X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Focaml%2Fparamodulation%2Finference.ml;h=999666bca4652602566c3043c2cf4d967c8b4933;hb=aca103d3c3d740efcc0bcc2932922cff77facb49;hp=987c17cc83950fb00baeaff2b7825861b5081e20;hpb=d8c8060ad0cfc9b93ce919b6662383a230192840;p=helm.git diff --git a/helm/ocaml/paramodulation/inference.ml b/helm/ocaml/paramodulation/inference.ml index 987c17cc8..999666bca 100644 --- a/helm/ocaml/paramodulation/inference.ml +++ b/helm/ocaml/paramodulation/inference.ml @@ -1,26 +1,87 @@ open Utils;; +let string_of_equality ?env = + match env with + | None -> ( + function + | _, (ty, left, right), _, _ -> + Printf.sprintf "{%s}: %s = %s" (CicPp.ppterm ty) + (CicPp.ppterm left) (CicPp.ppterm right) + ) + | Some (_, context, _) -> ( + let names = names_of_context context in + function + | _, (ty, left, right), _, _ -> + Printf.sprintf "{%s}: %s = %s" (CicPp.pp ty names) + (CicPp.pp left names) (CicPp.pp right names) + ) +;; + + +let rec metas_of_term = function + | Cic.Meta (i, c) -> [i] + | Cic.Var (_, ens) + | Cic.Const (_, ens) + | Cic.MutInd (_, _, ens) + | Cic.MutConstruct (_, _, _, ens) -> + List.flatten (List.map (fun (u, t) -> metas_of_term t) ens) + | Cic.Cast (s, t) + | Cic.Prod (_, s, t) + | Cic.Lambda (_, s, t) + | Cic.LetIn (_, s, t) -> (metas_of_term s) @ (metas_of_term t) + | Cic.Appl l -> List.flatten (List.map metas_of_term l) + | Cic.MutCase (uri, i, s, t, l) -> + (metas_of_term s) @ (metas_of_term t) @ + (List.flatten (List.map metas_of_term l)) + | Cic.Fix (i, il) -> + List.flatten + (List.map (fun (s, i, t1, t2) -> + (metas_of_term t1) @ (metas_of_term t2)) il) + | Cic.CoFix (i, il) -> + List.flatten + (List.map (fun (s, t1, t2) -> + (metas_of_term t1) @ (metas_of_term t2)) il) + | _ -> [] +;; + + exception NotMetaConvertible;; let meta_convertibility_aux table t1 t2 = let module C = Cic in - let rec aux table t1 t2 = + let print_table t = + String.concat ", " + (List.map + (fun (k, v) -> Printf.sprintf "(%d, %d)" k v) t) + in + let rec aux ((table_l, table_r) as table) t1 t2 = +(* Printf.printf "aux %s, %s\ntable_l: %s, table_r: %s\n" *) +(* (CicPp.ppterm t1) (CicPp.ppterm t2) *) +(* (print_table table_l) (print_table table_r); *) match t1, t2 with - | t1, t2 when t1 = t2 -> table | C.Meta (m1, tl1), C.Meta (m2, tl2) -> - let m1_binding, m2_binding, table = - let m1b, table = - try List.assoc m1 table, table - with Not_found -> m2, (m1, m2)::table - in - let m2b, table = - try List.assoc m2 table, table - with Not_found -> m1, (m2, m1)::table - in - m1b, m2b, table + let m1_binding, table_l = + try List.assoc m1 table_l, table_l + with Not_found -> m2, (m1, m2)::table_l + and m2_binding, table_r = + try List.assoc m2 table_r, table_r + with Not_found -> m1, (m2, m1)::table_r in - if m1_binding <> m2 || m2_binding <> m1 then +(* let m1_binding, m2_binding, table = *) +(* let m1b, table = *) +(* try List.assoc m1 table, table *) +(* with Not_found -> m2, (m1, m2)::table *) +(* in *) +(* let m2b, table = *) +(* try List.assoc m2 table, table *) +(* with Not_found -> m1, (m2, m1)::table *) +(* in *) +(* m1b, m2b, table *) +(* in *) +(* Printf.printf "table_l: %s\ntable_r: %s\n\n" *) +(* (print_table table_l) (print_table table_r); *) + if (m1_binding <> m2) || (m2_binding <> m1) then raise NotMetaConvertible else ( try @@ -30,7 +91,7 @@ let meta_convertibility_aux table t1 t2 = | None, Some _ | Some _, None -> raise NotMetaConvertible | None, None -> res | Some t1, Some t2 -> (aux res t1 t2)) - table tl1 tl2 + (table_l, table_r) tl1 tl2 with Invalid_argument _ -> raise NotMetaConvertible ) @@ -77,6 +138,7 @@ let meta_convertibility_aux table t1 t2 = table il1 il2 with Invalid_argument _ -> raise NotMetaConvertible ) + | t1, t2 when t1 = t2 -> table | _, _ -> raise NotMetaConvertible and aux_ens table ens1 ens2 = @@ -102,28 +164,19 @@ let meta_convertibility_eq eq1 eq2 = and _, (ty', left', right'), _, _ = eq2 in if ty <> ty' then false + else if (left = left') && (right = right') then + true + else if (left = right') && (right = left') then + true else - let print_table t w = - Printf.printf "table %s is:\n" w; - List.iter - (fun (k, v) -> Printf.printf "?%d: ?%d\n" k v) - t; - print_newline (); - in try - let table = meta_convertibility_aux [] left left' in + let table = meta_convertibility_aux ([], []) left left' in let _ = meta_convertibility_aux table right right' in -(* Printf.printf "meta_convertibility_eq, ok:\n%s\n%s\n" *) -(* (string_of_equality eq1) (string_of_equality eq2); *) -(* print_newline (); *) true with NotMetaConvertible -> try - let table = meta_convertibility_aux [] left right' in + let table = meta_convertibility_aux ([], []) left right' in let _ = meta_convertibility_aux table right left' in -(* Printf.printf "meta_convertibility_eq, ok:\n%s\n%s\n" *) -(* (string_of_equality eq1) (string_of_equality eq2); *) -(* print_newline (); *) true with NotMetaConvertible -> false @@ -131,18 +184,122 @@ let meta_convertibility_eq eq1 eq2 = let meta_convertibility t1 t2 = - try - let _ = meta_convertibility_aux [] t1 t2 in + let f t = + String.concat ", " + (List.map + (fun (k, v) -> Printf.sprintf "(%d, %d)" k v) t) + in + if t1 = t2 then true - with NotMetaConvertible -> - false + else + try + let l, r = meta_convertibility_aux ([], []) t1 t2 in + (* Printf.printf "meta_convertibility:\n%s\n%s\n\n" (f l) (f r); *) + true + with NotMetaConvertible -> + false ;; +let replace_metas (* context *) term = + let module C = Cic in + let rec aux = function + | C.Meta (i, c) -> +(* let irl = *) +(* CicMkImplicit.identity_relocation_list_for_metavariable context *) +(* in *) +(* if c = irl then *) +(* C.Implicit (Some (`MetaIndex i)) *) +(* else ( *) +(* Printf.printf "WARNING: c non e` un identity_relocation_list!\n%s\n" *) +(* (String.concat "\n" *) +(* (List.map *) +(* (function None -> "" | Some t -> CicPp.ppterm t) c)); *) +(* C.Meta (i, c) *) +(* ) *) + C.Implicit (Some (`MetaInfo (i, c))) + | C.Var (u, ens) -> C.Var (u, aux_ens ens) + | C.Const (u, ens) -> C.Const (u, aux_ens ens) + | C.Cast (s, t) -> C.Cast (aux s, aux t) + | C.Prod (name, s, t) -> C.Prod (name, aux s, aux t) + | C.Lambda (name, s, t) -> C.Lambda (name, aux s, aux t) + | C.LetIn (name, s, t) -> C.LetIn (name, aux s, aux t) + | C.Appl l -> C.Appl (List.map aux l) + | C.MutInd (uri, i, ens) -> C.MutInd (uri, i, aux_ens ens) + | C.MutConstruct (uri, i, j, ens) -> C.MutConstruct (uri, i, j, aux_ens ens) + | C.MutCase (uri, i, s, t, l) -> + C.MutCase (uri, i, aux s, aux t, List.map aux l) + | C.Fix (i, il) -> + let il' = + List.map (fun (s, i, t1, t2) -> (s, i, aux t1, aux t2)) il in + C.Fix (i, il') + | C.CoFix (i, il) -> + let il' = + List.map (fun (s, t1, t2) -> (s, aux t1, aux t2)) il in + C.CoFix (i, il') + | t -> t + and aux_ens ens = + List.map (fun (u, t) -> (u, aux t)) ens + in + aux term +;; + + +let restore_metas (* context *) term = + let module C = Cic in + let rec aux = function + | C.Implicit (Some (`MetaInfo (i, c))) -> +(* let c = *) +(* CicMkImplicit.identity_relocation_list_for_metavariable context *) +(* in *) +(* C.Meta (i, c) *) +(* let local_context:(C.term option) list = *) +(* Marshal.from_string mc 0 *) +(* in *) +(* C.Meta (i, local_context) *) + C.Meta (i, c) + | C.Var (u, ens) -> C.Var (u, aux_ens ens) + | C.Const (u, ens) -> C.Const (u, aux_ens ens) + | C.Cast (s, t) -> C.Cast (aux s, aux t) + | C.Prod (name, s, t) -> C.Prod (name, aux s, aux t) + | C.Lambda (name, s, t) -> C.Lambda (name, aux s, aux t) + | C.LetIn (name, s, t) -> C.LetIn (name, aux s, aux t) + | C.Appl l -> C.Appl (List.map aux l) + | C.MutInd (uri, i, ens) -> C.MutInd (uri, i, aux_ens ens) + | C.MutConstruct (uri, i, j, ens) -> C.MutConstruct (uri, i, j, aux_ens ens) + | C.MutCase (uri, i, s, t, l) -> + C.MutCase (uri, i, aux s, aux t, List.map aux l) + | C.Fix (i, il) -> + let il' = + List.map (fun (s, i, t1, t2) -> (s, i, aux t1, aux t2)) il in + C.Fix (i, il') + | C.CoFix (i, il) -> + let il' = + List.map (fun (s, t1, t2) -> (s, aux t1, aux t2)) il in + C.CoFix (i, il') + | t -> t + and aux_ens ens = + List.map (fun (u, t) -> (u, aux t)) ens + in + aux term +;; + + +let rec restore_subst (* context *) subst = + List.map + (fun (i, (c, t, ty)) -> + i, (c, restore_metas (* context *) t, ty)) + subst +;; + + let beta_expand ?(metas_ok=true) ?(match_only=false) what type_of_what where context metasenv ugraph = let module S = CicSubstitution in let module C = Cic in + + let print_info = false in + (* let _ = *) (* let names = names_of_context context in *) (* Printf.printf "beta_expand:\nwhat: %s, %s\nwhere: %s, %s\n" *) @@ -394,6 +551,10 @@ let beta_expand ?(metas_ok=true) ?(match_only=false) | C.Meta _ when (not metas_ok) -> res, lifted_term | _ -> +(* let term' = *) +(* if match_only then replace_metas context term *) +(* else term *) +(* in *) try let subst', metasenv', ugraph' = (* Printf.printf "provo a unificare %s e %s\n" *) @@ -409,19 +570,42 @@ let beta_expand ?(metas_ok=true) ?(match_only=false) if match_only then let t' = CicMetaSubst.apply_subst subst' term in if not (meta_convertibility term t') then ( - let names = names_of_context context in -(* Printf.printf "\nbeta_expand: term e t' sono diversi!:\n%s\n%s\n\n" *) -(* (CicPp.pp term names) (CicPp.pp t' names); *) +(* if print_info then ( *) +(* let names = names_of_context context in *) +(* Printf.printf *) +(* "\nbeta_expand: term e t' sono diversi!:\n%s\n%s\n\n" *) +(* (CicPp.pp term names) (CicPp.pp t' names) *) +(* ); *) res, lifted_term - ) - else + ) else ( + let metas = metas_of_term term in +(* let ok = ref false in *) + let fix_subst = function + | (i, (c, C.Meta (j, lc), ty)) when List.mem i metas -> +(* Printf.printf "fix_subst: scambio ?%d e ?%d\n" i j; *) +(* ok := true; *) + (j, (c, C.Meta (i, lc), ty)) + | s -> s + in + let subst' = List.map fix_subst subst' in +(* if !ok then ( *) +(* Printf.printf "aaa:\nterm: %s\nt'%s\n term subst': %s\n" *) +(* (CicPp.ppterm term) *) +(* (CicPp.ppterm t') *) +(* (CicPp.ppterm (CicMetaSubst.apply_subst subst' term)) *) +(* ); *) ((C.Rel (1 + lift_amount), subst', metasenv', ugraph')::res, lifted_term) + ) +(* ((C.Rel (1 + lift_amount), restore_subst context subst', *) +(* metasenv', ugraph')::res, lifted_term) *) else ((C.Rel (1 + lift_amount), subst', metasenv', ugraph')::res, lifted_term) with e -> -(* print_endline ("beta_expand ERROR!: " ^ (Printexc.to_string e)); *) + if print_info then ( + print_endline ("beta_expand ERROR!: " ^ (Printexc.to_string e)); + ); res, lifted_term in (* Printf.printf "exit aux\n"; *) @@ -455,14 +639,30 @@ let beta_expand ?(metas_ok=true) ?(match_only=false) ) exp_named_subst ([], []) in - let expansions, _ = aux 0 where context metasenv [] ugraph in - List.map - (fun (term, subst, metasenv, ugraph) -> - let term' = C.Lambda (C.Anonymous, type_of_what, term) in -(* Printf.printf "term is: %s\nsubst is:\n%s\n\n" *) -(* (CicPp.ppterm term') (print_subst subst); *) - (term', subst, metasenv, ugraph)) - expansions + let expansions, _ = +(* let where = *) +(* if match_only then replace_metas (\* context *\) where *) +(* else where *) +(* in *) + if print_info then ( + Printf.printf "searching %s inside %s\n" + (CicPp.ppterm what) (CicPp.ppterm where); + ); + aux 0 where context metasenv [] ugraph + in + let mapfun = +(* if match_only then *) +(* (fun (term, subst, metasenv, ugraph) -> *) +(* let term' = *) +(* C.Lambda (C.Anonymous, type_of_what, restore_metas term) *) +(* and subst = restore_subst subst in *) +(* (term', subst, metasenv, ugraph)) *) +(* else *) + (fun (term, subst, metasenv, ugraph) -> + let term' = C.Lambda (C.Anonymous, type_of_what, term) in + (term', subst, metasenv, ugraph)) + in + List.map mapfun expansions ;; @@ -557,8 +757,17 @@ let fix_metas newmeta ((proof, (ty, left, right), menv, args) as equality) = (i, context, term)::menv) menv [] in + let ty = repl ty + and left = repl left + and right = repl right in + let metas = (metas_of_term left) @ (metas_of_term right) in + let menv' = List.filter (fun (i, _, _) -> List.mem i metas) menv' + and newargs = + List.filter + (function Cic.Meta (i, _) -> List.mem i metas | _ -> assert false) newargs + in (newmeta + (List.length newargs) + 1, - (repl proof, (repl ty, repl left, repl right), menv', newargs)) + (repl proof, (ty, left, right), menv', newargs)) ;; @@ -586,14 +795,13 @@ let superposition_left (metasenv, context, ugraph) target source = let proof, (eq_ty, left, right), _, _ = target in let eqproof, (ty, t1, t2), newmetas, args = source in - (* ALB: TODO check that ty and eq_ty are indeed equal... *) - (* assert (eq_ty = ty); *) + let compare_terms = !Utils.compare_terms in if eq_ty <> ty then [] else let where, is_left = - match nonrec_kbo left right with + match compare_terms left right with | Lt -> right, false | Gt -> left, true | _ -> ( @@ -604,16 +812,24 @@ let superposition_left (metasenv, context, ugraph) target source = ) in let metasenv' = newmetas @ metasenv in - let res1 = - List.filter - (fun (t, s, m, ug) -> - nonrec_kbo (M.apply_subst s t1) (M.apply_subst s t2) = Gt) - (beta_expand t1 ty where context metasenv' ugraph) - and res2 = - List.filter - (fun (t, s, m, ug) -> - nonrec_kbo (M.apply_subst s t2) (M.apply_subst s t1) = Gt) - (beta_expand t2 ty where context metasenv' ugraph) + let result = compare_terms t1 t2 in + let res1, res2 = + match result with + | Gt -> (beta_expand t1 ty where context metasenv' ugraph), [] + | Lt -> [], (beta_expand t2 ty where context metasenv' ugraph) + | _ -> + let res1 = + List.filter + (fun (t, s, m, ug) -> + compare_terms (M.apply_subst s t1) (M.apply_subst s t2) = Gt) + (beta_expand t1 ty where context metasenv' ugraph) + and res2 = + List.filter + (fun (t, s, m, ug) -> + compare_terms (M.apply_subst s t2) (M.apply_subst s t1) = Gt) + (beta_expand t2 ty where context metasenv' ugraph) + in + res1, res2 in (* let what, other = *) (* if is_left then left, right *) @@ -660,8 +876,7 @@ let superposition_right newmeta (metasenv, context, ugraph) target source = let eqp', (ty', t1, t2), newm', args' = source in let maxmeta = ref newmeta in - (* TODO check if ty and ty' are equal... *) - (* assert (eq_ty = ty'); *) + let compare_terms = !Utils.compare_terms in if eq_ty <> ty' then newmeta, [] @@ -676,30 +891,53 @@ let superposition_right newmeta (metasenv, context, ugraph) target source = (* in *) let condition left right what other (t, s, m, ug) = let subst = M.apply_subst s in - let cmp1 = nonrec_kbo (subst what) (subst other) in - let cmp2 = nonrec_kbo (subst left) (subst right) in + let cmp1 = compare_terms (subst what) (subst other) in + let cmp2 = compare_terms (subst left) (subst right) in (* cmp1 = Gt && cmp2 = Gt *) cmp1 <> Lt && cmp1 <> Le && cmp2 <> Lt && cmp2 <> Le (* && (ok t s other right ug) *) in let metasenv' = metasenv @ newmetas @ newm' in let beta_expand = beta_expand ~metas_ok:false in - let res1 = - List.filter - (condition left right t1 t2) - (beta_expand t1 eq_ty left context metasenv' ugraph) - and res2 = - List.filter - (condition left right t2 t1) - (beta_expand t2 eq_ty left context metasenv' ugraph) - and res3 = - List.filter - (condition right left t1 t2) - (beta_expand t1 eq_ty right context metasenv' ugraph) - and res4 = - List.filter - (condition right left t2 t1) - (beta_expand t2 eq_ty right context metasenv' ugraph) + let cmp1 = compare_terms left right + and cmp2 = compare_terms t1 t2 in + let res1, res2, res3, res4 = + let res l r s t = + List.filter + (condition l r s t) + (beta_expand s eq_ty l context metasenv' ugraph) + in + match cmp1, cmp2 with + | Gt, Gt -> + (beta_expand t1 eq_ty left context metasenv' ugraph), [], [], [] + | Gt, Lt -> + [], (beta_expand t2 eq_ty left context metasenv' ugraph), [], [] + | Lt, Gt -> + [], [], (beta_expand t1 eq_ty right context metasenv' ugraph), [] + | Lt, Lt -> + [], [], [], (beta_expand t2 eq_ty right context metasenv' ugraph) + | Gt, _ -> + let res1 = res left right t1 t2 + and res2 = res left right t2 t1 in + res1, res2, [], [] + | Lt, _ -> + let res3 = res right left t1 t2 + and res4 = res right left t2 t1 in + [], [], res3, res4 + | _, Gt -> + let res1 = res left right t1 t2 + and res3 = res right left t1 t2 in + res1, [], res3, [] + | _, Lt -> + let res2 = res left right t2 t1 + and res4 = res right left t2 t1 in + [], res2, [], res4 + | _, _ -> + let res1 = res left right t1 t2 + and res2 = res left right t2 t1 + and res3 = res right left t1 t2 + and res4 = res right left t2 t1 in + res1, res2, res3, res4 in let newmetas = newmetas @ newm' in let newargs = args @ args' in @@ -770,16 +1008,33 @@ let demodulation newmeta (metasenv, context, ugraph) target source = let proof, (eq_ty, left, right), metas, args = target and proof', (ty, t1, t2), metas', args' = source in + + let compare_terms = !Utils.compare_terms in + if eq_ty <> ty then newmeta, target else - let get_params step = - match step with - | 3 -> true, t1, t2, HL.Logic.eq_ind_URI - | 2 -> false, t1, t2, HL.Logic.eq_ind_URI - | 1 -> true, t2, t1, HL.Logic.eq_ind_r_URI - | 0 -> false, t2, t1, HL.Logic.eq_ind_r_URI - | _ -> assert false + let first_step, get_params = + match compare_terms t1 t2 with + | Gt -> 1, (function + | 1 -> true, t1, t2, HL.Logic.eq_ind_URI + | 0 -> false, t1, t2, HL.Logic.eq_ind_URI + | _ -> assert false) + | Lt -> 1, (function + | 1 -> true, t2, t1, HL.Logic.eq_ind_r_URI + | 0 -> false, t2, t1, HL.Logic.eq_ind_r_URI + | _ -> assert false) + | _ -> + let first_step = 3 in + let get_params step = + match step with + | 3 -> true, t1, t2, HL.Logic.eq_ind_URI + | 2 -> false, t1, t2, HL.Logic.eq_ind_URI + | 1 -> true, t2, t1, HL.Logic.eq_ind_r_URI + | 0 -> false, t2, t1, HL.Logic.eq_ind_r_URI + | _ -> assert false + in + first_step, get_params in let rec demodulate newmeta step metasenv target = let proof, (eq_ty, left, right), metas, args = target in @@ -795,18 +1050,28 @@ let demodulation newmeta (metasenv, context, ugraph) target source = (* print_newline (); *) let ok (t, s, m, ug) = - nonrec_kbo (M.apply_subst s what) (M.apply_subst s other) = Gt + compare_terms (M.apply_subst s what) (M.apply_subst s other) = Gt in let res = let r = (beta_expand ~metas_ok:false ~match_only:true what ty (if is_left then left else right) context (metasenv @ metas) ugraph) in -(* print_endline "res:"; *) -(* List.iter (fun (t, s, m, ug) -> print_endline (CicPp.pp t names)) r; *) -(* print_newline (); *) -(* Printf.printf "metasenv:\n%s\n" (print_metasenv (metasenv @ metas)); *) -(* print_newline (); *) +(* let m' = metas_of_term what *) +(* and m'' = metas_of_term (if is_left then left else right) in *) +(* if (List.mem 527 m'') && (List.mem 6 m') then ( *) +(* Printf.printf *) +(* "demodulate\ntarget: %s\nwhat: %s\nother: %s\nis_left: %s\n" *) +(* (string_of_equality ~env target) (CicPp.pp what names) *) +(* (CicPp.pp other names) (string_of_bool is_left); *) +(* Printf.printf "step: %d" step; *) +(* print_newline (); *) +(* print_endline "res:"; *) +(* List.iter (fun (t, s, m, ug) -> print_endline (CicPp.pp t names)) r; *) +(* print_newline (); *) +(* Printf.printf "metasenv:\n%s\n" (print_metasenv (metasenv @ metas)); *) +(* print_newline (); *) +(* ); *) List.filter ok r in match res with @@ -817,7 +1082,8 @@ let demodulation newmeta (metasenv, context, ugraph) target source = let newterm, newproof = match t with | C.Lambda (nn, ty, bo) -> - let bo' = M.apply_subst s (S.subst other bo) in +(* let bo' = M.apply_subst s (S.subst other bo) in *) + let bo' = S.subst (M.apply_subst s other) bo in let bo'' = C.Appl ( [C.MutInd (HL.Logic.eq_URI, 0, []); @@ -826,7 +1092,8 @@ let demodulation newmeta (metasenv, context, ugraph) target source = else [S.lift 1 left; bo']) in let t' = C.Lambda (nn, ty, bo'') in - M.apply_subst s (S.subst other bo), +(* M.apply_subst s (S.subst other bo), *) + bo', M.apply_subst s (C.Appl [C.Const (eq_URI, []); ty; what; t'; proof; other; proof']) @@ -834,24 +1101,39 @@ let demodulation newmeta (metasenv, context, ugraph) target source = in let newmeta, newtarget = let left, right = - if is_left then (newterm, M.apply_subst s right) - else (M.apply_subst s left, newterm) in - let newmetasenv = metasenv @ metas in - let newargs = args @ args' in - fix_metas newmeta - (newproof, (eq_ty, left, right), newmetasenv, newargs) +(* if is_left then (newterm, M.apply_subst s right) *) +(* else (M.apply_subst s left, newterm) in *) + if is_left then newterm, right + else left, newterm + in +(* let newmetasenv = metasenv @ metas in *) +(* let newargs = args @ args' in *) +(* fix_metas newmeta *) +(* (newproof, (eq_ty, left, right), newmetasenv, newargs) *) + let m = (metas_of_term left) @ (metas_of_term right) in + let newmetasenv = List.filter (fun (i, _, _) -> List.mem i m) metas + and newargs = + List.filter + (function C.Meta (i, _) -> List.mem i m | _ -> assert false) + args + in + newmeta, (newproof, (eq_ty, left, right), newmetasenv, newargs) in - Printf.printf - "demodulate, newtarget: %s\ntarget was: %s\n" - (string_of_equality ~env newtarget) - (string_of_equality ~env target); - print_newline (); +(* Printf.printf *) +(* "demodulate, newtarget: %s\ntarget was: %s\n" *) +(* (string_of_equality ~env newtarget) *) +(* (string_of_equality ~env target); *) +(* (\* let _, _, newm, newa = newtarget in *\) *) +(* (\* Printf.printf "newmetasenv:\n%s\nnewargs:\n%s\n" *\) *) +(* (\* (print_metasenv newm) *\) *) +(* (\* (String.concat "\n" (List.map CicPp.ppterm newa)); *\) *) +(* print_newline (); *) if is_identity env newtarget then newmeta, newtarget else - demodulate newmeta step metasenv newtarget + demodulate newmeta first_step metasenv newtarget in - demodulate newmeta 3 (metasenv @ metas') target + demodulate newmeta first_step (metasenv @ metas') target ;;