X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Focaml%2Fparamodulation%2Findexing.ml;h=84559b22247fdde62f74f2485562eb34fef34cbb;hb=a89f7271e79dc7dc81dc868a75125669c8decc16;hp=5c08d906d07bb5b6f94b9d5793dc7533ac347e87;hpb=50b01988edd12788a59aea3fb0f6704d5fd2bb69;p=helm.git diff --git a/helm/ocaml/paramodulation/indexing.ml b/helm/ocaml/paramodulation/indexing.ml index 5c08d906d..84559b222 100644 --- a/helm/ocaml/paramodulation/indexing.ml +++ b/helm/ocaml/paramodulation/indexing.ml @@ -1,8 +1,3 @@ -(* type naif_indexing = - (Cic.term * ((bool * Inference.equality) list)) list -;; *) - -type pos = Left | Right ;; let head_of_term = function | Cic.Appl (hd::tl) -> hd @@ -10,6 +5,12 @@ let head_of_term = function ;; +(* +let empty_table () = + Hashtbl.create 10 +;; + + let index table eq = let _, (_, l, r, ordering), _, _ = eq in let hl = head_of_term l in @@ -21,13 +22,13 @@ let index table eq = let _ = match ordering with | Utils.Gt -> - index hl Left + index hl Utils.Left | Utils.Lt -> - index hr Right - | _ -> index hl Left; index hr Right + index hr Utils.Right + | _ -> index hl Utils.Left; index hr Utils.Right in -(* index hl Left; *) -(* index hr Right; *) +(* index hl Utils.Left; *) +(* index hr Utils.Right; *) table ;; @@ -41,13 +42,22 @@ let remove_index table eq = let newentry = List.filter (fun e -> e <> (pos, eq)) x_entry in Hashtbl.replace table x newentry in - remove_index hl Left; - remove_index hr Right; + remove_index hl Utils.Left; + remove_index hr Utils.Right; table ;; +*) -let rec find_matches unif_fun metasenv context ugraph lift_amount term = +let empty_table () = + Path_indexing.PSTrie.empty +;; + +let index = Path_indexing.index +and remove_index = Path_indexing.remove_index;; + + +let rec find_matches metasenv context ugraph lift_amount term = let module C = Cic in let module U = Utils in let module S = CicSubstitution in @@ -55,70 +65,169 @@ let rec find_matches unif_fun metasenv context ugraph lift_amount term = let module HL = HelmLibraryObjects in let cmp = !Utils.compare_terms in let names = Utils.names_of_context context in - Printf.printf "CHIAMO find_matches (%s) su: %s\n" - (if unif_fun == Inference.matching then "MATCHING" - else if unif_fun == CicUnification.fo_unif then "UNIFICATION" - else "??????????") - (CicPp.pp term names); function | [] -> None - | (pos, (proof, (ty, left, right, o), metas, args))::tl -> + | candidate::tl -> + let pos, (proof, (ty, left, right, o), metas, args) = candidate in let do_match c other eq_URI = - Printf.printf "provo con %s: %s, %s\n\n" - (if unif_fun == Inference.matching then "MATCHING" - else if unif_fun == CicUnification.fo_unif then "UNIFICATION" - else "??????????") - (CicPp.pp term names) - (CicPp.pp (S.lift lift_amount c) names); let subst', metasenv', ugraph' = -(* Inference.matching (metasenv @ metas) context term *) -(* (S.lift lift_amount c) ugraph *) - unif_fun (metasenv @ metas) context + Inference.matching (metasenv @ metas) context term (S.lift lift_amount c) ugraph in -(* let names = U.names_of_context context in *) - Printf.printf "MATCH FOUND: %s, %s\n" - (CicPp.pp term names) (CicPp.pp (S.lift lift_amount c) names); Some (C.Rel (1 + lift_amount), subst', metasenv', ugraph', - (proof, ty, c, other, eq_URI)) + (candidate, eq_URI)) in let c, other, eq_URI = - if pos = Left then left, right, HL.Logic.eq_ind_URI + if pos = Utils.Left then left, right, HL.Logic.eq_ind_URI else right, left, HL.Logic.eq_ind_r_URI in if o <> U.Incomparable then try - print_endline "SONO QUI!"; - let res = do_match c other eq_URI in - print_endline "RITORNO RES"; - res + do_match c other eq_URI with e -> - Printf.printf "ERRORE!: %s\n" (Printexc.to_string e); - find_matches unif_fun metasenv context ugraph lift_amount term tl + find_matches metasenv context ugraph lift_amount term tl else - let res = - try - let res = do_match c other eq_URI in - print_endline "RITORNO RES 2"; - res - with e -> None in + let res = try do_match c other eq_URI with e -> None in match res with | Some (_, s, _, _, _) -> let c' = M.apply_subst s c and other' = M.apply_subst s other in let order = cmp c' other' in let names = U.names_of_context context in - Printf.printf "c': %s\nother': %s\norder: %s\n\n" - (CicPp.pp c' names) (CicPp.pp other' names) - (U.string_of_comparison order); -(* if cmp (M.apply_subst s c) (M.apply_subst s other) = U.Gt then *) if order = U.Gt then res else - find_matches unif_fun metasenv context ugraph - lift_amount term tl + find_matches metasenv context ugraph lift_amount term tl | None -> - find_matches unif_fun metasenv context ugraph lift_amount term tl + find_matches metasenv context ugraph lift_amount term tl +;; + + +let rec find_all_matches ?(unif_fun=CicUnification.fo_unif) + metasenv context ugraph lift_amount term = + let module C = Cic in + let module U = Utils in + let module S = CicSubstitution in + let module M = CicMetaSubst in + let module HL = HelmLibraryObjects in + let cmp = !Utils.compare_terms in + let names = Utils.names_of_context context in + function + | [] -> [] + | candidate::tl -> + let pos, (proof, (ty, left, right, o), metas, args) = candidate in + let do_match c other eq_URI = + let subst', metasenv', ugraph' = + unif_fun (metasenv @ metas) context + term (S.lift lift_amount c) ugraph + in + (C.Rel (1 + lift_amount), subst', metasenv', ugraph', + (candidate, eq_URI)) + in + let c, other, eq_URI = + if pos = Utils.Left then left, right, HL.Logic.eq_ind_URI + else right, left, HL.Logic.eq_ind_r_URI + in + if o <> U.Incomparable then + try + let res = do_match c other eq_URI in + res::(find_all_matches ~unif_fun metasenv context ugraph + lift_amount term tl) + with e -> + find_all_matches ~unif_fun metasenv context ugraph + lift_amount term tl + else + try + let res = do_match c other eq_URI in + match res with + | _, s, _, _, _ -> + let c' = M.apply_subst s c + and other' = M.apply_subst s other in + let order = cmp c' other' in + let names = U.names_of_context context in + if order <> U.Lt && order <> U.Le then + res::(find_all_matches ~unif_fun metasenv context ugraph + lift_amount term tl) + else + find_all_matches ~unif_fun metasenv context ugraph + lift_amount term tl + with e -> + find_all_matches ~unif_fun metasenv context ugraph + lift_amount term tl +;; + + +type retrieval_mode = Matching | Unification;; + +(* +let get_candidates mode table term = + try Hashtbl.find table (head_of_term term) with Not_found -> [] +;; +*) + + +let get_candidates mode trie term = + let s = + match mode with + | Matching -> + Path_indexing.retrieve_generalizations trie term + | Unification -> + Path_indexing.retrieve_unifiables trie term + in + Path_indexing.PosEqSet.elements s +;; + + +let subsumption env table target = + let _, (ty, tl, tr, _), tmetas, _ = target in + let metasenv, context, ugraph = env in + let metasenv = metasenv @ tmetas in + let samesubst subst subst' = + let tbl = Hashtbl.create (List.length subst) in + List.iter (fun (m, (c, t1, t2)) -> Hashtbl.add tbl m (c, t1, t2)) subst; + List.for_all + (fun (m, (c, t1, t2)) -> + try + let c', t1', t2' = Hashtbl.find tbl m in + if (c = c') && (t1 = t1') && (t2 = t2') then true + else false + with Not_found -> + true) + subst' + in + let subsaux left right = + let leftc = get_candidates Matching table left in + let leftr = + find_all_matches ~unif_fun:Inference.matching + metasenv context ugraph 0 left leftc + in + let ok what (_, subst, menv, ug, ((pos, (_, (_, l, r, o), _, _)), _)) = + try + let other = if pos = Utils.Left then r else l in + let subst', menv', ug' = + Inference.matching metasenv context what other ugraph in + samesubst subst subst' + with e -> + false + in + let r = List.exists (ok right) leftr in + if r then + true + else + let rightc = get_candidates Matching table right in + let rightr = + find_all_matches ~unif_fun:Inference.matching + metasenv context ugraph 0 right rightc + in + List.exists (ok left) rightr + in + let res = subsaux tl tr in + if res then ( + Printf.printf "subsumption!:\ntarget: %s\n" + (Inference.string_of_equality ~env target); + print_newline (); + ); + res ;; @@ -127,14 +236,12 @@ let rec demodulate_term metasenv context ugraph table lift_amount term = let module S = CicSubstitution in let module M = CicMetaSubst in let module HL = HelmLibraryObjects in - let hd_term = head_of_term term in - let candidates = try Hashtbl.find table hd_term with Not_found -> [] in + let candidates = get_candidates Matching table term in match term with | C.Meta _ -> None | term -> let res = - find_matches Inference.matching metasenv context ugraph - lift_amount term candidates + find_matches metasenv context ugraph lift_amount term candidates in if res <> None then res @@ -158,8 +265,8 @@ let rec demodulate_term metasenv context ugraph table lift_amount term = in ( match res with | None -> None - | Some (_, subst, menv, ug, info) -> - Some (C.Appl ll, subst, menv, ug, info) + | Some (_, subst, menv, ug, eq_found) -> + Some (C.Appl ll, subst, menv, ug, eq_found) ) | C.Prod (nn, s, t) -> let r1 = @@ -173,33 +280,32 @@ let rec demodulate_term metasenv context ugraph table lift_amount term = in ( match r2 with | None -> None - | Some (t', subst, menv, ug, info) -> + | Some (t', subst, menv, ug, eq_found) -> Some (C.Prod (nn, (S.lift 1 s), t'), - subst, menv, ug, info) + subst, menv, ug, eq_found) ) - | Some (s', subst, menv, ug, info) -> - Some (C.Prod (nn, s', (S.lift 1 t)), subst, menv, ug, info) + | Some (s', subst, menv, ug, eq_found) -> + Some (C.Prod (nn, s', (S.lift 1 t)), + subst, menv, ug, eq_found) ) | t -> -(* Printf.printf "Ne` Appl ne` Prod: %s\n" *) -(* (CicPp.pp t (Utils.names_of_context context)); *) None ;; -let rec demodulate newmeta env table target = +let rec demodulation newmeta env table target = let module C = Cic in let module S = CicSubstitution in let module M = CicMetaSubst in let module HL = HelmLibraryObjects in - print_endline "\n\ndemodulate"; let metasenv, context, ugraph = env in let proof, (eq_ty, left, right, order), metas, args = target in let metasenv' = metasenv @ metas in - let build_newtarget is_left - (t, subst, menv, ug, (proof', ty, what, other, eq_URI)) = + let build_newtarget is_left (t, subst, menv, ug, (eq_found, eq_URI)) = + let pos, (proof', (ty, what, other, _), menv', args') = eq_found in + let what, other = if pos = Utils.Left then what, other else other, what in let newterm, newproof = - let bo = S.subst (M.apply_subst subst other) t in + let bo = M.apply_subst subst (S.subst other t) in let bo'' = C.Appl ([C.MutInd (HL.Logic.eq_URI, 0, []); S.lift 1 eq_ty] @ @@ -210,39 +316,49 @@ let rec demodulate newmeta env table target = M.apply_subst subst (C.Appl [C.Const (eq_URI, []); ty; what; t'; proof; other; proof']) in - let newmeta, newtarget = - let left, right = if is_left then newterm, right else left, newterm in - let m = - (Inference.metas_of_term left) @ (Inference.metas_of_term right) - in - let newmetasenv = List.filter (fun (i, _, _) -> List.mem i m) metas - and newargs = - List.filter - (function C.Meta (i, _) -> List.mem i m | _ -> assert false) - args - in - let ordering = !Utils.compare_terms left right in - newmeta, (newproof, (eq_ty, left, right, ordering), newmetasenv, newargs) + let left, right = if is_left then newterm, right else left, newterm in + let m = + (Inference.metas_of_term left) @ (Inference.metas_of_term right) + in + let newmetasenv = List.filter (fun (i, _, _) -> List.mem i m) metas + and newargs = + List.filter + (function C.Meta (i, _) -> List.mem i m | _ -> assert false) + args in - newmeta, newtarget + let ordering = !Utils.compare_terms left right in + newmeta, (newproof, (eq_ty, left, right, ordering), newmetasenv, newargs) in let res = demodulate_term metasenv' context ugraph table 0 left in + let build_identity (p, (t, l, r, o), m, a) = + match o with + | Utils.Gt -> (p, (t, r, r, Utils.Eq), m, a) + | _ -> (p, (t, l, l, Utils.Eq), m, a) + in match res with | Some t -> let newmeta, newtarget = build_newtarget true t in - if Inference.is_identity (metasenv', context, ugraph) newtarget then - newmeta, newtarget + if (Inference.is_identity (metasenv', context, ugraph) newtarget) || + (Inference.meta_convertibility_eq target newtarget) then + newmeta, newtarget else - demodulate newmeta env table newtarget + if subsumption env table newtarget then + newmeta, build_identity newtarget + else + demodulation newmeta env table newtarget | None -> let res = demodulate_term metasenv' context ugraph table 0 right in match res with | Some t -> let newmeta, newtarget = build_newtarget false t in - if Inference.is_identity (metasenv', context, ugraph) newtarget then - newmeta, newtarget + if (Inference.is_identity (metasenv', context, ugraph) newtarget) || + (Inference.meta_convertibility_eq target newtarget) then + newmeta, newtarget else - demodulate newmeta env table newtarget + if subsumption env table newtarget then + newmeta, build_identity newtarget + else + demodulation newmeta env table newtarget | None -> newmeta, target ;; @@ -253,17 +369,43 @@ let rec betaexpand_term metasenv context ugraph table lift_amount term = let module S = CicSubstitution in let module M = CicMetaSubst in let module HL = HelmLibraryObjects in - let hd_term = head_of_term term in - let candidates = try Hashtbl.find table hd_term with Not_found -> [] in + let candidates = get_candidates Unification table term in let res, lifted_term = match term with | C.Meta (i, l) -> - let l = - List.map (function - | Some t -> Some (S.lift lift_amount t) - | None -> None) l + let l', lifted_l = + List.fold_right + (fun arg (res, lifted_tl) -> + match arg with + | Some arg -> + let arg_res, lifted_arg = + betaexpand_term metasenv context ugraph table + lift_amount arg in + let l1 = + List.map + (fun (t, s, m, ug, eq_found) -> + (Some t)::lifted_tl, s, m, ug, eq_found) + arg_res + in + (l1 @ + (List.map + (fun (l, s, m, ug, eq_found) -> + (Some lifted_arg)::l, s, m, ug, eq_found) + res), + (Some lifted_arg)::lifted_tl) + | None -> + (List.map + (fun (r, s, m, ug, eq_found) -> + None::r, s, m, ug, eq_found) res, + None::lifted_tl) + ) l ([], []) + in + let e = + List.map + (fun (l, s, m, ug, eq_found) -> + (C.Meta (i, l), s, m, ug, eq_found)) l' in - [], C.Meta (i, l) + e, C.Meta (i, lifted_l) | C.Rel m -> [], if m <= lift_amount then C.Rel m else C.Rel (m+1) @@ -276,12 +418,12 @@ let rec betaexpand_term metasenv context ugraph table lift_amount term = table (lift_amount+1) t in let l1' = List.map - (fun (t, s, m, ug, info) -> - C.Prod (nn, t, lifted_t), s, m, ug, info) l1 + (fun (t, s, m, ug, eq_found) -> + C.Prod (nn, t, lifted_t), s, m, ug, eq_found) l1 and l2' = List.map - (fun (t, s, m, ug, info) -> - C.Prod (nn, lifted_s, t), s, m, ug, info) l2 in + (fun (t, s, m, ug, eq_found) -> + C.Prod (nn, lifted_s, t), s, m, ug, eq_found) l2 in l1' @ l2', C.Prod (nn, lifted_s, lifted_t) | C.Appl l -> @@ -293,35 +435,31 @@ let rec betaexpand_term metasenv context ugraph table lift_amount term = in let l1 = List.map - (fun (a, s, m, ug, info) -> a::lifted_tl, s, m, ug, info) + (fun (a, s, m, ug, eq_found) -> + a::lifted_tl, s, m, ug, eq_found) arg_res in (l1 @ (List.map - (fun (r, s, m, ug, info) -> lifted_arg::r, s, m, ug, info) + (fun (r, s, m, ug, eq_found) -> + lifted_arg::r, s, m, ug, eq_found) res), lifted_arg::lifted_tl) ) l ([], []) in - (List.map (fun (l, s, m, ug, info) -> (C.Appl l, s, m, ug, info)) l', + (List.map + (fun (l, s, m, ug, eq_found) -> (C.Appl l, s, m, ug, eq_found)) l', C.Appl lifted_l) | t -> [], (S.lift lift_amount t) in match term with | C.Meta _ -> res, lifted_term - | _ -> -(* let names = Utils.names_of_context context in *) -(* Printf.printf "CHIAMO find_matches su: %s\n" (CicPp.pp term names); *) - match - find_matches CicUnification.fo_unif metasenv context ugraph - lift_amount term candidates - with - | None -> res, lifted_term - | Some r -> -(* let _, _, _, _, (_, _, what, _, _) = r in *) -(* Printf.printf "OK, aggiungo a res: %s\n" (CicPp.pp what names); *) - r::res, lifted_term + | term -> + let r = + find_all_matches metasenv context ugraph lift_amount term candidates + in + r @ res, lifted_term ;; @@ -332,24 +470,16 @@ let superposition_left (metasenv, context, ugraph) table target = let module HL = HelmLibraryObjects in let module CR = CicReduction in let module U = Utils in - print_endline "\n\nsuperposition_left"; let proof, (eq_ty, left, right, ordering), _, _ = target in let expansions, _ = let term = if ordering = U.Gt then left else right in - let res = - betaexpand_term metasenv context ugraph table 0 term in -(* let names = U.names_of_context context in *) -(* Printf.printf "\n\nsuperposition_left: %s\n%s\n" *) -(* (CicPp.pp term names) *) -(* (String.concat "\n" *) -(* (List.map *) -(* (fun (_, _, _, _, (_, _, what, _, _)) -> CicPp.pp what names) *) -(* (fst res))); *) - res + betaexpand_term metasenv context ugraph table 0 term in - let build_new (bo, s, m, ug, (proof', ty, what, other, eq_URI)) = + let build_new (bo, s, m, ug, (eq_found, eq_URI)) = + let pos, (proof', (ty, what, other, _), menv', args') = eq_found in + let what, other = if pos = Utils.Left then what, other else other, what in let newgoal, newproof = - let bo' = S.subst (M.apply_subst s other) bo in + let bo' = M.apply_subst s (S.subst other bo) in let bo'' = C.Appl ( [C.MutInd (HL.Logic.eq_URI, 0, []); @@ -358,18 +488,15 @@ let superposition_left (metasenv, context, ugraph) table target = else [S.lift 1 left; bo']) in let t' = C.Lambda (C.Anonymous, ty, bo'') in - S.subst (M.apply_subst s other) bo, + bo', M.apply_subst s (C.Appl [C.Const (eq_URI, []); ty; what; t'; proof; other; proof']) in - let left, right, newordering = - if ordering = U.Gt then - newgoal, right, !Utils.compare_terms newgoal right - else - left, newgoal, !Utils.compare_terms left newgoal - in - (newproof, (eq_ty, left, right, ordering), [], []) + let left, right = + if ordering = U.Gt then newgoal, right else left, newgoal in + let neworder = !Utils.compare_terms left right in + (newproof, (eq_ty, left, right, neworder), [], []) in List.map build_new expansions ;; @@ -382,7 +509,6 @@ let superposition_right newmeta (metasenv, context, ugraph) table target = let module HL = HelmLibraryObjects in let module CR = CicReduction in let module U = Utils in - print_endline "\n\nsuperposition_right"; let eqproof, (eq_ty, left, right, ordering), newmetas, args = target in let metasenv' = metasenv @ newmetas in let maxmeta = ref newmeta in @@ -401,31 +527,34 @@ let superposition_right newmeta (metasenv, context, ugraph) table target = in (res left right), (res right left) in - let build_new ordering (bo, s, m, ug, (proof', ty, what, other, eq_URI)) = + let build_new ordering (bo, s, m, ug, (eq_found, eq_URI)) = + let pos, (proof', (ty, what, other, _), menv', args') = eq_found in + let what, other = if pos = Utils.Left then what, other else other, what in let newgoal, newproof = - let bo' = S.subst (M.apply_subst s other) bo in + let bo' = M.apply_subst s (S.subst other bo) in let bo'' = C.Appl ( - [C.MutInd (HL.Logic.eq_URI, 0, []); - S.lift 1 eq_ty] @ + [C.MutInd (HL.Logic.eq_URI, 0, []); S.lift 1 eq_ty] @ if ordering = U.Gt then [bo'; S.lift 1 right] else [S.lift 1 left; bo']) in let t' = C.Lambda (C.Anonymous, ty, bo'') in - S.subst (M.apply_subst s other) bo, + bo', M.apply_subst s (C.Appl [C.Const (eq_URI, []); ty; what; t'; eqproof; other; proof']) in let newmeta, newequality = - let left, right, newordering = - if ordering = U.Gt then - newgoal, right, !Utils.compare_terms newgoal right - else - left, newgoal, !Utils.compare_terms left newgoal - in - Inference.fix_metas !maxmeta - (newproof, (eq_ty, left, right, ordering), [], []) + let left, right = + if ordering = U.Gt then newgoal, M.apply_subst s right + else M.apply_subst s left, newgoal in + let neworder = !Utils.compare_terms left right + and newmenv = newmetas @ menv' + and newargs = args @ args' in + let eq' = (newproof, (eq_ty, left, right, neworder), newmenv, newargs) + and env = (metasenv, context, ugraph) in + let newm, eq' = Inference.fix_metas !maxmeta eq' in + newm, eq' in maxmeta := newmeta; newequality