X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Focaml%2Fcic_transformations%2Fcontent2pres.ml;h=c0cdc5c0f0f0c289cc07afd85c1127161b25d2d8;hb=5325734bc2e4927ed7ec146e35a6f0f2b49f50c1;hp=c2d10e5199818b524612a44064e41496269dc01e;hpb=4a01e6197e070d3eff7a3fe02180597136d81eba;p=helm.git diff --git a/helm/ocaml/cic_transformations/content2pres.ml b/helm/ocaml/cic_transformations/content2pres.ml index c2d10e519..c0cdc5c0f 100644 --- a/helm/ocaml/cic_transformations/content2pres.ml +++ b/helm/ocaml/cic_transformations/content2pres.ml @@ -32,6 +32,16 @@ (* *) (***************************************************************************) +let p_mtr a b = Mpresentation.Mtr(a,b) +let p_mtd a b = Mpresentation.Mtd(a,b) +let p_mtable a b = Mpresentation.Mtable(a,b) +let p_mtext a b = Mpresentation.Mtext(a,b) +let p_mi a b = Mpresentation.Mi(a,b) +let p_mo a b = Mpresentation.Mo(a,b) +let p_mrow a b = Mpresentation.Mrow(a,b) +let p_mphantom a b = Mpresentation.Mphantom(a,b) + + let rec split n l = if n = 0 then [],l else let l1,l2 = @@ -42,7 +52,7 @@ let rec split n l = let is_big_general countterm p = let maxsize = Cexpr2pres.maxsize in - let module Con = Cic2content in + let module Con = Content in let rec countp current_size p = if current_size > maxsize then current_size else @@ -105,6 +115,8 @@ let is_big_general countterm p = (match prem.Con.premise_binder with Some s -> current_size + (String.length s) | None -> current_size + 7) + | Con.Lemma lemma -> + current_size + (String.length lemma.Con.lemma_name) | Con.Term t -> countterm current_size t | Con.ArgProof p -> countp current_size p | Con.ArgMethod s -> (maxsize + 1)) in @@ -115,38 +127,49 @@ let is_big_general countterm p = let is_big = is_big_general (Cexpr2pres.countterm) ;; -let make_row items concl = +let get_xref = + let module Con = Content in + function + `Declaration d + | `Hypothesis d -> d.Con.dec_id + | `Proof p -> p.Con.proof_id + | `Definition d -> d.Con.def_id + | `Joint jo -> jo.Con.joint_id +;; + +let make_row ?(attrs=[]) items concl = let module P = Mpresentation in (match concl with P.Mtable _ -> (* big! *) - P.Mtable ([None,"align","baseline 1"; None,"equalrows","false"; + P.Mtable (attrs@[None,"align","baseline 1"; None,"equalrows","false"; None,"columnalign","left"], [P.Mtr([],[P.Mtd ([],P.Mrow([],items))]); P.Mtr ([],[P.Mtd ([],P.indented concl)])]) | _ -> (* small *) - P.Mrow([],items@[P.Mspace([None,"width","0.1cm"]);concl])) + P.Mrow(attrs,items@[P.Mspace([None,"width","0.1cm"]);concl])) ;; -let make_concl verb concl = +let make_concl ?(attrs=[]) verb concl = let module P = Mpresentation in (match concl with P.Mtable _ -> (* big! *) - P.Mtable ([None,"align","baseline 1"; None,"equalrows","false"; + P.Mtable (attrs@[None,"align","baseline 1"; None,"equalrows","false"; None,"columnalign","left"], [P.Mtr([],[P.Mtd ([],P.Mtext([None,"mathcolor","Red"],verb))]); P.Mtr ([],[P.Mtd ([],P.indented concl)])]) | _ -> (* small *) - P.Mrow([], + P.Mrow(attrs, [P.Mtext([None,"mathcolor","Red"],verb); P.Mspace([None,"width","0.1cm"]); concl])) ;; let make_args_for_apply term2pres args = - let module Con = Cic2content in + let module Con = Content in let module P = Mpresentation in - let rec make_arg_for_apply is_first arg row = - (match arg with + let make_arg_for_apply is_first arg row = + let res = + match arg with Con.Aux n -> assert false | Con.Premise prem -> let name = @@ -154,21 +177,27 @@ let make_args_for_apply term2pres args = None -> "previous" | Some s -> s) in P.Mi([],name)::row + | Con.Lemma lemma -> + P.Mi([],lemma.Con.lemma_name)::row | Con.Term t -> if is_first then (term2pres t)::row - else P.Mspace([None,"width","0.1cm"])::P.Mi([],"_")::row + else P.Mi([],"_")::row | Con.ArgProof _ | Con.ArgMethod _ -> - P.Mspace([None,"width","0.1cm"])::P.Mi([],"_")::row) in - match args with - hd::tl -> - make_arg_for_apply true hd - (List.fold_right (make_arg_for_apply false) tl []) - | _ -> assert false;; + P.Mi([],"_")::row + in + if is_first then res else P.smallskip::res + in + match args with + hd::tl -> + make_arg_for_apply true hd + (List.fold_right (make_arg_for_apply false) tl []) + | _ -> assert false +;; let rec justification term2pres p = - let module Con = Cic2content in + let module Con = Content in let module P = Mpresentation in if ((p.Con.proof_conclude.Con.conclude_method = "Exact") or ((p.Con.proof_context = []) & @@ -183,7 +212,7 @@ let rec justification term2pres p = and proof2pres term2pres p = let rec proof2pres p = - let module Con = Cic2content in + let module Con = Content in let module P = Mpresentation in let indent = let is_decl e = @@ -192,54 +221,71 @@ and proof2pres term2pres p = | `Hypothesis _ -> true | _ -> false) in ((List.filter is_decl p.Con.proof_context) != []) in + let omit_conclusion = (not indent) && (p.Con.proof_context != []) in let concl = (match p.Con.proof_conclude.Con.conclude_conclusion with None -> None | Some t -> Some (term2pres t)) in let body = - let presconclude = conclude2pres p.Con.proof_conclude indent in + let presconclude = + conclude2pres p.Con.proof_conclude indent omit_conclusion in let presacontext = acontext2pres p.Con.proof_apply_context presconclude indent in context2pres p.Con.proof_context presacontext in -(* - P.Mtable ([("align","baseline 1");("equalrows","false"); - ("columnalign","left")], - (context2pres_old p.Con.proof_context)@ - (acontext2pres_old p.Con.proof_apply_context indent)@ - [conclude2pres_old p.Con.proof_conclude indent]) in *) match p.Con.proof_name with None -> body | Some name -> - let ac = - (match concl with - None -> P.Mtext([],"NO PROOF!!!") - | Some c -> c) in let action = - P.Maction([None,"actiontype","toggle"], - [(make_concl "proof of" ac); - body]) in + match concl with + None -> body +(* + P.Maction + ([None,"actiontype","toggle" ; None,"selection","1"], + [P.Mtext [] "proof" ; body]) +*) + | Some ac -> + P.Maction + ([None,"actiontype","toggle" ; None,"selection","1"], + [(make_concl ~attrs:[Some "helm", "xref", p.Con.proof_id] + "proof of" ac); body]) + in P.Mtable ([None,"align","baseline 1"; None,"equalrows","false"; None,"columnalign","left"], [P.Mtr ([],[P.Mtd ([],P.Mfenced([],[P.Mtext ([],name)]))]); P.Mtr ([],[P.Mtd ([], P.indented action)])]) +(* + P.Mtable ([None,"align","baseline 1"; None,"equalrows","false"; + None,"columnalign","left";Some "helm", "xref", p.Con.proof_id], + [P.Mtr ([],[P.Mtd ([],P.Mfenced([],[P.Mtext ([],name)]))]); + P.Mtr ([],[P.Mtd ([], P.indented action)])]) *) and context2pres c continuation = + (* we generate a subtable for each context element, for selection + purposes + The table generated by the head-element does not have an xref; + the whole context-proof is already selectable *) let module P = Mpresentation in - List.fold_right - (fun ce continuation -> + match c with + [] -> continuation + | hd::tl -> + let continuation' = + List.fold_right + (fun ce continuation -> + let xref = get_xref ce in + P.Mtable([None,"align","baseline 1"; None,"equalrows","false"; + None,"columnalign","left"; Some "helm", "xref", xref ], + [P.Mtr([Some "helm", "xref", "ce_"^xref],[P.Mtd ([],ce2pres ce)]); + P.Mtr([],[P.Mtd ([], continuation)])])) tl continuation in + let hd_xref= get_xref hd in P.Mtable([None,"align","baseline 1"; None,"equalrows","false"; - None,"columnalign","left"], - [P.Mtr([],[P.Mtd ([],ce2pres ce)]); - P.Mtr([],[P.Mtd ([], continuation)])])) c continuation - - and context2pres_old c = - let module P = Mpresentation in - List.map - (function ce -> P.Mtr ([], [P.Mtd ([], ce2pres ce)])) c - + None,"columnalign","left"], + [P.Mtr([Some "helm", "xref", "ce_"^hd_xref], + [P.Mtd ([],ce2pres hd)]); + P.Mtr([],[P.Mtd ([], continuation')])]) + and ce2pres = let module P = Mpresentation in - let module Con = Cic2content in + let module Con = Content in function `Declaration d -> (match d.Con.dec_name with @@ -260,14 +306,15 @@ and proof2pres term2pres p = P.Mrow ([], [P.Mtext([None,"mathcolor","Red"],"Suppose"); P.Mspace([None,"width","0.1cm"]); - P.Mtext([],"("); + P.Mo([],"("); P.Mi ([],s); - P.Mtext([],")"); + P.Mo([],")"); P.Mspace([None,"width","0.1cm"]); ty]) | None -> prerr_endline "NO NAME!!"; assert false) - | `Proof p -> proof2pres p + | `Proof p -> + proof2pres p | `Definition d -> (match d.Con.def_name with Some s -> @@ -283,6 +330,7 @@ and proof2pres term2pres p = P.Mtext ([],"jointdef") and acontext2pres ac continuation indent = + let module Con = Content in let module P = Mpresentation in List.fold_right (fun p continuation -> @@ -292,37 +340,48 @@ and proof2pres term2pres p = else proof2pres p in P.Mtable([None,"align","baseline 1"; None,"equalrows","false"; - None,"columnalign","left"], - [P.Mtr([],[P.Mtd ([],hd)]); + None,"columnalign","left"; Some "helm","xref",p.Con.proof_id], + [P.Mtr([Some "helm","xref","ace_"^p.Con.proof_id],[P.Mtd ([],hd)]); P.Mtr([],[P.Mtd ([], continuation)])])) ac continuation - and acontext2pres_old ac indent = - let module P = Mpresentation in - List.map - (function p -> - if indent then - P.Mtr ([], [P.Mtd ([], P.indented (proof2pres p))]) - else - P.Mtr ([], - [P.Mtd ([], proof2pres p)])) ac - - and conclude2pres conclude indent = + and conclude2pres conclude indent omit_conclusion = + let module Con = Content in let module P = Mpresentation in - if indent then - P.indented (conclude_aux conclude) + let tconclude_body = + match conclude.Con.conclude_conclusion with + Some t when + not omit_conclusion or + (* CSC: I ignore the omit_conclusion flag in this case. *) + (* CSC: Is this the correct behaviour? In the stylesheets *) + (* CSC: we simply generated nothing (i.e. the output type *) + (* CSC: of the function should become an option. *) + conclude.Con.conclude_method = "BU_Conversion" -> + let concl = (term2pres t) in + if conclude.Con.conclude_method = "BU_Conversion" then + make_concl "that is equivalent to" concl + else if conclude.Con.conclude_method = "FalseInd" then + (* false ind is in charge to add the conclusion *) + falseind conclude + else + let conclude_body = conclude_aux conclude in + let ann_concl = + if conclude.Con.conclude_method = "TD_Conversion" then + make_concl "that is equivalent to" concl + else make_concl "we conclude" concl in + P.Mtable ([None,"align","baseline 1"; None,"equalrows","false"; + None,"columnalign","left"], + [P.Mtr ([],[P.Mtd ([],conclude_body)]); + P.Mtr ([],[P.Mtd ([],ann_concl)])]) + | _ -> conclude_aux conclude in + if indent then + P.indented (P.Mrow ([Some "helm", "xref", conclude.Con.conclude_id], + [tconclude_body])) else - conclude_aux conclude + P.Mrow ([Some "helm", "xref", conclude.Con.conclude_id],[tconclude_body]) - and conclude2pres_old conclude indent = - let module P = Mpresentation in - if indent then - P.Mtr ([], [P.Mtd ([], P.indented (conclude_aux conclude))]) - else - P.Mtr ([], - [P.Mtd ([], conclude_aux conclude)]) and conclude_aux conclude = - let module Con = Cic2content in + let module Con = Content in let module P = Mpresentation in if conclude.Con.conclude_method = "TD_Conversion" then let expected = @@ -343,23 +402,26 @@ and proof2pres term2pres p = P.Mtr([],[P.Mtd([],make_concl "or equivalently" synth)]); P.Mtr([],[P.Mtd([],proof2pres subproof)])]) else if conclude.Con.conclude_method = "BU_Conversion" then - let conclusion = - (match conclude.Con.conclude_conclusion with - None -> P.Mtext([],"NO Conclusion!!!") - | Some c -> term2pres c) in - make_concl "that is equivalent to" conclusion + assert false else if conclude.Con.conclude_method = "Exact" then - let conclusion = - (match conclude.Con.conclude_conclusion with - None -> P.Mtext([],"NO Conclusion!!!") - | Some c -> term2pres c) in let arg = (match conclude.Con.conclude_args with [Con.Term t] -> term2pres t | _ -> assert false) in - make_row - [arg;P.Mspace([None,"width","0.1cm"]);P.Mtext([],"proves")] conclusion + (match conclude.Con.conclude_conclusion with + None -> + p_mrow [] + [p_mtext [None, "mathcolor", "red"] "Consider" ; P.smallskip; arg] + | Some c -> let conclusion = term2pres c in + make_row + [arg; P.Mspace([None,"width","0.1cm"]);P.Mtext([],"proves")] + conclusion + ) else if conclude.Con.conclude_method = "Intros+LetTac" then + (match conclude.Con.conclude_args with + [Con.ArgProof p] -> proof2pres p + | _ -> assert false) +(* OLD CODE let conclusion = (match conclude.Con.conclude_conclusion with None -> P.Mtext([],"NO Conclusion!!!") @@ -371,10 +433,19 @@ and proof2pres term2pres p = None,"columnalign","left"], [P.Mtr([],[P.Mtd([],proof2pres p)]); P.Mtr([],[P.Mtd([], - (make_concl "we proved *" conclusion))])]); + (make_concl "we proved 1" conclusion))])]); | _ -> assert false) +*) + else if (conclude.Con.conclude_method = "Case") then + case conclude else if (conclude.Con.conclude_method = "ByInduction") then byinduction conclude + else if (conclude.Con.conclude_method = "Exists") then + exists conclude + else if (conclude.Con.conclude_method = "AndInd") then + andind conclude + else if (conclude.Con.conclude_method = "FalseInd") then + falseind conclude else if (conclude.Con.conclude_method = "Rewrite") then let justif = (match (List.nth conclude.Con.conclude_args 6) with @@ -387,38 +458,24 @@ and proof2pres term2pres p = let term2 = (match List.nth conclude.Con.conclude_args 5 with Con.Term t -> term2pres t - | _ -> assert false) in - let conclusion = - (match conclude.Con.conclude_conclusion with - None -> P.Mtext([],"NO Conclusion!!!") - | Some c -> term2pres c) in + | _ -> assert false) in P.Mtable ([None,"align","baseline 1";None,"equalrows","false"; - None,"columnalign","left"], - [P.Mtr ([],[P.Mtd ([],P.Mrow([],[ - P.Mtext([None,"mathcolor","Red"],"rewrite"); - P.Mspace([None,"width","0.1cm"]);term1; - P.Mspace([None,"width","0.1cm"]); - P.Mtext([None,"mathcolor","Red"],"with"); - P.Mspace([None,"width","0.1cm"]);term2]))]); - P.Mtr ([],[P.Mtd ([],P.indented justif)]); - P.Mtr ([],[P.Mtd ([],make_concl "we proved" conclusion)])]) + None,"columnalign","left"], + [P.Mtr ([],[P.Mtd ([],P.Mrow([],[ + P.Mtext([None,"mathcolor","Red"],"rewrite"); + P.Mspace([None,"width","0.1cm"]);term1; + P.Mspace([None,"width","0.1cm"]); + P.Mtext([None,"mathcolor","Red"],"with"); + P.Mspace([None,"width","0.1cm"]);term2]))]); + P.Mtr ([],[P.Mtd ([],P.indented justif)])]); else if conclude.Con.conclude_method = "Apply" then let pres_args = - make_args_for_apply term2pres conclude.Con.conclude_args in - let by = - P.Mrow([], - P.Mtext([None,"mathcolor","Red"],"by")::P.Mspace([None,"width","0.1cm"]):: - P.Mo([],"(")::pres_args@[P.Mo([],")")]) in - match conclude.Con.conclude_conclusion with - None -> P.Mrow([],[P.Mtext([],"QUA");by]) - | Some t -> - let concl = (term2pres t) in - let ann_concl = make_concl "we proved" concl in - P.Mtable ([None,"align","baseline 1"; None,"equalrows","false"; - None,"columnalign","left"], - [P.Mtr ([],[P.Mtd ([],by)]); - P.Mtr ([],[P.Mtd ([],ann_concl)])]) - else let body = + make_args_for_apply term2pres conclude.Con.conclude_args in + P.Mrow([], + P.Mtext([None,"mathcolor","Red"],"by"):: + P.Mspace([None,"width","0.1cm"]):: + P.Mo([],"(")::pres_args@[P.Mo([],")")]) + else P.Mtable ([None,"align","baseline 1"; None,"equalrows","false"; None,"columnalign","left"], [P.Mtr ([],[P.Mtd ([],P.Mtext([],"Apply method" ^ conclude.Con.conclude_method ^ " to"))]); @@ -428,16 +485,7 @@ and proof2pres term2pres p = (P.Mtable ([None,"align","baseline 1"; None,"equalrows","false"; None,"columnalign","left"], - args2pres conclude.Con.conclude_args))))])]) in - match conclude.Con.conclude_conclusion with - None -> body - | Some t -> - let concl = (term2pres t) in - let ann_concl = make_concl "we proved" concl in - P.Mtable ([None,"align","baseline 1"; None,"equalrows","false"; - None,"columnalign","left"], - [P.Mtr ([],[P.Mtd ([],body)]); - P.Mtr ([],[P.Mtd ([],ann_concl)])]) + args2pres conclude.Con.conclude_args))))])]) and args2pres l = let module P = Mpresentation in @@ -446,12 +494,14 @@ and proof2pres term2pres p = and arg2pres = let module P = Mpresentation in - let module Con = Cic2content in + let module Con = Content in function Con.Aux n -> - P.Mtext ([],"aux " ^ string_of_int n) + P.Mtext ([],"aux " ^ n) | Con.Premise prem -> P.Mtext ([],"premise") + | Con.Lemma lemma -> + P.Mtext ([],"lemma") | Con.Term t -> term2pres t | Con.ArgProof p -> @@ -459,9 +509,47 @@ and proof2pres term2pres p = | Con.ArgMethod s -> P.Mtext ([],"method") + and case conclude = + let module P = Mpresentation in + let module Con = Content in + let proof_conclusion = + (match conclude.Con.conclude_conclusion with + None -> P.Mtext([],"No conclusion???") + | Some t -> term2pres t) in + let arg,args_for_cases = + (match conclude.Con.conclude_args with + Con.Aux(_)::Con.Aux(_)::Con.Term(_)::arg::tl -> + arg,tl + | _ -> assert false) in + let case_on = + let case_arg = + (match arg with + Con.Aux n -> + P.Mtext ([],"an aux???") + | Con.Premise prem -> + (match prem.Con.premise_binder with + None -> P.Mtext ([],"the previous result") + | Some n -> P.Mi([],n)) + | Con.Lemma lemma -> P.Mi([],lemma.Con.lemma_name) + | Con.Term t -> + term2pres t + | Con.ArgProof p -> + P.Mtext ([],"a proof???") + | Con.ArgMethod s -> + P.Mtext ([],"a method???")) in + (make_concl "we proceede by cases on" case_arg) in + let to_prove = + (make_concl "to prove" proof_conclusion) in + P.Mtable + ([None,"align","baseline 1"; None,"equalrows","false"; + None,"columnalign","left"], + P.Mtr ([],[P.Mtd ([],case_on)]):: + P.Mtr ([],[P.Mtd ([],to_prove)]):: + (make_cases args_for_cases)) + and byinduction conclude = let module P = Mpresentation in - let module Con = Cic2content in + let module Con = Content in let proof_conclusion = (match conclude.Con.conclude_conclusion with None -> P.Mtext([],"No conclusion???") @@ -469,7 +557,7 @@ and proof2pres term2pres p = let inductive_arg,args_for_cases = (match conclude.Con.conclude_args with Con.Aux(n)::_::tl -> - let l1,l2 = split n tl in + let l1,l2 = split (int_of_string n) tl in let last_pos = (List.length l2)-1 in List.nth l2 last_pos,l1 | _ -> assert false) in @@ -482,6 +570,7 @@ and proof2pres term2pres p = (match prem.Con.premise_binder with None -> P.Mtext ([],"the previous result") | Some n -> P.Mi([],n)) + | Con.Lemma lemma -> P.Mi([],lemma.Con.lemma_name) | Con.Term t -> term2pres t | Con.ArgProof p -> @@ -491,15 +580,13 @@ and proof2pres term2pres p = (make_concl "we proceede by induction on" arg) in let to_prove = (make_concl "to prove" proof_conclusion) in - let we_proved = - (make_concl "we proved" proof_conclusion) in P.Mtable - ([None,"align","baseline 1"; None,"equalrows","false"; None,"columnalign","left"], + ([None,"align","baseline 1"; None,"equalrows","false"; + None,"columnalign","left"], P.Mtr ([],[P.Mtd ([],induction_on)]):: P.Mtr ([],[P.Mtd ([],to_prove)]):: - (make_cases args_for_cases) @ - [P.Mtr ([],[P.Mtd ([],we_proved)])]) - + (make_cases args_for_cases)) + and make_cases args_for_cases = let module P = Mpresentation in List.map @@ -507,7 +594,7 @@ and proof2pres term2pres p = and make_case = let module P = Mpresentation in - let module Con = Cic2content in + let module Con = Content in function Con.ArgProof p -> let name = @@ -547,7 +634,7 @@ and proof2pres term2pres p = | Some t -> term2pres t) in let asubconcl = P.Mtr([],[P.Mtd([], - make_concl "the thesis becomes" subconcl)]) in + P.indented (make_concl "the thesis becomes" subconcl))]) in let induction_hypothesis = (match indhyps with [] -> [] @@ -563,9 +650,9 @@ and proof2pres term2pres p = None -> "no name" | Some s -> s) in P.indented (P.Mrow ([], - [P.Mtext([],"("); + [P.Mo([],"("); P.Mi ([],name); - P.Mtext([],")"); + P.Mo([],")"); P.Mspace([None,"width","0.1cm"]); term2pres h.Con.dec_type])) | _ -> assert false in @@ -576,14 +663,159 @@ and proof2pres term2pres p = text::hyps) in (* let acontext = acontext2pres_old p.Con.proof_apply_context true in *) - let body = conclude2pres p.Con.proof_conclude true in + let body = conclude2pres p.Con.proof_conclude true false in let presacontext = - acontext2pres p.Con.proof_apply_context body true in + let acontext_id = + match p.Con.proof_apply_context with + [] -> p.Con.proof_conclude.Con.conclude_id + | {Con.proof_id = id}::_ -> id + in + P.Maction([None,"actiontype","toggle" ; None,"selection","1"], + [P.indented + (P.Mtext + ([None,"mathcolor","Red" ; + Some "helm", "xref", acontext_id],"Proof")) ; + acontext2pres p.Con.proof_apply_context body true]) in P.Mtable ([None,"align","baseline 1"; None,"equalrows","false"; None,"columnalign","left"], pattern::asubconcl::induction_hypothesis@ [P.Mtr([],[P.Mtd([],presacontext)])]) - | _ -> assert false in + | _ -> assert false + + and falseind conclude = + let module P = Mpresentation in + let module Con = Content in + let proof_conclusion = + (match conclude.Con.conclude_conclusion with + None -> P.Mtext([],"No conclusion???") + | Some t -> term2pres t) in + let case_arg = + (match conclude.Con.conclude_args with + [Con.Aux(n);_;case_arg] -> case_arg + | _ -> assert false; + (* + List.map (ContentPp.parg 0) conclude.Con.conclude_args; + assert false *)) in + let arg = + (match case_arg with + Con.Aux n -> assert false + | Con.Premise prem -> + (match prem.Con.premise_binder with + None -> [P.Mtext([],"Contradiction, hence")] + | Some n -> + [P.Mi([],n);P.smallskip;P.Mtext([],"is contradictory, hence")]) + | Con.Lemma lemma -> + [P.Mi([],lemma.Con.lemma_name);P.smallskip;P.Mtext([],"is contradictory, hence")] + | _ -> assert false) in + (* let body = proof2pres {proof with Con.proof_context = tl} in *) + make_row arg proof_conclusion + + and andind conclude = + let module P = Mpresentation in + let module Con = Content in + let proof_conclusion = + (match conclude.Con.conclude_conclusion with + None -> P.Mtext([],"No conclusion???") + | Some t -> term2pres t) in + let proof,case_arg = + (match conclude.Con.conclude_args with + [Con.Aux(n);_;Con.ArgProof proof;case_arg] -> proof,case_arg + | _ -> assert false; + (* + List.map (ContentPp.parg 0) conclude.Con.conclude_args; + assert false *)) in + let arg = + (match case_arg with + Con.Aux n -> assert false + | Con.Premise prem -> + (match prem.Con.premise_binder with + None -> [] + | Some n -> [P.Mtext([],"by");P.smallskip;P.Mi([],n)]) + | Con.Lemma lemma -> + [P.Mtext([],"by");P.smallskip;P.Mi([],lemma.Con.lemma_name)] + | _ -> assert false) in + match proof.Con.proof_context with + `Hypothesis hyp1::`Hypothesis hyp2::tl -> + let get_name hyp = + (match hyp.Con.dec_name with + None -> "_" + | Some s -> s) in + let preshyp1 = + P.Mrow ([], + [P.Mtext([],"("); + P.Mi([],get_name hyp1); + P.Mtext([],")"); + P.smallskip; + term2pres hyp1.Con.dec_type]) in + let preshyp2 = + P.Mrow ([], + [P.Mtext([],"("); + P.Mi([],get_name hyp2); + P.Mtext([],")"); + P.smallskip; + term2pres hyp2.Con.dec_type]) in + (* let body = proof2pres {proof with Con.proof_context = tl} in *) + let body = conclude2pres proof.Con.proof_conclude false true in + let presacontext = + acontext2pres proof.Con.proof_apply_context body false in + P.Mtable + ([None,"align","baseline 1"; None,"equalrows","false"; + None,"columnalign","left"], + [P.Mtr ([],[P.Mtd ([], + P.Mrow([],arg@[P.smallskip;P.Mtext([],"we have")]))]); + P.Mtr ([],[P.Mtd ([],preshyp1)]); + P.Mtr ([],[P.Mtd ([],P.Mtext([],"and"))]); + P.Mtr ([],[P.Mtd ([],preshyp2)]); + P.Mtr ([],[P.Mtd ([],presacontext)])]); + | _ -> assert false + + and exists conclude = + let module P = Mpresentation in + let module Con = Content in + let proof_conclusion = + (match conclude.Con.conclude_conclusion with + None -> P.Mtext([],"No conclusion???") + | Some t -> term2pres t) in + let proof = + (match conclude.Con.conclude_args with + [Con.Aux(n);_;Con.ArgProof proof;_] -> proof + | _ -> assert false; + (* + List.map (ContentPp.parg 0) conclude.Con.conclude_args; + assert false *)) in + match proof.Con.proof_context with + `Declaration decl::`Hypothesis hyp::tl + | `Hypothesis decl::`Hypothesis hyp::tl -> + let get_name decl = + (match decl.Con.dec_name with + None -> "_" + | Some s -> s) in + let presdecl = + P.Mrow ([], + [P.Mtext([None,"mathcolor","Red"],"let"); + P.smallskip; + P.Mi([],get_name decl); + P.Mtext([],":"); term2pres decl.Con.dec_type]) in + let suchthat = + P.Mrow ([], + [P.Mtext([None,"mathcolor","Red"],"such that"); + P.smallskip; + P.Mtext([],"("); + P.Mi([],get_name hyp); + P.Mtext([],")"); + P.smallskip; + term2pres hyp.Con.dec_type]) in + (* let body = proof2pres {proof with Con.proof_context = tl} in *) + let body = conclude2pres proof.Con.proof_conclude false true in + let presacontext = + acontext2pres proof.Con.proof_apply_context body false in + P.Mtable + ([None,"align","baseline 1"; None,"equalrows","false"; + None,"columnalign","left"], + [P.Mtr ([],[P.Mtd ([],presdecl)]); + P.Mtr ([],[P.Mtd ([],suchthat)]); + P.Mtr ([],[P.Mtd ([],presacontext)])]); + | _ -> assert false in proof2pres p ;; @@ -591,34 +823,108 @@ proof2pres p exception ToDo;; let content2pres term2pres (id,params,metasenv,obj) = - let module Con = Cic2content in + let module K = Content in let module P = Mpresentation in match obj with - `Def (Con.Const,thesis,`Proof p) -> - P.Mtable + `Def (K.Const,thesis,`Proof p) -> + p_mtable [None,"align","baseline 1"; None,"equalrows","false"; None,"columnalign","left"; None,"helm:xref","id"] - [(*P.Mtr [] - [P.Mtd [] - (P.Mrow [] - [P.Mtext [] ("UNFINISHED PROOF" ^ id ^"(" ^ params ^ ")")])] ; -*) - P.Mtr [] - [P.Mtd [] - (P.Mrow [] - [P.Mtext [] "THESIS:"])] ; - P.Mtr [] - [P.Mtd [] - (P.Mrow [] - [P.Mphantom [] - (P.Mtext [] "__") ; - term2pres thesis])] ; - P.Mtr [] - [P.Mtd [] - (P.Mrow [] - [proof2pres term2pres p])]] + ([p_mtr [] + [p_mtd [] + (p_mrow [] + [p_mtext [] + ("UNFINISHED PROOF" ^ id ^"(" ^ + String.concat " ; " (List.map UriManager.string_of_uri params)^ + ")")])] ; + p_mtr [] + [p_mtd [] + (p_mrow [] + [p_mtext [] "THESIS:"])] ; + p_mtr [] + [p_mtd [] + (p_mrow [] + [p_mphantom [] + (p_mtext [] "__") ; + term2pres thesis])]] @ + (match metasenv with + None -> [] + | Some metasenv' -> + [p_mtr [] + [p_mtd [] + (* Conjectures are in their own table to make *) + (* diffing the DOM trees easier. *) + (p_mtable + [None,"align","baseline 1"; + None,"equalrows","false"; + None,"columnalign","left"] + ((p_mtr [] + [p_mtd [] + (p_mrow [] + [p_mtext [] "CONJECTURES:"])]):: + List.map + (function + (id,n,context,ty) -> + p_mtr [] + [p_mtd [] + (p_mrow [Some "helm", "xref", id] + (List.map + (function + None -> + p_mrow [] + [ p_mi [] "_" ; + p_mo [] ":?" ; + p_mi [] "_"] + | Some (`Declaration d) + | Some (`Hypothesis d) -> + let + { K.dec_name = dec_name ; + K.dec_type = ty } = d + in + p_mrow [] + [ p_mi [] + (match dec_name with + None -> "_" + | Some n -> n) ; + p_mo [] ":" ; + term2pres ty] + | Some (`Definition d) -> + let + { K.def_name = def_name ; + K.def_term = bo } = d + in + p_mrow [] + [ p_mi [] + (match def_name with + None -> "_" + | Some n -> n) ; + p_mo [] ":=" ; + term2pres bo] + | Some (`Proof p) -> + let proof_name = p.K.proof_name in + p_mrow [] + [ p_mi [] + (match proof_name with + None -> "_" + | Some n -> n) ; + p_mo [] ":=" ; + proof2pres term2pres p] + ) (List.rev context) @ + [ p_mo [] "|-" ] @ + [ p_mi [] (string_of_int n) ; + p_mo [] ":" ; + term2pres ty ] + )) + ] + ) metasenv' + ))]] + ) @ + [p_mtr [] + [p_mtd [] + (p_mrow [] + [proof2pres term2pres p])]]) | _ -> raise ToDo ;; @@ -628,3 +934,4 @@ let content2pres ~ids_to_inner_sorts = (Cexpr2pres.cexpr2pres_charcount (Content_expressions.acic2cexpr ids_to_inner_sorts p))) ;; +