri = - function - Cic.InductiveDefinition (itl, params, indparamsno) -> - typecheck_mutual_inductive_defs uri (itl,params,indparamsno) - | _ -> - raise (TypeCheckerFailure ("Unknown mutual inductive definition:" ^ - UriManager.string_of_uri uri)) +and check_mutual_inductive_defs uri obj ugraph = + match obj with + Cic.InductiveDefinition (itl, params, indparamsno, _) -> + typecheck_mutual_inductive_defs uri (itl,params,indparamsno) ugraph + | _ -> + raise (TypeCheckerFailure ( + lazy ("Unknown mutual inductive definition:" ^ + UriManager.string_of_uri uri))) -and type_of_mutual_inductive_defs uri i = +and type_of_mutual_inductive_defs ~logger uri i ugraph = let module C = Cic in let module R = CicReduction in let module U = UriManager in - let cobj = - match CicEnvironment.is_type_checked ~trust:true uri with - CicEnvironment.CheckedObj cobj -> cobj - | CicEnvironment.UncheckedObj uobj -> - CicLogger.log (`Start_type_checking uri) ; - check_mutual_inductive_defs uri uobj ; - CicEnvironment.set_type_checking_info uri ; - CicLogger.log (`Type_checking_completed uri) ; - (match CicEnvironment.is_type_checked ~trust:false uri with - CicEnvironment.CheckedObj cobj -> cobj - | CicEnvironment.UncheckedObj _ -> raise CicEnvironmentError - ) + let cobj,ugraph1 = + match CicEnvironment.is_type_checked ~trust:true ugraph uri with + CicEnvironment.CheckedObj (cobj,ugraph') -> cobj,ugraph' + | CicEnvironment.UncheckedObj uobj -> + logger#log (`Start_type_checking uri) ; + let ugraph1_dust = + check_mutual_inductive_defs ~logger uri uobj ugraph + in + (* TASSI: FIXME: check ugraph1 == ugraph ritornato da env *) + try + CicEnvironment.set_type_checking_info uri ; + logger#log (`Type_checking_completed uri) ; + (match CicEnvironment.is_type_checked ~trust:false ugraph uri with + CicEnvironment.CheckedObj (cobj,ugraph') -> (cobj,ugraph') + | CicEnvironment.UncheckedObj _ -> raise CicEnvironmentError + ) + with + Invalid_argument s -> + (*debug_print (lazy s);*) + uobj,ugraph1_dust in - match cobj with - C.InductiveDefinition (dl,_,_) -> - let (_,_,arity,_) = List.nth dl i in - arity - | _ -> - raise (TypeCheckerFailure ("Unknown mutual inductive definition:" ^ - U.string_of_uri uri)) - -and type_of_mutual_inductive_constr uri i j = + match cobj with + C.InductiveDefinition (dl,_,_,_) -> + let (_,_,arity,_) = List.nth dl i in + arity,ugraph1 + | _ -> + raise (TypeCheckerFailure + (lazy ("Unknown mutual inductive definition:" ^ U.string_of_uri uri))) + +and type_of_mutual_inductive_constr ~logger uri i j ugraph = let module C = Cic in let module R = CicReduction in let module U = UriManager in - let cobj = - match CicEnvironment.is_type_checked ~trust:true uri with - CicEnvironment.CheckedObj cobj -> cobj - | CicEnvironment.UncheckedObj uobj -> - CicLogger.log (`Start_type_checking uri) ; - check_mutual_inductive_defs uri uobj ; - CicEnvironment.set_type_checking_info uri ; - CicLogger.log (`Type_checking_completed uri) ; - (match CicEnvironment.is_type_checked ~trust:false uri with - CicEnvironment.CheckedObj cobj -> cobj - | CicEnvironment.UncheckedObj _ -> raise CicEnvironmentError - ) + let cobj,ugraph1 = + match CicEnvironment.is_type_checked ~trust:true ugraph uri with + CicEnvironment.CheckedObj (cobj,ugraph') -> cobj,ugraph' + | CicEnvironment.UncheckedObj uobj -> + logger#log (`Start_type_checking uri) ; + let ugraph1_dust = + check_mutual_inductive_defs ~logger uri uobj ugraph + in + (* check ugraph1 validity ??? == ugraph' *) + try + CicEnvironment.set_type_checking_info uri ; + logger#log (`Type_checking_completed uri) ; + (match + CicEnvironment.is_type_checked ~trust:false ugraph uri + with + CicEnvironment.CheckedObj (cobj,ugraph') -> cobj,ugraph' + | CicEnvironment.UncheckedObj _ -> + raise CicEnvironmentError) + with + Invalid_argument s -> + (*debug_print (lazy s);*) + uobj,ugraph1_dust in - match cobj with - C.InductiveDefinition (dl,_,_) -> - let (_,_,_,cl) = List.nth dl i in - let (_,ty) = List.nth cl (j-1) in - ty - | _ -> - raise (TypeCheckerFailure ("Unknown mutual inductive definition:" ^ - UriManager.string_of_uri uri)) + match cobj with + C.InductiveDefinition (dl,_,_,_) -> + let (_,_,_,cl) = List.nth dl i in + let (_,ty) = List.nth cl (j-1) in + ty,ugraph1 + | _ -> + raise (TypeCheckerFailure + (lazy ("Unknown mutual inductive definition:" ^ UriManager.string_of_uri uri))) and recursive_args context n nn te = let module C = Cic in @@ -567,28 +636,28 @@ and recursive_args context n nn te = | C.Var _ | C.Meta _ | C.Sort _ - | C.Implicit + | C.Implicit _ | C.Cast _ (*CSC ??? *) -> - raise (AssertFailure "3") (* due to type-checking *) + raise (AssertFailure (lazy "3")) (* due to type-checking *) | C.Prod (name,so,de) -> (not (does_not_occur context n nn so)) :: (recursive_args ((Some (name,(C.Decl so)))::context) (n+1) (nn + 1) de) | C.Lambda _ | C.LetIn _ -> - raise (AssertFailure "4") (* due to type-checking *) + raise (AssertFailure (lazy "4")) (* due to type-checking *) | C.Appl _ -> [] - | C.Const _ -> raise (AssertFailure "5") + | C.Const _ -> raise (AssertFailure (lazy "5")) | C.MutInd _ | C.MutConstruct _ | C.MutCase _ | C.Fix _ - | C.CoFix _ -> raise (AssertFailure "6") (* due to type-checking *) + | C.CoFix _ -> raise (AssertFailure (lazy "6")) (* due to type-checking *) -and get_new_safes context p c rl safes n nn x = +and get_new_safes ~subst context p c rl safes n nn x = let module C = Cic in let module U = UriManager in let module R = CicReduction in - match (R.whd context c, R.whd context p, rl) with + match (R.whd ~subst context c, R.whd ~subst context p, rl) with (C.Prod (_,so,ta1), C.Lambda (name,_,ta2), b::tl) -> (* we are sure that the two sources are convertible because we *) (* have just checked this. So let's go along ... *) @@ -598,86 +667,90 @@ and get_new_safes context p c rl safes n nn x = let safes'' = if b then 1::safes' else safes' in - get_new_safes ((Some (name,(C.Decl so)))::context) + get_new_safes ~subst ((Some (name,(C.Decl so)))::context) ta2 ta1 tl safes'' (n+1) (nn+1) (x+1) | (C.Prod _, (C.MutConstruct _ as e), _) | (C.Prod _, (C.Rel _ as e), _) | (C.MutInd _, e, []) | (C.Appl _, e, []) -> (e,safes,n,nn,x,context) - | (_,_,_) -> + | (c,p,l) -> (* CSC: If the next exception is raised, it just means that *) (* CSC: the proof-assistant allows to use very strange things *) (* CSC: as a branch of a case whose type is a Prod. In *) (* CSC: particular, this means that a new (C.Prod, x,_) case *) (* CSC: must be considered in this match. (e.g. x = MutCase) *) - raise (AssertFailure "7") + raise + (AssertFailure (lazy + (Printf.sprintf "Get New Safes: c=%s ; p=%s" + (CicPp.ppterm c) (CicPp.ppterm p)))) -and split_prods context n te = +and split_prods ~subst context n te = let module C = Cic in let module R = CicReduction in - match (n, R.whd context te) with + match (n, R.whd ~subst context te) with (0, _) -> context,te | (n, C.Prod (name,so,ta)) when n > 0 -> - split_prods ((Some (name,(C.Decl so)))::context) (n - 1) ta - | (_, _) -> raise (AssertFailure "8") + split_prods ~subst ((Some (name,(C.Decl so)))::context) (n - 1) ta + | (_, _) -> raise (AssertFailure (lazy "8")) -and eat_lambdas context n te = +and eat_lambdas ~subst context n te = let module C = Cic in let module R = CicReduction in - match (n, R.whd context te) with + match (n, R.whd ~subst context te) with (0, _) -> (te, 0, context) | (n, C.Lambda (name,so,ta)) when n > 0 -> let (te, k, context') = - eat_lambdas ((Some (name,(C.Decl so)))::context) (n - 1) ta + eat_lambdas ~subst ((Some (name,(C.Decl so)))::context) (n - 1) ta in (te, k + 1, context') | (n, te) -> - raise (AssertFailure (sprintf "9 (%d, %s)" n (CicPp.ppterm te))) + raise (AssertFailure (lazy (sprintf "9 (%d, %s)" n (CicPp.ppterm te)))) -(*CSC: Tutto quello che segue e' l'intuzione di luca ;-) *) -and check_is_really_smaller_arg context n nn kl x safes te = +(*CSC: Tutto quello che segue e' l'intuzione di luca ;-) *) +and check_is_really_smaller_arg ~subst context n nn kl x safes te = (*CSC: forse la whd si puo' fare solo quando serve veramente. *) (*CSC: cfr guarded_by_destructors *) let module C = Cic in let module U = UriManager in - match CicReduction.whd context te with + match CicReduction.whd ~subst context te with C.Rel m when List.mem m safes -> true | C.Rel _ -> false | C.Var _ | C.Meta _ | C.Sort _ - | C.Implicit + | C.Implicit _ | C.Cast _ (* | C.Cast (te,ty) -> - check_is_really_smaller_arg n nn kl x safes te && - check_is_really_smaller_arg n nn kl x safes ty*) + check_is_really_smaller_arg ~subst n nn kl x safes te && + check_is_really_smaller_arg ~subst n nn kl x safes ty*) (* | C.Prod (_,so,ta) -> - check_is_really_smaller_arg n nn kl x safes so && - check_is_really_smaller_arg (n+1) (nn+1) kl (x+1) + check_is_really_smaller_arg ~subst n nn kl x safes so && + check_is_really_smaller_arg ~subst (n+1) (nn+1) kl (x+1) (List.map (fun x -> x + 1) safes) ta*) - | C.Prod _ -> raise (AssertFailure "10") + | C.Prod _ -> raise (AssertFailure (lazy "10")) | C.Lambda (name,so,ta) -> - check_is_really_smaller_arg context n nn kl x safes so && - check_is_really_smaller_arg ((Some (name,(C.Decl so)))::context) + check_is_really_smaller_arg ~subst context n nn kl x safes so && + check_is_really_smaller_arg ~subst ((Some (name,(C.Decl so)))::context) (n+1) (nn+1) kl (x+1) (List.map (fun x -> x + 1) safes) ta | C.LetIn (name,so,ta) -> - check_is_really_smaller_arg context n nn kl x safes so && - check_is_really_smaller_arg ((Some (name,(C.Def (so,None))))::context) + check_is_really_smaller_arg ~subst context n nn kl x safes so && + check_is_really_smaller_arg ~subst ((Some (name,(C.Def (so,None))))::context) (n+1) (nn+1) kl (x+1) (List.map (fun x -> x + 1) safes) ta | C.Appl (he::_) -> (*CSC: sulla coda ci vogliono dei controlli? secondo noi no, ma *) (*CSC: solo perche' non abbiamo trovato controesempi *) - check_is_really_smaller_arg context n nn kl x safes he - | C.Appl [] -> raise (AssertFailure "11") + check_is_really_smaller_arg ~subst context n nn kl x safes he + | C.Appl [] -> raise (AssertFailure (lazy "11")) | C.Const _ - | C.MutInd _ -> raise (AssertFailure "12") + | C.MutInd _ -> raise (AssertFailure (lazy "12")) | C.MutConstruct _ -> false | C.MutCase (uri,i,outtype,term,pl) -> (match term with C.Rel m when List.mem m safes || m = x -> let (tys,len,isinductive,paramsno,cl) = - match CicEnvironment.get_obj uri with - C.InductiveDefinition (tl,_,paramsno) -> + let o,_ = CicEnvironment.get_obj CicUniv.empty_ugraph uri in + match o with + C.InductiveDefinition (tl,_,paramsno,_) -> let tys = List.map (fun (n,_,ty,_) -> Some (Cic.Name n,(Cic.Decl ty))) tl @@ -686,20 +759,27 @@ and check_is_really_smaller_arg context n nn kl x safes te = let cl' = List.map (fun (id,ty) -> - (id, snd (split_prods tys paramsno ty))) cl + (id, snd (split_prods ~subst tys paramsno ty))) cl in (tys,List.length tl,isinductive,paramsno,cl') | _ -> raise (TypeCheckerFailure - ("Unknown mutual inductive definition:" ^ - UriManager.string_of_uri uri)) + (lazy ("Unknown mutual inductive definition:" ^ + UriManager.string_of_uri uri))) in if not isinductive then List.fold_right (fun p i -> - i && check_is_really_smaller_arg context n nn kl x safes p) + i && check_is_really_smaller_arg ~subst context n nn kl x safes p) pl true else + let pl_and_cl = + try + List.combine pl cl + with + Invalid_argument _ -> + raise (TypeCheckerFailure (lazy "not enough patterns")) + in List.fold_right (fun (p,(_,c)) i -> let rl' = @@ -707,15 +787,16 @@ and check_is_really_smaller_arg context n nn kl x safes te = recursive_args tys 0 len debrujinedte in let (e,safes',n',nn',x',context') = - get_new_safes context p c rl' safes n nn x + get_new_safes ~subst context p c rl' safes n nn x in i && - check_is_really_smaller_arg context' n' nn' kl x' safes' e - ) (List.combine pl cl) true + check_is_really_smaller_arg ~subst context' n' nn' kl x' safes' e + ) pl_and_cl true | C.Appl ((C.Rel m)::tl) when List.mem m safes || m = x -> let (tys,len,isinductive,paramsno,cl) = - match CicEnvironment.get_obj uri with - C.InductiveDefinition (tl,_,paramsno) -> + let o,_ = CicEnvironment.get_obj CicUniv.empty_ugraph uri in + match o with + C.InductiveDefinition (tl,_,paramsno,_) -> let (_,isinductive,_,cl) = List.nth tl i in let tys = List.map (fun (n,_,ty,_) -> @@ -724,20 +805,27 @@ and check_is_really_smaller_arg context n nn kl x safes te = let cl' = List.map (fun (id,ty) -> - (id, snd (split_prods tys paramsno ty))) cl + (id, snd (split_prods ~subst tys paramsno ty))) cl in (tys,List.length tl,isinductive,paramsno,cl') | _ -> raise (TypeCheckerFailure - ("Unknown mutual inductive definition:" ^ - UriManager.string_of_uri uri)) + (lazy ("Unknown mutual inductive definition:" ^ + UriManager.string_of_uri uri))) in if not isinductive then List.fold_right (fun p i -> - i && check_is_really_smaller_arg context n nn kl x safes p) + i && check_is_really_smaller_arg ~subst context n nn kl x safes p) pl true else + let pl_and_cl = + try + List.combine pl cl + with + Invalid_argument _ -> + raise (TypeCheckerFailure (lazy "not enough patterns")) + in (*CSC: supponiamo come prima che nessun controllo sia necessario*) (*CSC: sugli argomenti di una applicazione *) List.fold_right @@ -747,15 +835,15 @@ and check_is_really_smaller_arg context n nn kl x safes te = recursive_args tys 0 len debrujinedte in let (e, safes',n',nn',x',context') = - get_new_safes context p c rl' safes n nn x + get_new_safes ~subst context p c rl' safes n nn x in i && - check_is_really_smaller_arg context' n' nn' kl x' safes' e - ) (List.combine pl cl) true + check_is_really_smaller_arg ~subst context' n' nn' kl x' safes' e + ) pl_and_cl true | _ -> List.fold_right (fun p i -> - i && check_is_really_smaller_arg context n nn kl x safes p + i && check_is_really_smaller_arg ~subst context n nn kl x safes p ) pl true ) | C.Fix (_, fl) -> @@ -768,7 +856,7 @@ and check_is_really_smaller_arg context n nn kl x safes te = List.fold_right (fun (_,_,ty,bo) i -> i && - check_is_really_smaller_arg (tys@context) n_plus_len nn_plus_len kl + check_is_really_smaller_arg ~subst (tys@context) n_plus_len nn_plus_len kl x_plus_len safes' bo ) fl true | C.CoFix (_, fl) -> @@ -781,39 +869,40 @@ and check_is_really_smaller_arg context n nn kl x safes te = List.fold_right (fun (_,ty,bo) i -> i && - check_is_really_smaller_arg (tys@context) n_plus_len nn_plus_len kl + check_is_really_smaller_arg ~subst (tys@context) n_plus_len nn_plus_len kl x_plus_len safes' bo ) fl true -and guarded_by_destructors context n nn kl x safes = +and guarded_by_destructors ~subst context n nn kl x safes = let module C = Cic in let module U = UriManager in function C.Rel m when m > n && m <= nn -> false - | C.Rel n -> + | C.Rel m -> (match List.nth context (n-1) with Some (_,C.Decl _) -> true | Some (_,C.Def (bo,_)) -> - guarded_by_destructors context n nn kl x safes bo - | None -> raise (TypeCheckerFailure "Reference to deleted hypothesis") + guarded_by_destructors ~subst context m nn kl x safes + (CicSubstitution.lift m bo) + | None -> raise (TypeCheckerFailure (lazy "Reference to deleted hypothesis")) ) | C.Meta _ | C.Sort _ - | C.Implicit -> true + | C.Implicit _ -> true | C.Cast (te,ty) -> - guarded_by_destructors context n nn kl x safes te && - guarded_by_destructors context n nn kl x safes ty + guarded_by_destructors ~subst context n nn kl x safes te && + guarded_by_destructors ~subst context n nn kl x safes ty | C.Prod (name,so,ta) -> - guarded_by_destructors context n nn kl x safes so && - guarded_by_destructors ((Some (name,(C.Decl so)))::context) + guarded_by_destructors ~subst context n nn kl x safes so && + guarded_by_destructors ~subst ((Some (name,(C.Decl so)))::context) (n+1) (nn+1) kl (x+1) (List.map (fun x -> x + 1) safes) ta | C.Lambda (name,so,ta) -> - guarded_by_destructors context n nn kl x safes so && - guarded_by_destructors ((Some (name,(C.Decl so)))::context) + guarded_by_destructors ~subst context n nn kl x safes so && + guarded_by_destructors ~subst ((Some (name,(C.Decl so)))::context) (n+1) (nn+1) kl (x+1) (List.map (fun x -> x + 1) safes) ta | C.LetIn (name,so,ta) -> - guarded_by_destructors context n nn kl x safes so && - guarded_by_destructors ((Some (name,(C.Def (so,None))))::context) + guarded_by_destructors ~subst context n nn kl x safes so && + guarded_by_destructors ~subst ((Some (name,(C.Def (so,None))))::context) (n+1) (nn+1) kl (x+1) (List.map (fun x -> x + 1) safes) ta | C.Appl ((C.Rel m)::tl) when m > n && m <= nn -> let k = List.nth kl (m - n - 1) in @@ -821,69 +910,79 @@ and guarded_by_destructors context n nn kl x safes = else List.fold_right (fun param i -> - i && guarded_by_destructors context n nn kl x safes param + i && guarded_by_destructors ~subst context n nn kl x safes param ) tl true && - check_is_really_smaller_arg context n nn kl x safes (List.nth tl k) + check_is_really_smaller_arg ~subst context n nn kl x safes (List.nth tl k) | C.Appl tl -> List.fold_right - (fun t i -> i && guarded_by_destructors context n nn kl x safes t) + (fun t i -> i && guarded_by_destructors ~subst context n nn kl x safes t) tl true | C.Var (_,exp_named_subst) | C.Const (_,exp_named_subst) | C.MutInd (_,_,exp_named_subst) | C.MutConstruct (_,_,_,exp_named_subst) -> List.fold_right - (fun (_,t) i -> i && guarded_by_destructors context n nn kl x safes t) + (fun (_,t) i -> i && guarded_by_destructors ~subst context n nn kl x safes t) exp_named_subst true | C.MutCase (uri,i,outtype,term,pl) -> - (match term with + (match CicReduction.whd ~subst context term with C.Rel m when List.mem m safes || m = x -> let (tys,len,isinductive,paramsno,cl) = - match CicEnvironment.get_obj uri with - C.InductiveDefinition (tl,_,paramsno) -> - let (_,isinductive,_,cl) = List.nth tl i in - let tys = - List.map (fun (n,_,ty,_) -> - Some(Cic.Name n,(Cic.Decl ty))) tl - in - let cl' = - List.map - (fun (id,ty) -> - (id, snd (split_prods tys paramsno ty))) cl + let o,_ = CicEnvironment.get_obj CicUniv.empty_ugraph uri in + match o with + C.InductiveDefinition (tl,_,paramsno,_) -> + let len = List.length tl in + let (_,isinductive,_,cl) = List.nth tl i in + let tys = + List.map (fun (n,_,ty,_) -> + Some(Cic.Name n,(Cic.Decl ty))) tl in - (tys,List.length tl,isinductive,paramsno,cl') + let cl' = + List.map + (fun (id,ty) -> + let debrujinedty = debrujin_constructor uri len ty in + (id, snd (split_prods ~subst tys paramsno ty), + snd (split_prods ~subst tys paramsno debrujinedty) + )) cl + in + (tys,len,isinductive,paramsno,cl') | _ -> raise (TypeCheckerFailure - ("Unknown mutual inductive definition:" ^ - UriManager.string_of_uri uri)) + (lazy ("Unknown mutual inductive definition:" ^ + UriManager.string_of_uri uri))) in if not isinductive then - guarded_by_destructors context n nn kl x safes outtype && - guarded_by_destructors context n nn kl x safes term && + guarded_by_destructors ~subst context n nn kl x safes outtype && + guarded_by_destructors ~subst context n nn kl x safes term && (*CSC: manca ??? il controllo sul tipo di term? *) List.fold_right (fun p i -> - i && guarded_by_destructors context n nn kl x safes p) + i && guarded_by_destructors ~subst context n nn kl x safes p) pl true else - guarded_by_destructors context n nn kl x safes outtype && + let pl_and_cl = + try + List.combine pl cl + with + Invalid_argument _ -> + raise (TypeCheckerFailure (lazy "not enough patterns")) + in + guarded_by_destructors ~subst context n nn kl x safes outtype && (*CSC: manca ??? il controllo sul tipo di term? *) List.fold_right - (fun (p,(_,c)) i -> - let rl' = - let debrujinedte = debrujin_constructor uri len c in - recursive_args tys 0 len debrujinedte - in + (fun (p,(_,c,brujinedc)) i -> + let rl' = recursive_args tys 0 len brujinedc in let (e,safes',n',nn',x',context') = - get_new_safes context p c rl' safes n nn x + get_new_safes ~subst context p c rl' safes n nn x in i && - guarded_by_destructors context' n' nn' kl x' safes' e - ) (List.combine pl cl) true + guarded_by_destructors ~subst context' n' nn' kl x' safes' e + ) pl_and_cl true | C.Appl ((C.Rel m)::tl) when List.mem m safes || m = x -> let (tys,len,isinductive,paramsno,cl) = - match CicEnvironment.get_obj uri with - C.InductiveDefinition (tl,_,paramsno) -> + let o,_ = CicEnvironment.get_obj CicUniv.empty_ugraph uri in + match o with + C.InductiveDefinition (tl,_,paramsno,_) -> let (_,isinductive,_,cl) = List.nth tl i in let tys = List.map @@ -892,28 +991,35 @@ and guarded_by_destructors context n nn kl x safes = let cl' = List.map (fun (id,ty) -> - (id, snd (split_prods tys paramsno ty))) cl + (id, snd (split_prods ~subst tys paramsno ty))) cl in (tys,List.length tl,isinductive,paramsno,cl') | _ -> raise (TypeCheckerFailure - ("Unknown mutual inductive definition:" ^ - UriManager.string_of_uri uri)) + (lazy ("Unknown mutual inductive definition:" ^ + UriManager.string_of_uri uri))) in if not isinductive then - guarded_by_destructors context n nn kl x safes outtype && - guarded_by_destructors context n nn kl x safes term && + guarded_by_destructors ~subst context n nn kl x safes outtype && + guarded_by_destructors ~subst context n nn kl x safes term && (*CSC: manca ??? il controllo sul tipo di term? *) List.fold_right (fun p i -> - i && guarded_by_destructors context n nn kl x safes p) + i && guarded_by_destructors ~subst context n nn kl x safes p) pl true else - guarded_by_destructors context n nn kl x safes outtype && + let pl_and_cl = + try + List.combine pl cl + with + Invalid_argument _ -> + raise (TypeCheckerFailure (lazy "not enough patterns")) + in + guarded_by_destructors ~subst context n nn kl x safes outtype && (*CSC: manca ??? il controllo sul tipo di term? *) List.fold_right (fun t i -> - i && guarded_by_destructors context n nn kl x safes t) + i && guarded_by_destructors ~subst context n nn kl x safes t) tl true && List.fold_right (fun (p,(_,c)) i -> @@ -922,17 +1028,17 @@ and guarded_by_destructors context n nn kl x safes = recursive_args tys 0 len debrujinedte in let (e, safes',n',nn',x',context') = - get_new_safes context p c rl' safes n nn x + get_new_safes ~subst context p c rl' safes n nn x in i && - guarded_by_destructors context' n' nn' kl x' safes' e - ) (List.combine pl cl) true + guarded_by_destructors ~subst context' n' nn' kl x' safes' e + ) pl_and_cl true | _ -> - guarded_by_destructors context n nn kl x safes outtype && - guarded_by_destructors context n nn kl x safes term && + guarded_by_destructors ~subst context n nn kl x safes outtype && + guarded_by_destructors ~subst context n nn kl x safes term && (*CSC: manca ??? il controllo sul tipo di term? *) List.fold_right - (fun p i -> i && guarded_by_destructors context n nn kl x safes p) + (fun p i -> i && guarded_by_destructors ~subst context n nn kl x safes p) pl true ) | C.Fix (_, fl) -> @@ -944,8 +1050,8 @@ and guarded_by_destructors context n nn kl x safes = and safes' = List.map (fun x -> x + len) safes in List.fold_right (fun (_,_,ty,bo) i -> - i && guarded_by_destructors context n nn kl x_plus_len safes' ty && - guarded_by_destructors (tys@context) n_plus_len nn_plus_len kl + i && guarded_by_destructors ~subst context n nn kl x_plus_len safes' ty && + guarded_by_destructors ~subst (tys@context) n_plus_len nn_plus_len kl x_plus_len safes' bo ) fl true | C.CoFix (_, fl) -> @@ -958,92 +1064,99 @@ and guarded_by_destructors context n nn kl x safes = List.fold_right (fun (_,ty,bo) i -> i && - guarded_by_destructors context n nn kl x_plus_len safes' ty && - guarded_by_destructors (tys@context) n_plus_len nn_plus_len kl + guarded_by_destructors ~subst context n nn kl x_plus_len safes' ty && + guarded_by_destructors ~subst (tys@context) n_plus_len nn_plus_len kl x_plus_len safes' bo ) fl true (* the boolean h means already protected *) (* args is the list of arguments the type of the constructor that may be *) (* found in head position must be applied to. *) -(*CSC: coInductiveTypeURI non cambia mai di ricorsione in ricorsione *) -and guarded_by_constructors context n nn h te args coInductiveTypeURI = +and guarded_by_constructors ~subst context n nn h te args coInductiveTypeURI = let module C = Cic in (*CSC: There is a lot of code replication between the cases X and *) (*CSC: (C.Appl X tl). Maybe it will be better to define a function *) (*CSC: that maps X into (C.Appl X []) when X is not already a C.Appl *) - match CicReduction.whd context te with + match CicReduction.whd ~subst context te with C.Rel m when m > n && m <= nn -> h | C.Rel _ -> true | C.Meta _ | C.Sort _ - | C.Implicit + | C.Implicit _ | C.Cast _ | C.Prod _ | C.LetIn _ -> (* the term has just been type-checked *) - raise (AssertFailure "17") + raise (AssertFailure (lazy "17")) | C.Lambda (name,so,de) -> - does_not_occur context n nn so && - guarded_by_constructors ((Some (name,(C.Decl so)))::context) + does_not_occur ~subst context n nn so && + guarded_by_constructors ~subst ((Some (name,(C.Decl so)))::context) (n + 1) (nn + 1) h de args coInductiveTypeURI | C.Appl ((C.Rel m)::tl) when m > n && m <= nn -> h && - List.fold_right (fun x i -> i && does_not_occur context n nn x) tl true + List.fold_right (fun x i -> i && does_not_occur ~subst context n nn x) tl true | C.Appl ((C.MutConstruct (uri,i,j,exp_named_subst))::tl) -> let consty = - match CicEnvironment.get_cooked_obj ~trust:false uri with - C.InductiveDefinition (itl,_,_) -> + let obj,_ = + try + CicEnvironment.get_cooked_obj ~trust:false CicUniv.empty_ugraph uri + with Not_found -> assert false + in + match obj with + C.InductiveDefinition (itl,_,_,_) -> let (_,_,_,cl) = List.nth itl i in let (_,cons) = List.nth cl (j - 1) in CicSubstitution.subst_vars exp_named_subst cons | _ -> - raise (TypeCheckerFailure ("Unknown mutual inductive definition:" ^ - UriManager.string_of_uri uri)) + raise (TypeCheckerFailure + (lazy ("Unknown mutual inductive definition:" ^ UriManager.string_of_uri uri))) in let rec analyse_branch context ty te = - match CicReduction.whd context ty with - C.Meta _ -> raise (AssertFailure "34") + match CicReduction.whd ~subst context ty with + C.Meta _ -> raise (AssertFailure (lazy "34")) | C.Rel _ | C.Var _ | C.Sort _ -> - does_not_occur context n nn te - | C.Implicit + does_not_occur ~subst context n nn te + | C.Implicit _ | C.Cast _ -> - raise (AssertFailure "24")(* due to type-checking *) + raise (AssertFailure (lazy "24"))(* due to type-checking *) | C.Prod (name,so,de) -> analyse_branch ((Some (name,(C.Decl so)))::context) de te | C.Lambda _ | C.LetIn _ -> - raise (AssertFailure "25")(* due to type-checking *) + raise (AssertFailure (lazy "25"))(* due to type-checking *) | C.Appl ((C.MutInd (uri,_,_))::_) as ty when uri == coInductiveTypeURI -> - guarded_by_constructors context n nn true te [] coInductiveTypeURI + guarded_by_constructors ~subst context n nn true te [] + coInductiveTypeURI | C.Appl ((C.MutInd (uri,_,_))::_) as ty -> - guarded_by_constructors context n nn true te tl coInductiveTypeURI + guarded_by_constructors ~subst context n nn true te tl + coInductiveTypeURI | C.Appl _ -> - does_not_occur context n nn te - | C.Const _ -> raise (AssertFailure "26") + does_not_occur ~subst context n nn te + | C.Const _ -> raise (AssertFailure (lazy "26")) | C.MutInd (uri,_,_) when uri == coInductiveTypeURI -> - guarded_by_constructors context n nn true te [] coInductiveTypeURI + guarded_by_constructors ~subst context n nn true te [] + coInductiveTypeURI | C.MutInd _ -> - does_not_occur context n nn te - | C.MutConstruct _ -> raise (AssertFailure "27") + does_not_occur ~subst context n nn te + | C.MutConstruct _ -> raise (AssertFailure (lazy "27")) (*CSC: we do not consider backbones with a MutCase, Fix, Cofix *) (*CSC: in head position. *) | C.MutCase _ | C.Fix _ | C.CoFix _ -> - raise (AssertFailure "28")(* due to type-checking *) + raise (AssertFailure (lazy "28"))(* due to type-checking *) in let rec analyse_instantiated_type context ty l = - match CicReduction.whd context ty with + match CicReduction.whd ~subst context ty with C.Rel _ | C.Var _ | C.Meta _ | C.Sort _ - | C.Implicit - | C.Cast _ -> raise (AssertFailure "29")(* due to type-checking *) + | C.Implicit _ + | C.Cast _ -> raise (AssertFailure (lazy "29"))(* due to type-checking *) | C.Prod (name,so,de) -> begin match l with @@ -1055,27 +1168,27 @@ and guarded_by_constructors context n nn h te args coInductiveTypeURI = end | C.Lambda _ | C.LetIn _ -> - raise (AssertFailure "30")(* due to type-checking *) + raise (AssertFailure (lazy "30"))(* due to type-checking *) | C.Appl _ -> List.fold_left - (fun i x -> i && does_not_occur context n nn x) true l - | C.Const _ -> raise (AssertFailure "31") + (fun i x -> i && does_not_occur ~subst context n nn x) true l + | C.Const _ -> raise (AssertFailure (lazy "31")) | C.MutInd _ -> List.fold_left - (fun i x -> i && does_not_occur context n nn x) true l - | C.MutConstruct _ -> raise (AssertFailure "32") + (fun i x -> i && does_not_occur ~subst context n nn x) true l + | C.MutConstruct _ -> raise (AssertFailure (lazy "32")) (*CSC: we do not consider backbones with a MutCase, Fix, Cofix *) (*CSC: in head position. *) | C.MutCase _ | C.Fix _ | C.CoFix _ -> - raise (AssertFailure "33")(* due to type-checking *) + raise (AssertFailure (lazy "33"))(* due to type-checking *) in let rec instantiate_type args consty = function [] -> true | tlhe::tltl as l -> - let consty' = CicReduction.whd context consty in + let consty' = CicReduction.whd ~subst context consty in match args with he::tl -> begin @@ -1083,19 +1196,19 @@ and guarded_by_constructors context n nn h te args coInductiveTypeURI = C.Prod (_,_,de) -> let instantiated_de = CicSubstitution.subst he de in (*CSC: siamo sicuri che non sia troppo forte? *) - does_not_occur context n nn tlhe & + does_not_occur ~subst context n nn tlhe & instantiate_type tl instantiated_de tltl | _ -> (*CSC:We do not consider backbones with a MutCase, a *) (*CSC:FixPoint, a CoFixPoint and so on in head position.*) - raise (AssertFailure "23") + raise (AssertFailure (lazy "23")) end | [] -> analyse_instantiated_type context consty' l (* These are all the other cases *) in instantiate_type args consty tl | C.Appl ((C.CoFix (_,fl))::tl) -> - List.fold_left (fun i x -> i && does_not_occur context n nn x) true tl && + List.fold_left (fun i x -> i && does_not_occur ~subst context n nn x) true tl && let len = List.length fl in let n_plus_len = n + len and nn_plus_len = nn + len @@ -1103,36 +1216,38 @@ and guarded_by_constructors context n nn h te args coInductiveTypeURI = and tys = List.map (fun (n,ty,_) -> Some (C.Name n,(C.Decl ty))) fl in List.fold_right (fun (_,ty,bo) i -> - i && does_not_occur context n nn ty && - guarded_by_constructors (tys@context) n_plus_len nn_plus_len h bo - args coInductiveTypeURI + i && does_not_occur ~subst context n nn ty && + guarded_by_constructors ~subst (tys@context) n_plus_len nn_plus_len + h bo args coInductiveTypeURI ) fl true | C.Appl ((C.MutCase (_,_,out,te,pl))::tl) -> - List.fold_left (fun i x -> i && does_not_occur context n nn x) true tl && - does_not_occur context n nn out && - does_not_occur context n nn te && + List.fold_left (fun i x -> i && does_not_occur ~subst context n nn x) true tl && + does_not_occur ~subst context n nn out && + does_not_occur ~subst context n nn te && List.fold_right (fun x i -> i && - guarded_by_constructors context n nn h x args coInductiveTypeURI + guarded_by_constructors ~subst context n nn h x args + coInductiveTypeURI ) pl true | C.Appl l -> - List.fold_right (fun x i -> i && does_not_occur context n nn x) l true + List.fold_right (fun x i -> i && does_not_occur ~subst context n nn x) l true | C.Var (_,exp_named_subst) | C.Const (_,exp_named_subst) -> List.fold_right - (fun (_,x) i -> i && does_not_occur context n nn x) exp_named_subst true + (fun (_,x) i -> i && does_not_occur ~subst context n nn x) exp_named_subst true | C.MutInd _ -> assert false | C.MutConstruct (_,_,_,exp_named_subst) -> List.fold_right - (fun (_,x) i -> i && does_not_occur context n nn x) exp_named_subst true + (fun (_,x) i -> i && does_not_occur ~subst context n nn x) exp_named_subst true | C.MutCase (_,_,out,te,pl) -> - does_not_occur context n nn out && - does_not_occur context n nn te && + does_not_occur ~subst context n nn out && + does_not_occur ~subst context n nn te && List.fold_right (fun x i -> i && - guarded_by_constructors context n nn h x args coInductiveTypeURI + guarded_by_constructors ~subst context n nn h x args + coInductiveTypeURI ) pl true | C.Fix (_,fl) -> let len = List.length fl in @@ -1142,8 +1257,8 @@ and guarded_by_constructors context n nn h te args coInductiveTypeURI = and tys = List.map (fun (n,_,ty,_)-> Some (C.Name n,(C.Decl ty))) fl in List.fold_right (fun (_,_,ty,bo) i -> - i && does_not_occur context n nn ty && - does_not_occur (tys@context) n_plus_len nn_plus_len bo + i && does_not_occur ~subst context n nn ty && + does_not_occur ~subst (tys@context) n_plus_len nn_plus_len bo ) fl true | C.CoFix (_,fl) -> let len = List.length fl in @@ -1153,107 +1268,99 @@ and guarded_by_constructors context n nn h te args coInductiveTypeURI = and tys = List.map (fun (n,ty,_) -> Some (C.Name n,(C.Decl ty))) fl in List.fold_right (fun (_,ty,bo) i -> - i && does_not_occur context n nn ty && - guarded_by_constructors (tys@context) n_plus_len nn_plus_len h bo + i && does_not_occur ~subst context n nn ty && + guarded_by_constructors ~subst (tys@context) n_plus_len nn_plus_len + h bo args coInductiveTypeURI ) fl true -and check_allowed_sort_elimination context uri i need_dummy ind arity1 arity2 = +and check_allowed_sort_elimination ~subst ~metasenv ~logger context uri i + need_dummy ind arity1 arity2 ugraph = let module C = Cic in let module U = UriManager in - match (CicReduction.whd context arity1, CicReduction.whd context arity2) with - (C.Prod (_,so1,de1), C.Prod (_,so2,de2)) - when CicReduction.are_convertible context so1 so2 -> - check_allowed_sort_elimination context uri i need_dummy - (C.Appl [CicSubstitution.lift 1 ind ; C.Rel 1]) de1 de2 - | (C.Sort C.Prop, C.Sort C.Prop) when need_dummy -> true + let arity1 = CicReduction.whd ~subst context arity1 in + let rec check_allowed_sort_elimination_aux ugraph context arity2 need_dummy = + match arity1, CicReduction.whd ~subst context arity2 with + (C.Prod (_,so1,de1), C.Prod (_,so2,de2)) -> + let b,ugraph1 = + CicReduction.are_convertible ~subst ~metasenv context so1 so2 ugraph in + if b then + check_allowed_sort_elimination ~subst ~metasenv ~logger context uri i + need_dummy (C.Appl [CicSubstitution.lift 1 ind ; C.Rel 1]) de1 de2 + ugraph1 + else + false,ugraph1 + | (C.Sort _, C.Prod (name,so,ta)) when not need_dummy -> + let b,ugraph1 = + CicReduction.are_convertible ~subst ~metasenv context so ind ugraph in + if not b then + false,ugraph1 + else + check_allowed_sort_elimination_aux ugraph1 + ((Some (name,C.Decl so))::context) ta true + | (C.Sort C.Prop, C.Sort C.Prop) when need_dummy -> true,ugraph | (C.Sort C.Prop, C.Sort C.Set) | (C.Sort C.Prop, C.Sort C.CProp) - | (C.Sort C.Prop, C.Sort C.Type) when need_dummy -> -(*CSC: WRONG. MISSING CONDITIONS ON THE ARGUMENTS OF THE CONSTRUTOR *) - (match CicEnvironment.get_obj uri with - C.InductiveDefinition (itl,_,_) -> - let (_,_,_,cl) = List.nth itl i in - (* is a singleton definition or the empty proposition? *) - List.length cl = 1 || List.length cl = 0 + | (C.Sort C.Prop, C.Sort (C.Type _) ) when need_dummy -> + (let o,_ = CicEnvironment.get_obj CicUniv.empty_ugraph uri in + match o with + C.InductiveDefinition (itl,_,paramsno,_) -> + let itl_len = List.length itl in + let (name,_,ty,cl) = List.nth itl i in + let cl_len = List.length cl in + if (cl_len = 0 || (itl_len = 1 && cl_len = 1)) then + let non_informative,ugraph = + if cl_len = 0 then true,ugraph + else + is_non_informative ~logger [Some (C.Name name,C.Decl ty)] + paramsno (snd (List.nth cl 0)) ugraph + in + (* is it a singleton or empty non recursive and non informative + definition? *) + non_informative, ugraph + else + false,ugraph | _ -> - raise (TypeCheckerFailure ("Unknown mutual inductive definition:" ^ - UriManager.string_of_uri uri)) + raise (TypeCheckerFailure + (lazy ("Unknown mutual inductive definition:" ^ + UriManager.string_of_uri uri))) ) - | (C.Sort C.Set, C.Sort C.Prop) when need_dummy -> true - | (C.Sort C.CProp, C.Sort C.Prop) when need_dummy -> true - | (C.Sort C.Set, C.Sort C.Set) when need_dummy -> true - | (C.Sort C.Set, C.Sort C.CProp) when need_dummy -> true - | (C.Sort C.CProp, C.Sort C.Set) when need_dummy -> true - | (C.Sort C.CProp, C.Sort C.CProp) when need_dummy -> true - | ((C.Sort C.Set, C.Sort C.Type) | (C.Sort C.CProp, C.Sort C.Type)) + | (C.Sort C.Set, C.Sort C.Prop) when need_dummy -> true , ugraph + | (C.Sort C.CProp, C.Sort C.Prop) when need_dummy -> true , ugraph + | (C.Sort C.Set, C.Sort C.Set) when need_dummy -> true , ugraph + | (C.Sort C.Set, C.Sort C.CProp) when need_dummy -> true , ugraph + | (C.Sort C.CProp, C.Sort C.Set) when need_dummy -> true , ugraph + | (C.Sort C.CProp, C.Sort C.CProp) when need_dummy -> true , ugraph + | ((C.Sort C.Set, C.Sort (C.Type _)) | (C.Sort C.CProp, C.Sort (C.Type _))) when need_dummy -> - (match CicEnvironment.get_obj uri with - C.InductiveDefinition (itl,_,paramsno) -> + (let o,_ = CicEnvironment.get_obj CicUniv.empty_ugraph uri in + match o with + C.InductiveDefinition (itl,_,paramsno,_) -> let tys = List.map (fun (n,_,ty,_) -> Some (Cic.Name n,(Cic.Decl ty))) itl in let (_,_,_,cl) = List.nth itl i in - List.fold_right - (fun (_,x) i -> i && is_small tys paramsno x) cl true - | _ -> - raise (TypeCheckerFailure ("Unknown mutual inductive definition:" ^ - UriManager.string_of_uri uri)) + (List.fold_right + (fun (_,x) (i,ugraph) -> + if i then + is_small ~logger tys paramsno x ugraph + else + false,ugraph + ) cl (true,ugraph)) + | _ -> + raise (TypeCheckerFailure + (lazy ("Unknown mutual inductive definition:" ^ + UriManager.string_of_uri uri))) ) - | (C.Sort C.Type, C.Sort _) when need_dummy -> true - | (C.Sort C.Prop, C.Prod (name,so,ta)) when not need_dummy -> - let res = CicReduction.are_convertible context so ind - in - res && - (match CicReduction.whd ((Some (name,(C.Decl so)))::context) ta with - C.Sort C.Prop -> true - | (C.Sort C.Set | C.Sort C.CProp) -> - (match CicEnvironment.get_obj uri with - C.InductiveDefinition (itl,_,_) -> - let (_,_,_,cl) = List.nth itl i in - (* is a singleton definition? *) - List.length cl = 1 - | _ -> - raise (TypeCheckerFailure - ("Unknown mutual inductive definition:" ^ - UriManager.string_of_uri uri)) - ) - | _ -> false - ) - | ((C.Sort C.Set, C.Prod (name,so,ta)) | (C.Sort C.CProp, C.Prod (name,so,ta))) - when not need_dummy -> - let res = CicReduction.are_convertible context so ind - in - res && - (match CicReduction.whd ((Some (name,(C.Decl so)))::context) ta with - C.Sort C.Prop - | C.Sort C.Set -> true - | C.Sort C.CProp -> true - | C.Sort C.Type -> - (match CicEnvironment.get_obj uri with - C.InductiveDefinition (itl,_,paramsno) -> - let (_,_,_,cl) = List.nth itl i in - let tys = - List.map - (fun (n,_,ty,_) -> Some (Cic.Name n,(Cic.Decl ty))) itl - in - List.fold_right - (fun (_,x) i -> i && is_small tys paramsno x) cl true - | _ -> - raise (TypeCheckerFailure - ("Unknown mutual inductive definition:" ^ - UriManager.string_of_uri uri)) - ) - | _ -> raise (AssertFailure "19") - ) - | (C.Sort C.Type, C.Prod (_,so,_)) when not need_dummy -> - CicReduction.are_convertible context so ind - | (_,_) -> false - -and type_of_branch context argsno need_dummy outtype term constype = + | (C.Sort (C.Type _), C.Sort _) when need_dummy -> true , ugraph + | (_,_) -> false,ugraph + in + check_allowed_sort_elimination_aux ugraph context arity2 need_dummy + +and type_of_branch ~subst context argsno need_dummy outtype term constype = let module C = Cic in let module R = CicReduction in - match R.whd context constype with + match R.whd ~subst context constype with C.MutInd (_,_,_) -> if need_dummy then outtype @@ -1272,109 +1379,166 @@ and type_of_branch context argsno need_dummy outtype term constype = C.Appl l -> C.Appl (l@[C.Rel 1]) | t -> C.Appl [t ; C.Rel 1] in - C.Prod (C.Anonymous,so,type_of_branch + C.Prod (C.Anonymous,so,type_of_branch ~subst ((Some (name,(C.Decl so)))::context) argsno need_dummy (CicSubstitution.lift 1 outtype) term' de) - | _ -> raise (AssertFailure "20") + | _ -> raise (AssertFailure (lazy "20")) (* check_metasenv_consistency checks that the "canonical" context of a metavariable is consitent - up to relocation via the relocation list l - with the actual context *) -and check_metasenv_consistency metasenv context canonical_context l = + +and check_metasenv_consistency ~logger ~subst metasenv context + canonical_context l ugraph += let module C = Cic in let module R = CicReduction in let module S = CicSubstitution in - let lifted_canonical_context = + let lifted_canonical_context = let rec aux i = function - [] -> [] - | (Some (n,C.Decl t))::tl -> - (Some (n,C.Decl (S.lift_meta l (S.lift i t))))::(aux (i+1) tl) - | (Some (n,C.Def (t,None)))::tl -> - (Some (n,C.Def ((S.lift_meta l (S.lift i t)),None)))::(aux (i+1) tl) - | None::tl -> None::(aux (i+1) tl) - | (Some (n,C.Def (_,Some _)))::_ -> assert false + [] -> [] + | (Some (n,C.Decl t))::tl -> + (Some (n,C.Decl (S.subst_meta l (S.lift i t))))::(aux (i+1) tl) + | (Some (n,C.Def (t,None)))::tl -> + (Some (n,C.Def ((S.subst_meta l (S.lift i t)),None)))::(aux (i+1) tl) + | None::tl -> None::(aux (i+1) tl) + | (Some (n,C.Def (t,Some ty)))::tl -> + (Some (n,C.Def ((S.subst_meta l (S.lift i t)),Some (S.subst_meta l (S.lift i ty)))))::(aux (i+1) tl) in aux 1 canonical_context in - List.iter2 - (fun t ct -> - match (t,ct) with - | _,None -> () - | Some t,Some (_,C.Def (ct,_)) -> - if not (R.are_convertible context t ct) then - raise (TypeCheckerFailure (sprintf - "Not well typed metavariable local context: expected a term convertible with %s, found %s" - (CicPp.ppterm ct) (CicPp.ppterm t))) - | Some t,Some (_,C.Decl ct) -> - let type_t = type_of_aux' metasenv context t in - if not (R.are_convertible context type_t ct) then - raise (TypeCheckerFailure (sprintf - "Not well typed metavariable local context: expected a term of type %s, found %s of type %s" - (CicPp.ppterm ct) (CicPp.ppterm t) (CicPp.ppterm type_t))) - | None, _ -> - raise (TypeCheckerFailure - "Not well typed metavariable local context: an hypothesis, that is not hidden, is not instantiated") - ) l lifted_canonical_context + List.fold_left2 + (fun ugraph t ct -> + match (t,ct) with + | _,None -> ugraph + | Some t,Some (_,C.Def (ct,_)) -> + let b,ugraph1 = + R.are_convertible ~subst ~metasenv context t ct ugraph + in + if not b then + raise + (TypeCheckerFailure + (lazy (sprintf "Not well typed metavariable local context: expected a term convertible with %s, found %s" (CicPp.ppterm ct) (CicPp.ppterm t)))) + else + ugraph1 + | Some t,Some (_,C.Decl ct) -> + let type_t,ugraph1 = + type_of_aux' ~logger ~subst metasenv context t ugraph + in + let b,ugraph2 = + R.are_convertible ~subst ~metasenv context type_t ct ugraph1 + in + if not b then + raise (TypeCheckerFailure + (lazy (sprintf "Not well typed metavariable local context: expected a term of type %s, found %s of type %s" + (CicPp.ppterm ct) (CicPp.ppterm t) + (CicPp.ppterm type_t)))) + else + ugraph2 + | None, _ -> + raise (TypeCheckerFailure + (lazy ("Not well typed metavariable local context: "^ + "an hypothesis, that is not hidden, is not instantiated"))) + ) ugraph l lifted_canonical_context + -(* type_of_aux' is just another name (with a different scope) for type_of_aux *) -and type_of_aux' metasenv context t = - let rec type_of_aux context = +(* + type_of_aux' is just another name (with a different scope) + for type_of_aux +*) + +and type_of_aux' ~logger ?(subst = []) metasenv context t ugraph = + let rec type_of_aux ~logger context t ugraph = let module C = Cic in let module R = CicReduction in let module S = CicSubstitution in let module U = UriManager in - function + match t with C.Rel n -> (try match List.nth context (n - 1) with - Some (_,C.Decl t) -> S.lift n t - | Some (_,C.Def (_,Some ty)) -> S.lift n ty + Some (_,C.Decl t) -> S.lift n t,ugraph + | Some (_,C.Def (_,Some ty)) -> S.lift n ty,ugraph | Some (_,C.Def (bo,None)) -> - debug_print "##### CASO DA INVESTIGARE E CAPIRE" ; - type_of_aux context (S.lift n bo) - | None -> raise (TypeCheckerFailure "Reference to deleted hypothesis") + debug_print (lazy "##### CASO DA INVESTIGARE E CAPIRE") ; + type_of_aux ~logger context (S.lift n bo) ugraph + | None -> raise + (TypeCheckerFailure (lazy "Reference to deleted hypothesis")) with _ -> - raise (TypeCheckerFailure - "unbound variable found in constructor type") + raise (TypeCheckerFailure (lazy "unbound variable")) ) | C.Var (uri,exp_named_subst) -> incr fdebug ; - check_exp_named_subst context exp_named_subst ; - let ty = - CicSubstitution.subst_vars exp_named_subst (type_of_variable uri) - in - decr fdebug ; - ty + let ugraph1 = + check_exp_named_subst ~logger ~subst context exp_named_subst ugraph + in + let ty,ugraph2 = type_of_variable ~logger uri ugraph1 in + let ty1 = CicSubstitution.subst_vars exp_named_subst ty in + decr fdebug ; + ty1,ugraph2 | C.Meta (n,l) -> - let (_,canonical_context,ty) = CicUtil.lookup_meta n metasenv in - check_metasenv_consistency metasenv context canonical_context l; - CicSubstitution.lift_meta l ty - | C.Sort s -> C.Sort C.Type (*CSC manca la gestione degli universi!!! *) - | C.Implicit -> raise (AssertFailure "21") + (try + let (canonical_context,term,ty) = CicUtil.lookup_subst n subst in + let ugraph1 = + check_metasenv_consistency ~logger + ~subst metasenv context canonical_context l ugraph + in + (* assuming subst is well typed !!!!! *) + ((CicSubstitution.subst_meta l ty), ugraph1) + (* type_of_aux context (CicSubstitution.subst_meta l term) *) + with CicUtil.Subst_not_found _ -> + let (_,canonical_context,ty) = CicUtil.lookup_meta n metasenv in + let ugraph1 = + check_metasenv_consistency ~logger + ~subst metasenv context canonical_context l ugraph + in + ((CicSubstitution.subst_meta l ty),ugraph1)) + (* TASSI: CONSTRAINTS *) + | C.Sort (C.Type t) -> + let t' = CicUniv.fresh() in + let ugraph1 = CicUniv.add_gt t' t ugraph in + (C.Sort (C.Type t')),ugraph1 + (* TASSI: CONSTRAINTS *) + | C.Sort s -> (C.Sort (C.Type (CicUniv.fresh ()))),ugraph + | C.Implicit _ -> raise (AssertFailure (lazy "21")) | C.Cast (te,ty) as t -> - let _ = type_of_aux context ty in - if R.are_convertible context (type_of_aux context te) ty then - ty - else - raise (TypeCheckerFailure - (sprintf "Invalid cast %s" (CicPp.ppterm t))) + let _,ugraph1 = type_of_aux ~logger context ty ugraph in + let ty_te,ugraph2 = type_of_aux ~logger context te ugraph1 in + let b,ugraph3 = + R.are_convertible ~subst ~metasenv context ty_te ty ugraph2 + in + if b then + ty,ugraph3 + else + raise (TypeCheckerFailure + (lazy (sprintf "Invalid cast %s" (CicPp.ppterm t)))) | C.Prod (name,s,t) -> - let sort1 = type_of_aux context s - and sort2 = type_of_aux ((Some (name,(C.Decl s)))::context) t in - sort_of_prod context (name,s) (sort1,sort2) + let sort1,ugraph1 = type_of_aux ~logger context s ugraph in + let sort2,ugraph2 = + type_of_aux ~logger ((Some (name,(C.Decl s)))::context) t ugraph1 + in + sort_of_prod ~subst context (name,s) (sort1,sort2) ugraph2 | C.Lambda (n,s,t) -> - let sort1 = type_of_aux context s - and type2 = type_of_aux ((Some (n,(C.Decl s)))::context) t in - let sort2 = type_of_aux ((Some (n,(C.Decl s)))::context) type2 in - (* only to check if the product is well-typed *) - let _ = sort_of_prod context (n,s) (sort1,sort2) in - C.Prod (n,s,type2) + let sort1,ugraph1 = type_of_aux ~logger context s ugraph in + (match R.whd ~subst context sort1 with + C.Meta _ + | C.Sort _ -> () + | _ -> + raise + (TypeCheckerFailure (lazy (sprintf + "Not well-typed lambda-abstraction: the source %s should be a type; instead it is a term of type %s" (CicPp.ppterm s) + (CicPp.ppterm sort1)))) + ) ; + let type2,ugraph2 = + type_of_aux ~logger ((Some (n,(C.Decl s)))::context) t ugraph1 + in + (C.Prod (n,s,type2)),ugraph2 | C.LetIn (n,s,t) -> (* only to check if s is well-typed *) - let ty = type_of_aux context s in + let ty,ugraph1 = type_of_aux ~logger context s ugraph in (* The type of a LetIn is a LetIn. Extremely slow since the computed LetIn is later reduced and maybe also re-checked. (C.LetIn (n,s, type_of_aux ((Some (n,(C.Def s)))::context) t)) @@ -1382,407 +1546,618 @@ and type_of_aux' metasenv context t = (* The type of the LetIn is reduced. Much faster than the previous solution. Moreover the inferred type is probably very different from the expected one. - (CicReduction.whd context + (CicReduction.whd ~subst context (C.LetIn (n,s, type_of_aux ((Some (n,(C.Def s)))::context) t))) *) (* One-step LetIn reduction. Even faster than the previous solution. Moreover the inferred type is closer to the expected one. *) - (CicSubstitution.subst s - (type_of_aux ((Some (n,(C.Def (s,Some ty))))::context) t)) + let ty1,ugraph2 = + type_of_aux ~logger + ((Some (n,(C.Def (s,Some ty))))::context) t ugraph1 + in + (CicSubstitution.subst s ty1),ugraph2 | C.Appl (he::tl) when List.length tl > 0 -> - let hetype = type_of_aux context he - and tlbody_and_type = List.map (fun x -> (x, type_of_aux context x)) tl in - eat_prods context hetype tlbody_and_type - | C.Appl _ -> raise (AssertFailure "Appl: no arguments") + let hetype,ugraph1 = type_of_aux ~logger context he ugraph in + let tlbody_and_type,ugraph2 = + List.fold_right ( + fun x (l,ugraph) -> + let ty,ugraph1 = type_of_aux ~logger context x ugraph in + let _,ugraph1 = type_of_aux ~logger context ty ugraph1 in + ((x,ty)::l,ugraph1)) + tl ([],ugraph1) + in + (* TASSI: questa c'era nel mio... ma non nel CVS... *) + (* let _,ugraph2 = type_of_aux context hetype ugraph2 in *) + eat_prods ~subst context hetype tlbody_and_type ugraph2 + | C.Appl _ -> raise (AssertFailure (lazy "Appl: no arguments")) | C.Const (uri,exp_named_subst) -> - incr fdebug ; - check_exp_named_subst context exp_named_subst ; - let cty = - CicSubstitution.subst_vars exp_named_subst (type_of_constant uri) - in - decr fdebug ; - cty + incr fdebug ; + let ugraph1 = + check_exp_named_subst ~logger ~subst context exp_named_subst ugraph + in + let cty,ugraph2 = type_of_constant ~logger uri ugraph1 in + let cty1 = + CicSubstitution.subst_vars exp_named_subst cty + in + decr fdebug ; + cty1,ugraph2 | C.MutInd (uri,i,exp_named_subst) -> incr fdebug ; - check_exp_named_subst context exp_named_subst ; - let cty = - CicSubstitution.subst_vars exp_named_subst - (type_of_mutual_inductive_defs uri i) - in - decr fdebug ; - cty + let ugraph1 = + check_exp_named_subst ~logger ~subst context exp_named_subst ugraph + in + (* TASSI: da me c'era anche questa, ma in CVS no *) + let mty,ugraph2 = type_of_mutual_inductive_defs ~logger uri i ugraph1 in + (* fine parte dubbia *) + let cty = + CicSubstitution.subst_vars exp_named_subst mty + in + decr fdebug ; + cty,ugraph2 | C.MutConstruct (uri,i,j,exp_named_subst) -> - check_exp_named_subst context exp_named_subst ; - let cty = - CicSubstitution.subst_vars exp_named_subst - (type_of_mutual_inductive_constr uri i j) - in - cty + let ugraph1 = + check_exp_named_subst ~logger ~subst context exp_named_subst ugraph + in + (* TASSI: idem come sopra *) + let mty,ugraph2 = + type_of_mutual_inductive_constr ~logger uri i j ugraph1 + in + let cty = + CicSubstitution.subst_vars exp_named_subst mty + in + cty,ugraph2 | C.MutCase (uri,i,outtype,term,pl) -> - let outsort = type_of_aux context outtype in + let outsort,ugraph1 = type_of_aux ~logger context outtype ugraph in let (need_dummy, k) = - let rec guess_args context t = - let outtype = CicReduction.whd context t in - match outtype with - C.Sort _ -> (true, 0) - | C.Prod (name, s, t) -> - let (b, n) = guess_args ((Some (name,(C.Decl s)))::context) t in - if n = 0 then - (* last prod before sort *) - match CicReduction.whd context s with + let rec guess_args context t = + let outtype = CicReduction.whd ~subst context t in + match outtype with + C.Sort _ -> (true, 0) + | C.Prod (name, s, t) -> + let (b, n) = + guess_args ((Some (name,(C.Decl s)))::context) t in + if n = 0 then + (* last prod before sort *) + match CicReduction.whd ~subst context s with (*CSC: for _ see comment below about the missing named_exp_subst ?????????? *) - C.MutInd (uri',i',_) when U.eq uri' uri && i' = i -> - (false, 1) + C.MutInd (uri',i',_) when U.eq uri' uri && i' = i -> + (false, 1) (*CSC: for _ see comment below about the missing named_exp_subst ?????????? *) - | C.Appl ((C.MutInd (uri',i',_)) :: _) - when U.eq uri' uri && i' = i -> (false, 1) - | _ -> (true, 1) - else - (b, n + 1) - | _ -> - raise (TypeCheckerFailure (sprintf - "Malformed case analasys' output type %s" (CicPp.ppterm outtype))) - in - (*CSC whd non serve dopo type_of_aux ? *) - let (b, k) = guess_args context outsort in - if not b then (b, k - 1) else (b, k) + | C.Appl ((C.MutInd (uri',i',_)) :: _) + when U.eq uri' uri && i' = i -> (false, 1) + | _ -> (true, 1) + else + (b, n + 1) + | _ -> + raise + (TypeCheckerFailure + (lazy (sprintf + "Malformed case analasys' output type %s" + (CicPp.ppterm outtype)))) in - let (parameters, arguments, exp_named_subst) = - match R.whd context (type_of_aux context term) with +(* + let (parameters, arguments, exp_named_subst),ugraph2 = + let ty,ugraph2 = type_of_aux context term ugraph1 in + match R.whd ~subst context ty with (*CSC manca il caso dei CAST *) (*CSC: ma servono i parametri (uri,i)? Se si', perche' non serve anche il *) (*CSC: parametro exp_named_subst? Se no, perche' non li togliamo? *) (*CSC: Hint: nella DTD servono per gli stylesheet. *) - C.MutInd (uri',i',exp_named_subst) as typ -> - if U.eq uri uri' && i = i' then ([],[],exp_named_subst) - else raise (TypeCheckerFailure (sprintf - "Case analysys: analysed term type is %s, but is expected to be (an application of) %s#1/%d{_}" - (CicPp.ppterm typ) (U.string_of_uri uri) i)) - | C.Appl ((C.MutInd (uri',i',exp_named_subst) as typ):: tl) as typ' -> - if U.eq uri uri' && i = i' then - let params,args = - split tl (List.length tl - k) - in params,args,exp_named_subst - else raise (TypeCheckerFailure (sprintf - "Case analysys: analysed term type is %s, but is expected to be (an application of) %s#1/%d{_}" - (CicPp.ppterm typ') (U.string_of_uri uri) i)) - | _ -> - raise (TypeCheckerFailure (sprintf - "Case analysis: analysed term %s is not an inductive one" - (CicPp.ppterm term))) + C.MutInd (uri',i',exp_named_subst) as typ -> + if U.eq uri uri' && i = i' then + ([],[],exp_named_subst),ugraph2 + else + raise + (TypeCheckerFailure + (lazy (sprintf + ("Case analysys: analysed term type is %s, but is expected to be (an application of) %s#1/%d{_}") + (CicPp.ppterm typ) (U.string_of_uri uri) i))) + | C.Appl + ((C.MutInd (uri',i',exp_named_subst) as typ):: tl) as typ' -> + if U.eq uri uri' && i = i' then + let params,args = + split tl (List.length tl - k) + in (params,args,exp_named_subst),ugraph2 + else + raise + (TypeCheckerFailure + (lazy (sprintf + ("Case analysys: analysed term type is %s, "^ + "but is expected to be (an application of) "^ + "%s#1/%d{_}") + (CicPp.ppterm typ') (U.string_of_uri uri) i))) + | _ -> + raise + (TypeCheckerFailure + (lazy (sprintf + ("Case analysis: "^ + "analysed term %s is not an inductive one") + (CicPp.ppterm term)))) +*) + let (b, k) = guess_args context outsort in + if not b then (b, k - 1) else (b, k) in + let (parameters, arguments, exp_named_subst),ugraph2 = + let ty,ugraph2 = type_of_aux ~logger context term ugraph1 in + match R.whd ~subst context ty with + C.MutInd (uri',i',exp_named_subst) as typ -> + if U.eq uri uri' && i = i' then + ([],[],exp_named_subst),ugraph2 + else raise + (TypeCheckerFailure + (lazy (sprintf + ("Case analysys: analysed term type is %s (%s#1/%d{_}), but is expected to be (an application of) %s#1/%d{_}") + (CicPp.ppterm typ) (U.string_of_uri uri') i' (U.string_of_uri uri) i))) + | C.Appl + ((C.MutInd (uri',i',exp_named_subst) as typ):: tl) as typ' -> + if U.eq uri uri' && i = i' then + let params,args = + split tl (List.length tl - k) + in (params,args,exp_named_subst),ugraph2 + else raise + (TypeCheckerFailure + (lazy (sprintf + ("Case analysys: analysed term type is %s (%s#1/%d{_}), but is expected to be (an application of) %s#1/%d{_}") + (CicPp.ppterm typ) (U.string_of_uri uri') i' (U.string_of_uri uri) i))) + | _ -> + raise + (TypeCheckerFailure + (lazy (sprintf + "Case analysis: analysed term %s is not an inductive one" + (CicPp.ppterm term)))) in - (* let's control if the sort elimination is allowed: [(I q1 ... qr)|B] *) - let sort_of_ind_type = + (* + let's control if the sort elimination is allowed: + [(I q1 ... qr)|B] + *) + let sort_of_ind_type = if parameters = [] then - C.MutInd (uri,i,exp_named_subst) + C.MutInd (uri,i,exp_named_subst) else - C.Appl ((C.MutInd (uri,i,exp_named_subst))::parameters) - in - if not (check_allowed_sort_elimination context uri i need_dummy - sort_of_ind_type (type_of_aux context sort_of_ind_type) outsort) - then - raise - (TypeCheckerFailure ("Case analasys: sort elimination not allowed")); + C.Appl ((C.MutInd (uri,i,exp_named_subst))::parameters) + in + let type_of_sort_of_ind_ty,ugraph3 = + type_of_aux ~logger context sort_of_ind_type ugraph2 in + let b,ugraph4 = + check_allowed_sort_elimination ~subst ~metasenv ~logger context uri i + need_dummy sort_of_ind_type type_of_sort_of_ind_ty outsort ugraph3 + in + if not b then + raise + (TypeCheckerFailure (lazy ("Case analasys: sort elimination not allowed"))); (* let's check if the type of branches are right *) - let parsno = - match CicEnvironment.get_cooked_obj ~trust:false uri with - C.InductiveDefinition (_,_,parsno) -> parsno + let parsno = + let obj,_ = + try + CicEnvironment.get_cooked_obj ~trust:false CicUniv.empty_ugraph uri + with Not_found -> assert false + in + match obj with + C.InductiveDefinition (_,_,parsno,_) -> parsno | _ -> raise (TypeCheckerFailure - ("Unknown mutual inductive definition:" ^ - UriManager.string_of_uri uri)) - in - let (_,branches_ok) = - List.fold_left - (fun (j,b) p -> - let cons = - if parameters = [] then - (C.MutConstruct (uri,i,j,exp_named_subst)) - else - (C.Appl (C.MutConstruct (uri,i,j,exp_named_subst)::parameters)) - in -(* - (j + 1, b && -*) - (j + 1, -let res = b && - R.are_convertible context (type_of_aux context p) - (type_of_branch context parsno need_dummy outtype cons - (type_of_aux context cons)) -in if not res then debug_print ("#### " ^ CicPp.ppterm (type_of_aux context p) ^ " <==> " ^ CicPp.ppterm (type_of_branch context parsno need_dummy outtype cons (type_of_aux context cons))) ; res - ) - ) (1,true) pl + (lazy ("Unknown mutual inductive definition:" ^ + UriManager.string_of_uri uri))) + in + let (_,branches_ok,ugraph5) = + List.fold_left + (fun (j,b,ugraph) p -> + if b then + let cons = + if parameters = [] then + (C.MutConstruct (uri,i,j,exp_named_subst)) + else + (C.Appl + (C.MutConstruct (uri,i,j,exp_named_subst)::parameters)) + in + let ty_p,ugraph1 = type_of_aux ~logger context p ugraph in + let ty_cons,ugraph3 = type_of_aux ~logger context cons ugraph1 in + (* 2 is skipped *) + let ty_branch = + type_of_branch ~subst context parsno need_dummy outtype cons + ty_cons in + let b1,ugraph4 = + R.are_convertible + ~subst ~metasenv context ty_p ty_branch ugraph3 + in + if not b1 then + debug_print (lazy + ("#### " ^ CicPp.ppterm ty_p ^ + " <==> " ^ CicPp.ppterm ty_branch)); + (j + 1,b1,ugraph4) + else + (j,false,ugraph) + ) (1,true,ugraph4) pl in if not branches_ok then raise - (TypeCheckerFailure "Case analysys: wrong branch type"); - if not need_dummy then - C.Appl ((outtype::arguments)@[term]) - else if arguments = [] then - outtype - else - C.Appl (outtype::arguments) + (TypeCheckerFailure (lazy "Case analysys: wrong branch type")); + let arguments' = + if not need_dummy then outtype::arguments@[term] + else outtype::arguments in + let outtype = + if need_dummy && arguments = [] then outtype + else CicReduction.head_beta_reduce (C.Appl arguments') + in + outtype,ugraph5 | C.Fix (i,fl) -> - let types_times_kl = - List.rev - (List.map - (fun (n,k,ty,_) -> - let _ = type_of_aux context ty in - (Some (C.Name n,(C.Decl ty)),k)) fl) + let types_times_kl,ugraph1 = + (* WAS: list rev list map *) + List.fold_left + (fun (l,ugraph) (n,k,ty,_) -> + let _,ugraph1 = type_of_aux ~logger context ty ugraph in + ((Some (C.Name n,(C.Decl ty)),k)::l,ugraph1) + ) ([],ugraph) fl in let (types,kl) = List.split types_times_kl in - let len = List.length types in - List.iter - (fun (name,x,ty,bo) -> - if - (R.are_convertible (types@context) (type_of_aux (types@context) bo) - (CicSubstitution.lift len ty)) - then - begin - let (m, eaten, context') = - eat_lambdas (types @ context) (x + 1) bo - in - (*let's control the guarded by destructors conditions D{f,k,x,M}*) - if - not - (guarded_by_destructors context' eaten (len + eaten) kl 1 [] m) - then - raise - (TypeCheckerFailure ("Fix: not guarded by destructors")) - end - else - raise (TypeCheckerFailure ("Fix: ill-typed bodies")) - ) fl ; - - (*CSC: controlli mancanti solo su D{f,k,x,M} *) - let (_,_,ty,_) = List.nth fl i in - ty + let len = List.length types in + let ugraph2 = + List.fold_left + (fun ugraph (name,x,ty,bo) -> + let ty_bo,ugraph1 = + type_of_aux ~logger (types@context) bo ugraph + in + let b,ugraph2 = + R.are_convertible ~subst ~metasenv (types@context) + ty_bo (CicSubstitution.lift len ty) ugraph1 in + if b then + begin + let (m, eaten, context') = + eat_lambdas ~subst (types @ context) (x + 1) bo + in + (* + let's control the guarded by + destructors conditions D{f,k,x,M} + *) + if not (guarded_by_destructors ~subst context' eaten + (len + eaten) kl 1 [] m) then + raise + (TypeCheckerFailure + (lazy ("Fix: not guarded by destructors"))) + else + ugraph2 + end + else + raise (TypeCheckerFailure (lazy ("Fix: ill-typed bodies"))) + ) ugraph1 fl in + (*CSC: controlli mancanti solo su D{f,k,x,M} *) + let (_,_,ty,_) = List.nth fl i in + ty,ugraph2 | C.CoFix (i,fl) -> - let types = - List.rev - (List.map - (fun (n,ty,_) -> - let _ = type_of_aux context ty in Some (C.Name n,(C.Decl ty))) fl) - in + let types,ugraph1 = + List.fold_left + (fun (l,ugraph) (n,ty,_) -> + let _,ugraph1 = + type_of_aux ~logger context ty ugraph in + (Some (C.Name n,(C.Decl ty))::l,ugraph1) + ) ([],ugraph) fl + in let len = List.length types in - List.iter - (fun (_,ty,bo) -> - if - (R.are_convertible (types @ context) - (type_of_aux (types @ context) bo) (CicSubstitution.lift len ty)) - then - begin - (* let's control that the returned type is coinductive *) - match returns_a_coinductive context ty with - None -> - raise - (TypeCheckerFailure - ("CoFix: does not return a coinductive type")) - | Some uri -> - (*let's control the guarded by constructors conditions C{f,M}*) - if - not - (guarded_by_constructors (types @ context) 0 len false bo - [] uri) - then - raise - (TypeCheckerFailure ("CoFix: not guarded by constructors")) - end - else - raise - (TypeCheckerFailure ("CoFix: ill-typed bodies")) - ) fl ; - - let (_,ty,_) = List.nth fl i in - ty - - and check_exp_named_subst context = - let rec check_exp_named_subst_aux substs = - function - [] -> () - | ((uri,t) as subst)::tl -> - let typeofvar = - CicSubstitution.subst_vars substs (type_of_variable uri) in - (match CicEnvironment.get_cooked_obj ~trust:false uri with - Cic.Variable (_,Some bo,_,_) -> - raise - (TypeCheckerFailure - ("A variable with a body can not be explicit substituted")) - | Cic.Variable (_,None,_,_) -> () - | _ -> - raise (TypeCheckerFailure - ("Unknown mutual inductive definition:" ^ - UriManager.string_of_uri uri)) - ) ; - let typeoft = type_of_aux context t in - if CicReduction.are_convertible context typeoft typeofvar then - check_exp_named_subst_aux (substs@[subst]) tl - else - begin - CicReduction.fdebug := 0 ; - ignore (CicReduction.are_convertible context typeoft typeofvar) ; - fdebug := 0 ; - debug typeoft [typeofvar] ; - raise (TypeCheckerFailure "Wrong Explicit Named Substitution") - end - in - check_exp_named_subst_aux [] + let ugraph2 = + List.fold_left + (fun ugraph (_,ty,bo) -> + let ty_bo,ugraph1 = + type_of_aux ~logger (types @ context) bo ugraph + in + let b,ugraph2 = + R.are_convertible ~subst ~metasenv (types @ context) ty_bo + (CicSubstitution.lift len ty) ugraph1 + in + if b then + begin + (* let's control that the returned type is coinductive *) + match returns_a_coinductive ~subst context ty with + None -> + raise + (TypeCheckerFailure + (lazy "CoFix: does not return a coinductive type")) + | Some uri -> + (* + let's control the guarded by constructors + conditions C{f,M} + *) + if not (guarded_by_constructors ~subst + (types @ context) 0 len false bo [] uri) then + raise + (TypeCheckerFailure + (lazy "CoFix: not guarded by constructors")) + else + ugraph2 + end + else + raise + (TypeCheckerFailure (lazy "CoFix: ill-typed bodies")) + ) ugraph1 fl + in + let (_,ty,_) = List.nth fl i in + ty,ugraph2 - and sort_of_prod context (name,s) (t1, t2) = + and check_exp_named_subst ~logger ~subst context ugraph = + let rec check_exp_named_subst_aux ~logger esubsts l ugraph = + match l with + [] -> ugraph + | ((uri,t) as item)::tl -> + let ty_uri,ugraph1 = type_of_variable ~logger uri ugraph in + let typeofvar = + CicSubstitution.subst_vars esubsts ty_uri in + let typeoft,ugraph2 = type_of_aux ~logger context t ugraph1 in + let b,ugraph3 = + CicReduction.are_convertible ~subst ~metasenv + context typeoft typeofvar ugraph2 + in + if b then + check_exp_named_subst_aux ~logger (esubsts@[item]) tl ugraph3 + else + begin + CicReduction.fdebug := 0 ; + ignore + (CicReduction.are_convertible + ~subst ~metasenv context typeoft typeofvar ugraph2) ; + fdebug := 0 ; + debug typeoft [typeofvar] ; + raise (TypeCheckerFailure (lazy "Wrong Explicit Named Substitution")) + end + in + check_exp_named_subst_aux ~logger [] ugraph + + and sort_of_prod ~subst context (name,s) (t1, t2) ugraph = let module C = Cic in - let t1' = CicReduction.whd context t1 in - let t2' = CicReduction.whd ((Some (name,C.Decl s))::context) t2 in + let t1' = CicReduction.whd ~subst context t1 in + let t2' = CicReduction.whd ~subst ((Some (name,C.Decl s))::context) t2 in match (t1', t2') with (C.Sort s1, C.Sort s2) - when (s2 = C.Prop or s2 = C.Set or s2 = C.CProp) -> (* different from Coq manual!!! *) - C.Sort s2 - | (C.Sort s1, C.Sort s2) -> C.Sort C.Type (*CSC manca la gestione degli universi!!! *) - | (C.Meta _, C.Sort _) -> t2' - | (C.Meta _, C.Meta (_,[])) - | (C.Sort _, C.Meta (_,[])) -> t2' - | (_,_) -> raise (TypeCheckerFailure (sprintf + when (s2 = C.Prop or s2 = C.Set or s2 = C.CProp) -> + (* different from Coq manual!!! *) + C.Sort s2,ugraph + | (C.Sort (C.Type t1), C.Sort (C.Type t2)) -> + (* TASSI: CONSRTAINTS: the same in doubletypeinference, cicrefine *) + let t' = CicUniv.fresh() in + let ugraph1 = CicUniv.add_ge t' t1 ugraph in + let ugraph2 = CicUniv.add_ge t' t2 ugraph1 in + C.Sort (C.Type t'),ugraph2 + | (C.Sort _,C.Sort (C.Type t1)) -> + (* TASSI: CONSRTAINTS: the same in doubletypeinference, cicrefine *) + C.Sort (C.Type t1),ugraph (* c'e' bisogno di un fresh? *) + | (C.Meta _, C.Sort _) -> t2',ugraph + | (C.Meta _, (C.Meta (_,_) as t)) + | (C.Sort _, (C.Meta (_,_) as t)) when CicUtil.is_closed t -> + t2',ugraph + | (_,_) -> raise (TypeCheckerFailure (lazy (sprintf "Prod: expected two sorts, found = %s, %s" (CicPp.ppterm t1') - (CicPp.ppterm t2'))) + (CicPp.ppterm t2')))) - and eat_prods context hetype = - (*CSC: siamo sicuri che le are_convertible non lavorino con termini non *) - (*CSC: cucinati *) - function - [] -> hetype - | (hete, hety)::tl -> - (match (CicReduction.whd context hetype) with - Cic.Prod (n,s,t) -> - if CicReduction.are_convertible context s hety then - (CicReduction.fdebug := -1 ; - eat_prods context (CicSubstitution.subst hete t) tl - ) - else - begin - CicReduction.fdebug := 0 ; - ignore (CicReduction.are_convertible context s hety) ; - fdebug := 0 ; - debug s [hety] ; - raise (TypeCheckerFailure (sprintf - "Appl: wrong parameter-type, expected %s, found %s" - (CicPp.ppterm hetype) (CicPp.ppterm s))) - end - | _ -> - raise (TypeCheckerFailure - "Appl: this is not a function, it cannot be applied") - ) + and eat_prods ~subst context hetype l ugraph = + (*CSC: siamo sicuri che le are_convertible non lavorino con termini non *) + (*CSC: cucinati *) + match l with + [] -> hetype,ugraph + | (hete, hety)::tl -> + (match (CicReduction.whd ~subst context hetype) with + Cic.Prod (n,s,t) -> + let b,ugraph1 = + CicReduction.are_convertible + ~subst ~metasenv context hety s ugraph + in + if b then + begin + CicReduction.fdebug := -1 ; + eat_prods ~subst context + (CicSubstitution.subst hete t) tl ugraph1 + (*TASSI: not sure *) + end + else + begin + CicReduction.fdebug := 0 ; + ignore (CicReduction.are_convertible + ~subst ~metasenv context s hety ugraph) ; + fdebug := 0 ; + debug s [hety] ; + raise + (TypeCheckerFailure + (lazy (sprintf + ("Appl: wrong parameter-type, expected %s, found %s") + (CicPp.ppterm hetype) (CicPp.ppterm s)))) + end + | _ -> + raise (TypeCheckerFailure + (lazy "Appl: this is not a function, it cannot be applied")) + ) - and returns_a_coinductive context ty = + and returns_a_coinductive ~subst context ty = let module C = Cic in - match CicReduction.whd context ty with + match CicReduction.whd ~subst context ty with C.MutInd (uri,i,_) -> (*CSC: definire una funzioncina per questo codice sempre replicato *) - (match CicEnvironment.get_cooked_obj ~trust:false uri with - C.InductiveDefinition (itl,_,_) -> + let obj,_ = + try + CicEnvironment.get_cooked_obj ~trust:false CicUniv.empty_ugraph uri + with Not_found -> assert false + in + (match obj with + C.InductiveDefinition (itl,_,_,_) -> let (_,is_inductive,_,_) = List.nth itl i in if is_inductive then None else (Some uri) | _ -> raise (TypeCheckerFailure - ("Unknown mutual inductive definition:" ^ - UriManager.string_of_uri uri)) + (lazy ("Unknown mutual inductive definition:" ^ + UriManager.string_of_uri uri))) ) | C.Appl ((C.MutInd (uri,i,_))::_) -> - (match CicEnvironment.get_obj uri with - C.InductiveDefinition (itl,_,_) -> + (let o,_ = CicEnvironment.get_obj CicUniv.empty_ugraph uri in + match o with + C.InductiveDefinition (itl,_,_,_) -> let (_,is_inductive,_,_) = List.nth itl i in if is_inductive then None else (Some uri) | _ -> raise (TypeCheckerFailure - ("Unknown mutual inductive definition:" ^ - UriManager.string_of_uri uri)) + (lazy ("Unknown mutual inductive definition:" ^ + UriManager.string_of_uri uri))) ) | C.Prod (n,so,de) -> - returns_a_coinductive ((Some (n,C.Decl so))::context) de + returns_a_coinductive ~subst ((Some (n,C.Decl so))::context) de | _ -> None in (*CSC -debug_print ("INIZIO TYPE_OF_AUX " ^ CicPp.ppterm t) ; flush stderr ; +debug_print (lazy ("INIZIO TYPE_OF_AUX " ^ CicPp.ppterm t)) ; flush stderr ; let res = *) - type_of_aux context t + type_of_aux ~logger context t ugraph (* -in debug_print "FINE TYPE_OF_AUX" ; flush stderr ; res +in debug_print (lazy "FINE TYPE_OF_AUX") ; flush stderr ; res *) (* is a small constructor? *) (*CSC: ottimizzare calcolando staticamente *) -and is_small context paramsno c = - let rec is_small_aux context c = +and is_small_or_non_informative ~condition ~logger context paramsno c ugraph = + let rec is_small_or_non_informative_aux ~logger context c ugraph = let module C = Cic in match CicReduction.whd context c with C.Prod (n,so,de) -> - (*CSC: [] is an empty metasenv. Is it correct? *) - let s = type_of_aux' [] context so in - (s = C.Sort C.Prop || s = C.Sort C.Set || s = C.Sort C.CProp) && - is_small_aux ((Some (n,(C.Decl so)))::context) de - | _ -> true (*CSC: we trust the type-checker *) + let s,ugraph1 = type_of_aux' ~logger [] context so ugraph in + let b = condition s in + if b then + is_small_or_non_informative_aux + ~logger ((Some (n,(C.Decl so)))::context) de ugraph1 + else + false,ugraph1 + | _ -> true,ugraph (*CSC: we trust the type-checker *) in - let (context',dx) = split_prods context paramsno c in - is_small_aux context' dx + let (context',dx) = split_prods ~subst:[] context paramsno c in + is_small_or_non_informative_aux ~logger context' dx ugraph + +and is_small ~logger = + is_small_or_non_informative + ~condition:(fun s -> s=Cic.Sort Cic.Prop || s=Cic.Sort Cic.Set) + ~logger -and type_of t = +and is_non_informative ~logger = + is_small_or_non_informative + ~condition:(fun s -> s=Cic.Sort Cic.Prop) + ~logger + +and type_of ~logger t ugraph = (*CSC -debug_print ("INIZIO TYPE_OF_AUX' " ^ CicPp.ppterm t) ; flush stderr ; +debug_print (lazy ("INIZIO TYPE_OF_AUX' " ^ CicPp.ppterm t)) ; flush stderr ; let res = *) - type_of_aux' [] [] t + type_of_aux' ~logger [] [] t ugraph (*CSC -in debug_print "FINE TYPE_OF_AUX'" ; flush stderr ; res +in debug_print (lazy "FINE TYPE_OF_AUX'") ; flush stderr ; res *) ;; +let typecheck_obj0 ~logger uri ugraph = + let module C = Cic in + function + C.Constant (_,Some te,ty,_,_) -> + let _,ugraph = type_of ~logger ty ugraph in + let ty_te,ugraph = type_of ~logger te ugraph in + let b,ugraph = (CicReduction.are_convertible [] ty_te ty ugraph) in + if not b then + raise (TypeCheckerFailure + (lazy "the type of the body is not the one expected")) + else + ugraph + | C.Constant (_,None,ty,_,_) -> + (* only to check that ty is well-typed *) + let _,ugraph = type_of ~logger ty ugraph in + ugraph + | C.CurrentProof (_,conjs,te,ty,_,_) -> + let _,ugraph = + List.fold_left + (fun (metasenv,ugraph) ((_,context,ty) as conj) -> + let _,ugraph = + type_of_aux' ~logger metasenv context ty ugraph + in + metasenv @ [conj],ugraph + ) ([],ugraph) conjs + in + let _,ugraph = type_of_aux' ~logger conjs [] ty ugraph in + let type_of_te,ugraph = + type_of_aux' ~logger conjs [] te ugraph + in + let b,ugraph = CicReduction.are_convertible [] type_of_te ty ugraph in + if not b then + raise (TypeCheckerFailure (lazy (sprintf + "the current proof is not well typed because the type %s of the body is not convertible to the declared type %s" + (CicPp.ppterm type_of_te) (CicPp.ppterm ty)))) + else + ugraph + | C.Variable (_,bo,ty,_,_) -> + (* only to check that ty is well-typed *) + let _,ugraph = type_of ~logger ty ugraph in + (match bo with + None -> ugraph + | Some bo -> + let ty_bo,ugraph = type_of ~logger bo ugraph in + let b,ugraph = CicReduction.are_convertible [] ty_bo ty ugraph in + if not b then + raise (TypeCheckerFailure + (lazy "the body is not the one expected")) + else + ugraph + ) + | (C.InductiveDefinition _ as obj) -> + check_mutual_inductive_defs ~logger uri obj ugraph + let typecheck uri = let module C = Cic in let module R = CicReduction in let module U = UriManager in - match CicEnvironment.is_type_checked ~trust:false uri with - CicEnvironment.CheckedObj _ -> () + let logger = new CicLogger.logger in + (* ??? match CicEnvironment.is_type_checked ~trust:true uri with ???? *) + match CicEnvironment.is_type_checked ~trust:false CicUniv.empty_ugraph uri with + CicEnvironment.CheckedObj (cobj,ugraph') -> + (* debug_print (lazy ("NON-INIZIO A TYPECHECKARE " ^ U.string_of_uri uri));*) + cobj,ugraph' | CicEnvironment.UncheckedObj uobj -> (* let's typecheck the uncooked object *) - CicLogger.log (`Start_type_checking uri) ; - (match uobj with - C.Constant (_,Some te,ty,_) -> - let _ = type_of ty in - if not (R.are_convertible [] (type_of te ) ty) then - raise (TypeCheckerFailure - ("Unknown constant:" ^ U.string_of_uri uri)) - | C.Constant (_,None,ty,_) -> - (* only to check that ty is well-typed *) - let _ = type_of ty in () - | C.CurrentProof (_,conjs,te,ty,_) -> - let _ = - List.fold_left - (fun metasenv ((_,context,ty) as conj) -> - ignore (type_of_aux' metasenv context ty) ; - metasenv @ [conj] - ) [] conjs - in - let _ = type_of_aux' conjs [] ty in - let type_of_te = type_of_aux' conjs [] te in - if not (R.are_convertible [] type_of_te ty) - then - raise (TypeCheckerFailure (sprintf - "the current proof %s is not well typed because the type %s of the body is not convertible to the declared type %s" - (U.string_of_uri uri) (CicPp.ppterm type_of_te) - (CicPp.ppterm ty))) - | C.Variable (_,bo,ty,_) -> - (* only to check that ty is well-typed *) - let _ = type_of ty in - (match bo with - None -> () - | Some bo -> - if not (R.are_convertible [] (type_of bo) ty) then - raise (TypeCheckerFailure - ("Unknown variable:" ^ U.string_of_uri uri)) - ) - | C.InductiveDefinition _ -> - check_mutual_inductive_defs uri uobj - ) ; - CicEnvironment.set_type_checking_info uri ; - CicLogger.log (`Type_checking_completed uri) + logger#log (`Start_type_checking uri) ; + (* debug_print (lazy ("INIZIO A TYPECHECKARE " ^ U.string_of_uri uri)); *) + let ugraph = typecheck_obj0 ~logger uri CicUniv.empty_ugraph uobj in + try + CicEnvironment.set_type_checking_info uri; + logger#log (`Type_checking_completed uri); + match CicEnvironment.is_type_checked ~trust:false ugraph uri with + CicEnvironment.CheckedObj (cobj,ugraph') -> cobj,ugraph' + | _ -> raise CicEnvironmentError + with + (* + this is raised if set_type_checking_info is called on an object + that has no associated universe file. If we are in univ_maker + phase this is OK since univ_maker will properly commit the + object. + *) + Invalid_argument s -> + (*debug_print (lazy s);*) + uobj,ugraph ;; + +let typecheck_obj ~logger uri obj = + let ugraph = typecheck_obj0 ~logger uri CicUniv.empty_ugraph obj in + let ugraph, univlist, obj = CicUnivUtils.clean_and_fill uri obj ugraph in + CicEnvironment.add_type_checked_obj uri (obj,ugraph,univlist) + +(** wrappers which instantiate fresh loggers *) + +let type_of_aux' ?(subst = []) metasenv context t ugraph = + let logger = new CicLogger.logger in + type_of_aux' ~logger ~subst metasenv context t ugraph + +let typecheck_obj uri obj = + let logger = new CicLogger.logger in + typecheck_obj ~logger uri obj + +(* check_allowed_sort_elimination uri i s1 s2 + This function is used outside the kernel to determine in advance whether + a MutCase will be allowed or not. + [uri,i] is the type of the term to match + [s1] is the sort of the term to eliminate (i.e. the head of the arity + of the inductive type [uri,i]) + [s2] is the sort of the goal (i.e. the head of the type of the outtype + of the MutCase) *) +let check_allowed_sort_elimination uri i s1 s2 = + fst (check_allowed_sort_elimination ~subst:[] ~metasenv:[] + ~logger:(new CicLogger.logger) [] uri i true + (Cic.Implicit None) (* never used *) (Cic.Sort s1) (Cic.Sort s2) + CicUniv.empty_ugraph)