X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Focaml%2Ftactics%2Fdoc%2Fbody.tex;h=424dee225871b7188ae0e7b3ad53080d316fb4ba;hb=5fd3862ee12950c8441a313bdc1e0c2cb4078cf0;hp=3c537d43be048b5702b0eaefe49e8556d46535a5;hpb=a8a60abba413c68ee65f3322f6b4028af34ed9e6;p=helm.git diff --git a/helm/ocaml/tactics/doc/body.tex b/helm/ocaml/tactics/doc/body.tex index 3c537d43b..424dee225 100644 --- a/helm/ocaml/tactics/doc/body.tex +++ b/helm/ocaml/tactics/doc/body.tex @@ -1,7 +1,229 @@ -\section{Semantics} +\section{Tinycals: \MATITA{} tacticals} -\subsection{Language} +\subsection{Introduction} + +% outline: +% - script + +Most of modern mainstream proof assistants enable input of proofs of +propositions using a textual language. Compilation units written in such +languages are sequence of textual \emph{statements} and are usually called +\emph{scripts} as a whole. Scripts are so entangled with proof assistants that +they drived the design of state of the art of their Graphical User Interfaces +(GUIs). Fig.~\ref{fig:proofgeneral} is a screenshot of Proof General, a generic +proof assistant interface based on Emacs widely used and compatible with systems +like Coq, Isabelle, PhoX, LEGO, and many more. Other system specific GUIs exist +but share the same design, understanding it and they way such GUIs are operated +is relevant to our discussion. + +\begin{figure}[ht] + \begin{center} + \resizebox{\textwidth}{!}{\includegraphics{pics/pg-coq-screenshot}} + \caption{Proof General: a generic interface for proof assistants} + \label{fig:proofgeneral} + \end{center} +\end{figure} + +% - modo di lavorare + +The paradigm behind such GUIs is quite simple. The window on the left is an +editable text area containing the script and split in two by an \emph{execution +point} (the point where background color changes). The part starting at the +beginning of the script and ending at the marker (distinguishable for having a +light blue background in the picture) contains the sequence of statements which +have already been fed into the system. We will call this former part +\emph{locked area} since the user is not free to change it as her willing. The +remaining part, which extends until the end of the script, is named +\emph{scratch area} and can be freely modified. The window on the right is +read-only for the user and includes at the top the current proof status, when +some proof is ongoing, and at the bottom a message area used for error messages +or other feedback from the system to the user. The user usually proceed +alternating editing of the scratch area and execution point movements (forward +to evaluate statements and backward to retract statements if she need to change +something in the locked area). + +Execution point movements are not free, but constrained by the structure of the +script language used. The granularity is that of statements. In systems like Coq +or \MATITA{} examples of statements are: inductive definitions, theorems, and +tactics. \emph{Tactics} are the building blocks of proofs. For example, the +following script snippet contains a theorem about a relationship of natural +minus with natural plus, along with its proof (line numbers have been added for +the sake of presentation) as it can be found in the standard library of the +\MATITA{} proof assistant: + +\begin{example} +\begin{Verbatim} +theorem eq_minus_minus_minus_plus: \forall n,m,p:nat. (n-m)-p = n-(m+p). + intros. + cut (m+p \le n \or m+p \nleq n). + elim Hcut. + symmetry. + apply plus_to_minus. + rewrite > assoc_plus. + rewrite > (sym_plus p). + rewrite < plus_minus_m_m. + rewrite > sym_plus. + rewrite < plus_minus_m_m. + reflexivity. + apply (trans_le ? (m+p)). + rewrite < sym_plus. + apply le_plus_n. + assumption. + apply le_plus_to_minus_r. + rewrite > sym_plus. + assumption. + rewrite > (eq_minus_n_m_O n (m+p)). + rewrite > (eq_minus_n_m_O (n-m) p). + reflexivity. + apply le_plus_to_minus. + apply lt_to_le. + rewrite < sym_plus. + apply not_le_to_lt. + assumption. + apply lt_to_le. + apply not_le_to_lt. + assumption. + apply (decidable_le (m+p) n). +qed. +\end{Verbatim} +\end{example} + +The script snippet is made of 32 statements, one per line (but this is not a +requirement of the \MATITA{} script language, namely \emph{Grafite}). The first +statement is the assertion that the user want to prove a proposition with a +given type, specified after the ``\texttt{:}'', its execution will cause +\MATITA{} to enter the proof state showing to the user the list of goals that +still need to be proved to conclude the proof. The last statement (\texttt{Qed}) +is an assertion that the proof is completed. All intertwining statements are +tactic applications. + +Given the constraint we mentioned about execution point, while inserting (or +replaying) the above script, the user may position it at the end of any line, +having feedback about the status of the proof in that point. See for example +Fig.~\ref{fig:matita} where an intermediate proof status is shown. + +\begin{figure}[ht] + \begin{center} + \resizebox{\textwidth}{!}{\includegraphics{matita_screenshot}} + \caption{Matita: ongoing proof} + \label{fig:matita} + \end{center} +\end{figure} + +% - script: sorgenti di un linguaggio imperativo, oggetti la loro semantica +% - script = sequenza di comandi + +You can create an analogy among scripts and sources written in an imperative +programming language, seeing proofs as the denotational semantics of that +language. In such analogy the language used in the script of +Fig.~\ref{fig:matita} is rather poor offering as the only programming construct +the sequential composition of tactic application. What enables step by step +execution is the operational semantics of each tactic application (i.e. how it +changes the current proof status). + +% - pro: concisi + +This kind of scripts have both advantages and drawbacks. Among advantages we can +for sure list the effectiveness of the language. In spite of being longer than +the corresponding informal text version of the proof (a gap hardly fillable with +proof assistants~\cite{debrujinfactor}), the script is fast to write in +interactive use, enable cut and paste approaches, and gives a lot of flexibility +(once the syntax is known of course) in tactic application via additional flags +that can be easily passed to them. + +% - cons: non strutturati, hanno senso solo via reply + +Unfortunately, drawbacks are non negligible. Scripts like those of +Fig.~\ref{fig:matita} are completely unstructured and hardly can be assigned a +meaning simply looking at them. Even experienced users, that knows the details +of all involved tactics, can hardly figure what a script mean without replaying +the proof in their heads. This indeed is a key aspect of scripts: they are +meaningful via \emph{reply}. People interested in understanding a formal proof +written as a script usually start the preferred tool and execute it step by +step. A contrasting approach compared to what happens with high level +programming languages where looking at the code is usually enough to understand +its details. + +% - cons: poco robusti (wrt cambiamenti nelle tattiche, nello statement, ...) + +Additionally, scripts are usually not robust against changes, intending with +that term both changes in the statement that need to be proved (e.g. +strenghtening of an inductive hypothesis) and changes in the implementation of +involved tactics. This drawback can force backward compatibility and slow down +systems development. A real-life example in the history of \MATITA{} was the +reordering of goals after tactic application; the total time needed to port the +(tiny at the time) standard library of no more that 30 scripts was 2 days work. +Having the scripts being structured the task could have been done in much less +time and even automated. + +Tacticals are an attempt at solving this drawbacks. + +\subsection{Tacticals} + +% - script = sequenza di comandi + tatticali + +\ldots descrizione dei tatticali \ldots + +% - pro: fattorizzazione + +Tacticals as described above have several advantages with respect to plain +sequential application of tactics. First of all they enable a great amount of +factorization of proofs using the sequential composition ``;'' operator. Think +for example at proofs by induction on inductive types with several constructors, +which are so frequent when formalizing properties from the computer science +field. It is often the case that several, or even all, cases can be dealt with +uniform strategies, which can in turn by coded in a single script snipped which +can appear only once, at the right hand side of a ``;''. + +% - pro: robustezza + +Scripts properly written using the tacticals above are even more robust with +respect to changes. The additional amount of flexibility is given by +``conditional'' constructs like \texttt{try}, \texttt{solve}, and +\texttt{first}. Using them the scripts no longer contain a single way of +proceeding from one status of the proof to another, they can list more. The wise +proof coder may exploit this mechanism providing fallbacks in order to be more +robust to future changes in tactics implementation. Of course she is not +required to! + +% - pro: strutturazione delle prove (via branching) + +Finally, the branching constructs \texttt{[}, \texttt{|}, and \texttt{]} enable +proof structuring. Consider for example an alternative, branching based, version +of the example above: + +\begin{example} +\begin{Verbatim} +... +\end{Verbatim} +\end{example} + +Tactic applications are the same of the previous version of the script, but +branching tacticals are used. The above version is highly more readable and +without executing it key points of the proofs like induction cases can be +observed. + +% - tradeoff: utilizzo dei tatticali vs granularita' dell'esecuzione +% (impossibile eseguire passo passo) + +One can now wonder why thus all scripts are not written in a robust, concise and +structured fashion. The reason is the existence of an unfortunate tradeoff +between the need of using tacticals and the impossibility of executing step by +step \emph{inside} them. Indeed, trying to mimic the structured version of the +proof above in GUIs like Proof General or CoqIDE will result in a single macro +step that will bring you from the beginning of the proof directly at the end of +it! + +Tinycals as implemented in \MATITA{} are a solution to this problem, preserving +the usual tacticals semantics, giving meaning to intermediate execution point +inside complex tacticals. + +\subsection{Tinycals} + +\subsection{Tinycals semantics} + +\subsubsection{Language} \[ \begin{array}{rcll} @@ -24,7 +246,7 @@ \end{array} \] -\subsection{Status} +\subsubsection{Status} \[ \begin{array}{rcll} @@ -98,7 +320,7 @@ top-level $\Gamma$)}, \ISFRESH(l)$. \end{itemize} -\subsection{Semantics} +\subsubsection{Semantics} \[ \begin{array}{rcll} @@ -245,3 +467,8 @@ \end{array} \] +\subsection{Related works} + +In~\cite{fk:strata2003}, Kirchner described a small step semantics for Coq +tacticals and PVS strategies. +