X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Focaml%2Ftactics%2FfourierR.ml;h=13dd9f410af6c74b2019842158a4a1b1a96a25c0;hb=4167cea65ca58897d1a3dbb81ff95de5074700cc;hp=b1aa1a256f707a11f8aff9b76a9de7f922873747;hpb=bac72fcaa876137ab7a5630e0c1badc2a627dce8;p=helm.git diff --git a/helm/ocaml/tactics/fourierR.ml b/helm/ocaml/tactics/fourierR.ml index b1aa1a256..13dd9f410 100644 --- a/helm/ocaml/tactics/fourierR.ml +++ b/helm/ocaml/tactics/fourierR.ml @@ -31,6 +31,7 @@ des in *) open Fourier +open ProofEngineTypes let debug x = print_string ("____ "^x) ; flush stdout;; @@ -54,35 +55,35 @@ qui est z (** - The type for linear combinations + The type for linear combinations *) -type flin = {fhom:(Cic.term , rational)Hashtbl.t;fcste:rational} +type flin = {fhom:(Cic.term , rational)Hashtbl.t;fcste:rational} ;; (** - @return an empty flin + @return an empty flin *) let flin_zero () = {fhom = Hashtbl.create 50;fcste=r0} ;; (** - @param f a flin - @param x a Cic.term - @return the rational associated with x (coefficient) + @param f a flin + @param x a Cic.term + @return the rational associated with x (coefficient) *) let flin_coef f x = - try - (Hashtbl.find f.fhom x) - with - _ -> r0 + try + (Hashtbl.find f.fhom x) + with + _ -> r0 ;; - + (** - Adds c to the coefficient of x - @param f a flin - @param x a Cic.term - @param c a rational - @return the new flin + Adds c to the coefficient of x + @param f a flin + @param x a Cic.term + @param c a rational + @return the new flin *) let flin_add f x c = match x with @@ -98,10 +99,10 @@ let flin_add f x c = f ;; (** - Adds c to f.fcste - @param f a flin - @param c a rational - @return the new flin + Adds c to f.fcste + @param f a flin + @param c a rational + @return the new flin *) let flin_add_cste f c = {fhom=f.fhom; @@ -109,12 +110,12 @@ let flin_add_cste f c = ;; (** - @return a empty flin with r1 in fcste + @return a empty flin with r1 in fcste *) let flin_one () = flin_add_cste (flin_zero()) r1;; (** - Adds two flin + Adds two flin *) let flin_plus f1 f2 = let f3 = flin_zero() in @@ -124,7 +125,7 @@ let flin_plus f1 f2 = ;; (** - Substracts two flin + Substracts two flin *) let flin_minus f1 f2 = let f3 = flin_zero() in @@ -134,7 +135,7 @@ let flin_minus f1 f2 = ;; (** - @return a times f + @return a times f *) let flin_emult a f = let f2 = flin_zero() in @@ -147,46 +148,44 @@ let flin_emult a f = (** - @param t a term - @raise Failure if conversion is impossible - @return rational proiection of t + @param t a term + @raise Failure if conversion is impossible + @return rational proiection of t *) let rec rational_of_term t = (* fun to apply f to the first and second rational-term of l *) let rat_of_binop f l = - let a = List.hd l and - b = List.hd(List.tl l) in - f (rational_of_term a) (rational_of_term b) + let a = List.hd l and + b = List.hd(List.tl l) in + f (rational_of_term a) (rational_of_term b) in (* as before, but f is unary *) let rat_of_unop f l = - f (rational_of_term (List.hd l)) + f (rational_of_term (List.hd l)) in match t with | Cic.Cast (t1,t2) -> (rational_of_term t1) | Cic.Appl (t1::next) -> (match t1 with Cic.Const (u,boh) -> - (match (UriManager.string_of_uri u) with - "cic:/Coq/Reals/Rdefinitions/Ropp.con" -> - rat_of_unop rop next - |"cic:/Coq/Reals/Rdefinitions/Rinv.con" -> + if UriManager.eq u HelmLibraryObjects.Reals.ropp_URI then + rat_of_unop rop next + else if UriManager.eq u HelmLibraryObjects.Reals.rinv_URI then rat_of_unop rinv next - |"cic:/Coq/Reals/Rdefinitions/Rmult.con" -> + else if UriManager.eq u HelmLibraryObjects.Reals.rmult_URI then rat_of_binop rmult next - |"cic:/Coq/Reals/Rdefinitions/Rdiv.con" -> + else if UriManager.eq u HelmLibraryObjects.Reals.rdiv_URI then rat_of_binop rdiv next - |"cic:/Coq/Reals/Rdefinitions/Rplus.con" -> + else if UriManager.eq u HelmLibraryObjects.Reals.rplus_URI then rat_of_binop rplus next - |"cic:/Coq/Reals/Rdefinitions/Rminus.con" -> + else if UriManager.eq u HelmLibraryObjects.Reals.rminus_URI then rat_of_binop rminus next - | _ -> failwith "not a rational") + else failwith "not a rational" | _ -> failwith "not a rational") | Cic.Const (u,boh) -> - (match (UriManager.string_of_uri u) with - "cic:/Coq/Reals/Rdefinitions/R1.con" -> r1 - |"cic:/Coq/Reals/Rdefinitions/R0.con" -> r0 - | _ -> failwith "not a rational") + if UriManager.eq u HelmLibraryObjects.Reals.r1_URI then r1 + else if UriManager.eq u HelmLibraryObjects.Reals.r0_URI then r0 + else failwith "not a rational" | _ -> failwith "not a rational" ;; @@ -202,110 +201,108 @@ let fails f a = ;; let rec flin_of_term t = - let fl_of_binop f l = - let a = List.hd l and - b = List.hd(List.tl l) in - f (flin_of_term a) (flin_of_term b) - in + let fl_of_binop f l = + let a = List.hd l and + b = List.hd(List.tl l) in + f (flin_of_term a) (flin_of_term b) + in try( match t with | Cic.Cast (t1,t2) -> (flin_of_term t1) | Cic.Appl (t1::next) -> - begin - match t1 with + begin + match t1 with Cic.Const (u,boh) -> begin - match (UriManager.string_of_uri u) with - "cic:/Coq/Reals/Rdefinitions/Ropp.con" -> + if UriManager.eq u HelmLibraryObjects.Reals.ropp_URI then flin_emult (rop r1) (flin_of_term (List.hd next)) - |"cic:/Coq/Reals/Rdefinitions/Rplus.con"-> + else if UriManager.eq u HelmLibraryObjects.Reals.rplus_URI then fl_of_binop flin_plus next - |"cic:/Coq/Reals/Rdefinitions/Rminus.con"-> + else if UriManager.eq u HelmLibraryObjects.Reals.rminus_URI then fl_of_binop flin_minus next - |"cic:/Coq/Reals/Rdefinitions/Rmult.con"-> - begin - let arg1 = (List.hd next) and - arg2 = (List.hd(List.tl next)) - in - if fails rational_of_term arg1 - then - if fails rational_of_term arg2 - then - ( (* prodotto tra 2 incognite ????? impossibile*) - failwith "Sistemi lineari!!!!\n" - ) - else - ( - match arg1 with - Cic.Rel(n) -> (*trasformo al volo*) - (flin_add (flin_zero()) arg1 (rational_of_term arg2)) - |_-> (* test this *) - let tmp = flin_of_term arg1 in - flin_emult (rational_of_term arg2) (tmp) - ) - else - if fails rational_of_term arg2 - then - ( - match arg2 with - Cic.Rel(n) -> (*trasformo al volo*) - (flin_add (flin_zero()) arg2 (rational_of_term arg1)) - |_-> (* test this *) - let tmp = flin_of_term arg2 in - flin_emult (rational_of_term arg1) (tmp) - - ) - else - ( (*prodotto tra razionali*) - (flin_add_cste (flin_zero()) (rmult (rational_of_term arg1) (rational_of_term arg2))) - ) - (*try - begin - (*let a = rational_of_term arg1 in - debug("ho fatto rational of term di "^CicPp.ppterm arg1^ - " e ho ottenuto "^string_of_int a.num^"/"^string_of_int a.den^"\n");*) - let a = flin_of_term arg1 - try - begin - let b = (rational_of_term arg2) in - debug("ho fatto rational of term di "^CicPp.ppterm arg2^ - " e ho ottenuto "^string_of_int b.num^"/"^string_of_int b.den^"\n"); - (flin_add_cste (flin_zero()) (rmult a b)) - end - with - _ -> debug ("ho fallito2 su "^CicPp.ppterm arg2^"\n"); - (flin_add (flin_zero()) arg2 a) - end - with - _-> debug ("ho fallito1 su "^CicPp.ppterm arg1^"\n"); - (flin_add(flin_zero()) arg1 (rational_of_term arg2)) - *) - end - |"cic:/Coq/Reals/Rdefinitions/Rinv.con"-> - let a=(rational_of_term (List.hd next)) in - flin_add_cste (flin_zero()) (rinv a) - |"cic:/Coq/Reals/Rdefinitions/Rdiv.con"-> - begin - let b=(rational_of_term (List.hd(List.tl next))) in - try - begin - let a = (rational_of_term (List.hd next)) in - (flin_add_cste (flin_zero()) (rdiv a b)) - end - with - _-> (flin_add (flin_zero()) (List.hd next) (rinv b)) - end - |_->assert false - end - |_ -> assert false - end + else if UriManager.eq u HelmLibraryObjects.Reals.rmult_URI then + begin + let arg1 = (List.hd next) and + arg2 = (List.hd(List.tl next)) + in + if fails rational_of_term arg1 + then + if fails rational_of_term arg2 + then + ( (* prodotto tra 2 incognite ????? impossibile*) + failwith "Sistemi lineari!!!!\n" + ) + else + ( + match arg1 with + Cic.Rel(n) -> (*trasformo al volo*) + (flin_add (flin_zero()) arg1 (rational_of_term arg2)) + |_-> (* test this *) + let tmp = flin_of_term arg1 in + flin_emult (rational_of_term arg2) (tmp) + ) + else + if fails rational_of_term arg2 + then + ( + match arg2 with + Cic.Rel(n) -> (*trasformo al volo*) + (flin_add (flin_zero()) arg2 (rational_of_term arg1)) + |_-> (* test this *) + let tmp = flin_of_term arg2 in + flin_emult (rational_of_term arg1) (tmp) + + ) + else + ( (*prodotto tra razionali*) + (flin_add_cste (flin_zero()) (rmult (rational_of_term arg1) (rational_of_term arg2))) + ) + (*try + begin + (*let a = rational_of_term arg1 in + debug("ho fatto rational of term di "^CicPp.ppterm arg1^ + " e ho ottenuto "^string_of_int a.num^"/"^string_of_int a.den^"\n");*) + let a = flin_of_term arg1 + try + begin + let b = (rational_of_term arg2) in + debug("ho fatto rational of term di "^CicPp.ppterm arg2^ + " e ho ottenuto "^string_of_int b.num^"/"^string_of_int b.den^"\n"); + (flin_add_cste (flin_zero()) (rmult a b)) + end + with + _ -> debug ("ho fallito2 su "^CicPp.ppterm arg2^"\n"); + (flin_add (flin_zero()) arg2 a) + end + with + _-> debug ("ho fallito1 su "^CicPp.ppterm arg1^"\n"); + (flin_add(flin_zero()) arg1 (rational_of_term arg2)) + *) + end + else if UriManager.eq u HelmLibraryObjects.Reals.rinv_URI then + let a=(rational_of_term (List.hd next)) in + flin_add_cste (flin_zero()) (rinv a) + else if UriManager.eq u HelmLibraryObjects.Reals.rdiv_URI then + begin + let b=(rational_of_term (List.hd(List.tl next))) in + try + begin + let a = (rational_of_term (List.hd next)) in + (flin_add_cste (flin_zero()) (rdiv a b)) + end + with + _-> (flin_add (flin_zero()) (List.hd next) (rinv b)) + end + else assert false + end + |_ -> assert false + end | Cic.Const (u,boh) -> begin - match (UriManager.string_of_uri u) with - "cic:/Coq/Reals/Rdefinitions/R1.con" -> flin_one () - |"cic:/Coq/Reals/Rdefinitions/R0.con" -> flin_zero () - |_-> assert false - end + if UriManager.eq u HelmLibraryObjects.Reals.r1_URI then flin_one () + else if UriManager.eq u HelmLibraryObjects.Reals.r0_URI then flin_zero () + else assert false + end |_-> assert false) with _ -> debug("eccezione = "^CicPp.ppterm t^"\n");flin_add (flin_zero()) t r1 ;; @@ -315,9 +312,9 @@ let flin_of_constr = flin_of_term;; *) (** - Translates a flin to (c,x) list - @param f a flin - @return something like (c1,x1)::(c2,x2)::...::(cn,xn) + Translates a flin to (c,x) list + @param f a flin + @return something like (c1,x1)::(c2,x2)::...::(cn,xn) *) let flin_to_alist f = let res=ref [] in @@ -329,7 +326,7 @@ let flin_to_alist f = *) (** - The structure for ineq + The structure for ineq *) type hineq={hname:Cic.term; (* le nom de l'hypothèse *) htype:string; (* Rlt, Rgt, Rle, Rge, eqTLR ou eqTRL *) @@ -349,67 +346,64 @@ let ineq1_of_term (h,t) = let arg2= List.hd(List.tl next) in (match t1 with (* match t1 *) Cic.Const (u,boh) -> - (match UriManager.string_of_uri u with (* match u *) - "cic:/Coq/Reals/Rdefinitions/Rlt.con" -> - [{hname=h; + if UriManager.eq u HelmLibraryObjects.Reals.rlt_URI then + [{hname=h; htype="Rlt"; - hleft=arg1; - hright=arg2; - hflin= flin_minus (flin_of_term arg1) + hleft=arg1; + hright=arg2; + hflin= flin_minus (flin_of_term arg1) (flin_of_term arg2); - hstrict=true}] - |"cic:/Coq/Reals/Rdefinitions/Rgt.con" -> - [{hname=h; + hstrict=true}] + else if UriManager.eq u HelmLibraryObjects.Reals.rgt_URI then + [{hname=h; htype="Rgt"; - hleft=arg2; - hright=arg1; - hflin= flin_minus (flin_of_term arg2) + hleft=arg2; + hright=arg1; + hflin= flin_minus (flin_of_term arg2) (flin_of_term arg1); - hstrict=true}] - |"cic:/Coq/Reals/Rdefinitions/Rle.con" -> + hstrict=true}] + else if UriManager.eq u HelmLibraryObjects.Reals.rle_URI then [{hname=h; htype="Rle"; - hleft=arg1; - hright=arg2; - hflin= flin_minus (flin_of_term arg1) + hleft=arg1; + hright=arg2; + hflin= flin_minus (flin_of_term arg1) (flin_of_term arg2); - hstrict=false}] - |"cic:/Coq/Reals/Rdefinitions/Rge.con" -> + hstrict=false}] + else if UriManager.eq u HelmLibraryObjects.Reals.rge_URI then [{hname=h; htype="Rge"; - hleft=arg2; - hright=arg1; - hflin= flin_minus (flin_of_term arg2) + hleft=arg2; + hright=arg1; + hflin= flin_minus (flin_of_term arg2) (flin_of_term arg1); - hstrict=false}] - |_->assert false)(* match u *) + hstrict=false}] + else assert false | Cic.MutInd (u,i,o) -> - (match UriManager.string_of_uri u with - "cic:/Coq/Init/Logic_Type/eqT.ind" -> - let t0= arg1 in + if UriManager.eq u HelmLibraryObjects.Logic.eq_URI then + let t0= arg1 in let arg1= arg2 in let arg2= List.hd(List.tl (List.tl next)) in - (match t0 with + (match t0 with Cic.Const (u,boh) -> - (match UriManager.string_of_uri u with - "cic:/Coq/Reals/Rdefinitions/R.con"-> + if UriManager.eq u HelmLibraryObjects.Reals.r_URI then [{hname=h; htype="eqTLR"; - hleft=arg1; - hright=arg2; - hflin= flin_minus (flin_of_term arg1) + hleft=arg1; + hright=arg2; + hflin= flin_minus (flin_of_term arg1) (flin_of_term arg2); - hstrict=false}; + hstrict=false}; {hname=h; htype="eqTRL"; - hleft=arg2; - hright=arg1; - hflin= flin_minus (flin_of_term arg2) + hleft=arg2; + hright=arg1; + hflin= flin_minus (flin_of_term arg2) (flin_of_term arg1); - hstrict=false}] - |_-> assert false) - |_-> assert false) - |_-> assert false) + hstrict=false}] + else assert false + |_-> assert false) + else assert false |_-> assert false)(* match t1 *) |_-> assert false (* match t *) ;; @@ -430,12 +424,12 @@ let rec print_sys l = match l with [] -> () | (a,b)::next -> (print_rl a; - print_string (if b=true then "strict\n"else"\n"); - print_sys next) + print_string (if b=true then "strict\n"else"\n"); + print_sys next) ;; (*let print_hash h = - Hashtbl.iter (fun x y -> print_string ("("^"-"^","^"-"^")")) h + Hashtbl.iter (fun x y -> print_string ("("^"-"^","^"-"^")")) h ;;*) let fourier_lineq lineq1 = @@ -443,12 +437,12 @@ let fourier_lineq lineq1 = let hvar=Hashtbl.create 50 in (* la table des variables des inéquations *) List.iter (fun f -> Hashtbl.iter (fun x c -> - try (Hashtbl.find hvar x;()) - with _-> nvar:=(!nvar)+1; - Hashtbl.add hvar x (!nvar); - debug("aggiungo una var "^ - string_of_int !nvar^" per "^ - CicPp.ppterm x^"\n")) + try (Hashtbl.find hvar x;()) + with _-> nvar:=(!nvar)+1; + Hashtbl.add hvar x (!nvar); + debug("aggiungo una var "^ + string_of_int !nvar^" per "^ + CicPp.ppterm x^"\n")) f.hflin.fhom) lineq1; (*print_hash hvar;*) @@ -471,25 +465,19 @@ i.e. on obtient une contradiction. *) -let _eqT = Cic.MutInd((UriManager.uri_of_string - "cic:/Coq/Init/Logic_Type/eqT.ind"), 0, []) ;; -let _False = Cic.MutInd ((UriManager.uri_of_string - "cic:/Coq/Init/Logic/False.ind"), 0, []) ;; -let _not = Cic.Const ((UriManager.uri_of_string - "cic:/Coq/Init/Logic/not.con"), []);; -let _R0 = Cic.Const ((UriManager.uri_of_string - "cic:/Coq/Reals/Rdefinitions/R0.con"), []) ;; -let _R1 = Cic.Const ((UriManager.uri_of_string - "cic:/Coq/Reals/Rdefinitions/R1.con"), []) ;; -let _R = Cic.Const ((UriManager.uri_of_string - "cic:/Coq/Reals/Rdefinitions/R.con"), []) ;; +let _eqT = Cic.MutInd(HelmLibraryObjects.Logic.eq_URI, 0, []) ;; +let _False = Cic.MutInd (HelmLibraryObjects.Logic.false_URI, 0, []) ;; +let _not = Cic.Const (HelmLibraryObjects.Logic.not_URI,[]);; +let _R0 = Cic.Const (HelmLibraryObjects.Reals.r0_URI,[]);; +let _R1 = Cic.Const (HelmLibraryObjects.Reals.r1_URI,[]);; +let _R = Cic.Const (HelmLibraryObjects.Reals.r_URI,[]);; let _Rfourier_eqLR_to_le=Cic.Const ((UriManager.uri_of_string "cic:/Coq/fourier/Fourier_util/Rfourier_eqLR_to_le.con"), []) ;; let _Rfourier_eqRL_to_le=Cic.Const ((UriManager.uri_of_string "cic:/Coq/fourier/Fourier_util/Rfourier_eqRL_to_le.con"), []) ;; let _Rfourier_ge_to_le =Cic.Const ((UriManager.uri_of_string "cic:/Coq/fourier/Fourier_util/Rfourier_ge_to_le.con"), []) ;; -let _Rfourier_gt_to_lt =Cic.Const ((UriManager.uri_of_string +let _Rfourier_gt_to_lt =Cic.Const ((UriManager.uri_of_string "cic:/Coq/fourier/Fourier_util/Rfourier_gt_to_lt.con"), []) ;; let _Rfourier_le=Cic.Const ((UriManager.uri_of_string "cic:/Coq/fourier/Fourier_util/Rfourier_le.con"), []) ;; @@ -511,12 +499,9 @@ let _Rfourier_not_le_gt = Cic.Const ((UriManager.uri_of_string "cic:/Coq/fourier/Fourier_util/Rfourier_not_le_gt.con"), []) ;; let _Rfourier_not_lt_ge = Cic.Const ((UriManager.uri_of_string "cic:/Coq/fourier/Fourier_util/Rfourier_not_lt_ge.con"), []) ;; -let _Rinv = Cic.Const ((UriManager.uri_of_string - "cic:/Coq/Reals/Rdefinitions/Rinv.con"), []) ;; -let _Rinv_R1 = Cic.Const((UriManager.uri_of_string - "cic:/Coq/Reals/Rbase/Rinv_R1.con" ), []) ;; -let _Rle = Cic.Const ((UriManager.uri_of_string - "cic:/Coq/Reals/Rdefinitions/Rle.con"), []) ;; +let _Rinv = Cic.Const (HelmLibraryObjects.Reals.rinv_URI, []);; +let _Rinv_R1 = Cic.Const(HelmLibraryObjects.Reals.rinv_r1_URI, []);; +let _Rle = Cic.Const (HelmLibraryObjects.Reals.rle_URI, []);; let _Rle_mult_inv_pos = Cic.Const ((UriManager.uri_of_string "cic:/Coq/fourier/Fourier_util/Rle_mult_inv_pos.con"), []) ;; let _Rle_not_lt = Cic.Const ((UriManager.uri_of_string @@ -525,10 +510,7 @@ let _Rle_zero_1 = Cic.Const ((UriManager.uri_of_string "cic:/Coq/fourier/Fourier_util/Rle_zero_1.con"), []) ;; let _Rle_zero_pos_plus1 = Cic.Const ((UriManager.uri_of_string "cic:/Coq/fourier/Fourier_util/Rle_zero_pos_plus1.con"), []) ;; -(*let _Rle_zero_zero = Cic.Const ((UriManager.uri_of_string - "cic:/Coq/fourier/Fourier_util/Rle_zero_zero.con"), []) ;;*) -let _Rlt = Cic.Const ((UriManager.uri_of_string - "cic:/Coq/Reals/Rdefinitions/Rlt.con"), []) ;; +let _Rlt = Cic.Const (HelmLibraryObjects.Reals.rlt_URI, []);; let _Rlt_mult_inv_pos = Cic.Const ((UriManager.uri_of_string "cic:/Coq/fourier/Fourier_util/Rlt_mult_inv_pos.con"), []) ;; let _Rlt_not_le = Cic.Const ((UriManager.uri_of_string @@ -537,20 +519,16 @@ let _Rlt_zero_1 = Cic.Const ((UriManager.uri_of_string "cic:/Coq/fourier/Fourier_util/Rlt_zero_1.con"), []) ;; let _Rlt_zero_pos_plus1 = Cic.Const ((UriManager.uri_of_string "cic:/Coq/fourier/Fourier_util/Rlt_zero_pos_plus1.con"), []) ;; -let _Rminus = Cic.Const ((UriManager.uri_of_string - "cic:/Coq/Reals/Rdefinitions/Rminus.con"), []) ;; -let _Rmult = Cic.Const ((UriManager.uri_of_string - "cic:/Coq/Reals/Rdefinitions/Rmult.con"), []) ;; +let _Rminus = Cic.Const (HelmLibraryObjects.Reals.rminus_URI, []);; +let _Rmult = Cic.Const (HelmLibraryObjects.Reals.rmult_URI, []);; let _Rnot_le_le =Cic.Const ((UriManager.uri_of_string "cic:/Coq/fourier/Fourier_util/Rnot_le_le.con"), []) ;; let _Rnot_lt0 = Cic.Const ((UriManager.uri_of_string "cic:/Coq/fourier/Fourier_util/Rnot_lt0.con"), []) ;; let _Rnot_lt_lt =Cic.Const ((UriManager.uri_of_string "cic:/Coq/fourier/Fourier_util/Rnot_lt_lt.con"), []) ;; -let _Ropp = Cic.Const ((UriManager.uri_of_string - "cic:/Coq/Reals/Rdefinitions/Ropp.con"), []) ;; -let _Rplus = Cic.Const ((UriManager.uri_of_string - "cic:/Coq/Reals/Rdefinitions/Rplus.con"), []) ;; +let _Ropp = Cic.Const (HelmLibraryObjects.Reals.ropp_URI, []);; +let _Rplus = Cic.Const (HelmLibraryObjects.Reals.rplus_URI, []);; (******************************************************************************) @@ -569,15 +547,15 @@ let rec int_to_real_aux n = 0 -> _R0 (* o forse R0 + R0 ????? *) | 1 -> _R1 | _ -> Cic.Appl [ _Rplus ; _R1 ; int_to_real_aux (n-1) ] -;; - +;; + let int_to_real n = let x = int_to_real_aux (abs n) in if n < 0 then - Cic.Appl [ _Ropp ; x ] + Cic.Appl [ _Ropp ; x ] else - x + x ;; @@ -592,44 +570,50 @@ let rational_to_real x = (* preuve que 0 m=goal) metasenv in + let metano,context,ty = CicUtil.lookup_meta goal metasenv in debug ("th = "^ CicPp.ppterm t ^"\n"); debug ("ty = "^ CicPp.ppterm ty^"\n"); in - let tacn=ref - (fun ~status -> pall "n0" ~status _Rlt_zero_1 ; - PrimitiveTactics.apply_tac ~term:_Rlt_zero_1 ~status ) in - let tacd=ref - (fun ~status -> pall "d0" ~status _Rlt_zero_1 ; - PrimitiveTactics.apply_tac ~term:_Rlt_zero_1 ~status ) in + let tacn=ref (mk_tactic (fun status -> + pall "n0" status _Rlt_zero_1 ; + apply_tactic (PrimitiveTactics.apply_tac ~term:_Rlt_zero_1) status )) in + let tacd=ref (mk_tactic (fun status -> + pall "d0" status _Rlt_zero_1 ; + apply_tactic (PrimitiveTactics.apply_tac ~term:_Rlt_zero_1) status )) in for i=1 to n-1 do - tacn:=(Tacticals.then_ ~start:(fun ~status -> pall ("n"^string_of_int i) - ~status _Rlt_zero_pos_plus1; - PrimitiveTactics.apply_tac ~term:_Rlt_zero_pos_plus1 ~status) - ~continuation:!tacn); + tacn:=(Tacticals.then_ + ~start:(mk_tactic (fun status -> + pall ("n"^string_of_int i) status _Rlt_zero_pos_plus1; + apply_tactic + (PrimitiveTactics.apply_tac ~term:_Rlt_zero_pos_plus1) + status)) + ~continuation:!tacn); done; for i=1 to d-1 do - tacd:=(Tacticals.then_ ~start:(fun ~status -> pall "d" - ~status _Rlt_zero_pos_plus1 ;PrimitiveTactics.apply_tac - ~term:_Rlt_zero_pos_plus1 ~status) ~continuation:!tacd); + tacd:=(Tacticals.then_ + ~start:(mk_tactic (fun status -> + pall "d" status _Rlt_zero_pos_plus1 ; + apply_tactic + (PrimitiveTactics.apply_tac ~term:_Rlt_zero_pos_plus1) status)) + ~continuation:!tacd); done; - - debug("TAC ZERO INF POS\n"); - -(Tacticals.thens ~start:(PrimitiveTactics.apply_tac ~term:_Rlt_mult_inv_pos) - ~continuations:[ - !tacn ; - !tacd ] - ~status) + apply_tactic + (Tacticals.thens + ~start:(PrimitiveTactics.apply_tac ~term:_Rlt_mult_inv_pos) + ~continuations:[!tacn ;!tacd ] ) + status + in + mk_tactic (tac_zero_inf_pos (n,d)) ;; @@ -637,30 +621,32 @@ debug("TAC ZERO INF POS\n"); (* preuve que 0<=n*1/d *) -let tac_zero_infeq_pos gl (n,d) ~status = - (*let cste = pf_parse_constr gl in*) - debug("inizio tac_zero_infeq_pos\n"); - let tacn = ref - (*(if n=0 then - (PrimitiveTactics.apply_tac ~term:_Rle_zero_zero ) - else*) - (PrimitiveTactics.apply_tac ~term:_Rle_zero_1 ) - (* ) *) - in - let tacd=ref (PrimitiveTactics.apply_tac ~term:_Rlt_zero_1 ) in - for i=1 to n-1 do - tacn:=(Tacticals.then_ ~start:(PrimitiveTactics.apply_tac - ~term:_Rle_zero_pos_plus1) ~continuation:!tacn); - done; - for i=1 to d-1 do - tacd:=(Tacticals.then_ ~start:(PrimitiveTactics.apply_tac - ~term:_Rlt_zero_pos_plus1) ~continuation:!tacd); - done; - let r = - (Tacticals.thens ~start:(PrimitiveTactics.apply_tac - ~term:_Rle_mult_inv_pos) ~continuations:[!tacn;!tacd]) ~status in - debug("fine tac_zero_infeq_pos\n"); - r +let tac_zero_infeq_pos gl (n,d) = + let tac_zero_infeq_pos gl (n,d) status = + (*let cste = pf_parse_constr gl in*) + debug("inizio tac_zero_infeq_pos\n"); + let tacn = ref + (*(if n=0 then + (PrimitiveTactics.apply_tac ~term:_Rle_zero_zero ) + else*) + (PrimitiveTactics.apply_tac ~term:_Rle_zero_1 ) + (* ) *) + in + let tacd=ref (PrimitiveTactics.apply_tac ~term:_Rlt_zero_1 ) in + for i=1 to n-1 do + tacn:=(Tacticals.then_ ~start:(PrimitiveTactics.apply_tac + ~term:_Rle_zero_pos_plus1) ~continuation:!tacn); + done; + for i=1 to d-1 do + tacd:=(Tacticals.then_ ~start:(PrimitiveTactics.apply_tac + ~term:_Rlt_zero_pos_plus1) ~continuation:!tacd); + done; + apply_tactic + (Tacticals.thens + ~start:(PrimitiveTactics.apply_tac ~term:_Rle_mult_inv_pos) + ~continuations:[!tacn;!tacd]) status + in + mk_tactic (tac_zero_infeq_pos gl (n,d)) ;; @@ -668,165 +654,156 @@ let tac_zero_infeq_pos gl (n,d) ~status = (* preuve que 0<(-n)*(1/d) => False *) -let tac_zero_inf_false gl (n,d) ~status= - debug("inizio tac_zero_inf_false\n"); - if n=0 then - (debug "1\n";let r =(PrimitiveTactics.apply_tac ~term:_Rnot_lt0 ~status) in - debug("fine\n"); - r) - else - (debug "2\n";let r = (Tacticals.then_ ~start:( - fun ~status:(proof,goal as status) -> +let tac_zero_inf_false gl (n,d) = + let tac_zero_inf_false gl (n,d) status = + if n=0 then + apply_tactic (PrimitiveTactics.apply_tac ~term:_Rnot_lt0) status + else + apply_tactic (Tacticals.then_ + ~start:( mk_tactic (fun status -> + let (proof, goal) = status in let curi,metasenv,pbo,pty = proof in - let metano,context,ty =List.find (function (m,_,_) -> m=goal) metasenv in - debug("!!!!!!!!!1: unify "^CicPp.ppterm _Rle_not_lt^" with " - ^ CicPp.ppterm ty ^"\n"); - let r = PrimitiveTactics.apply_tac ~term:_Rle_not_lt ~status in - debug("!!!!!!!!!2\n"); - r - ) - ~continuation:(tac_zero_infeq_pos gl (-n,d))) ~status in - debug("fine\n"); - r - ) + let metano,context,ty = CicUtil.lookup_meta goal metasenv in + apply_tactic (PrimitiveTactics.apply_tac ~term:_Rle_not_lt) status)) + ~continuation:(tac_zero_infeq_pos gl (-n,d))) + status + in + mk_tactic (tac_zero_inf_false gl (n,d)) ;; (* preuve que 0<=n*(1/d) => False ; n est negatif *) -let tac_zero_infeq_false gl (n,d) ~status:(proof,goal as status)= -debug("stat tac_zero_infeq_false\n"); -let r = - let curi,metasenv,pbo,pty = proof in - let metano,context,ty =List.find (function (m,_,_) -> m=goal) metasenv in - - debug("faccio fold di " ^ CicPp.ppterm - (Cic.Appl - [_Rle ; _R0 ; - Cic.Appl - [_Rmult ; int_to_real n ; Cic.Appl [_Rinv ; int_to_real d]] - ] - ) ^ "\n") ; - debug("apply di _Rlt_not_le a "^ CicPp.ppterm ty ^"\n"); - (*CSC: Patch to undo the over-simplification of RewriteSimpl *) - Tacticals.then_ - ~start: - (ReductionTactics.fold_tac ~reduction:CicReduction.whd - ~also_in_hypotheses:false - ~term: +let tac_zero_infeq_false gl (n,d) = + let tac_zero_infeq_false gl (n,d) status = + let (proof, goal) = status in + let curi,metasenv,pbo,pty = proof in + let metano,context,ty = CicUtil.lookup_meta goal metasenv in + + debug("faccio fold di " ^ CicPp.ppterm + (Cic.Appl + [_Rle ; _R0 ; + Cic.Appl + [_Rmult ; int_to_real n ; Cic.Appl [_Rinv ; int_to_real d]] + ] + ) ^ "\n") ; + debug("apply di _Rlt_not_le a "^ CicPp.ppterm ty ^"\n"); + (*CSC: Patch to undo the over-simplification of RewriteSimpl *) + apply_tactic + (Tacticals.then_ + ~start: + (ReductionTactics.fold_tac + ~reduction:(const_lazy_reduction CicReduction.whd) + ~pattern:(ProofEngineTypes.conclusion_pattern None) + ~term: + (const_lazy_term (Cic.Appl - [_Rle ; _R0 ; - Cic.Appl - [_Rmult ; int_to_real n ; Cic.Appl [_Rinv ; int_to_real d]] - ] - ) - ) - ~continuation: - (Tacticals.then_ ~start:(PrimitiveTactics.apply_tac ~term:_Rlt_not_le) - ~continuation:(tac_zero_inf_pos (-n,d))) ~status in - debug("end tac_zero_infeq_false\n"); - r -(*PORTING - Tacticals.id_tac ~status -*) + [_Rle ; _R0 ; + Cic.Appl + [_Rmult ; int_to_real n ; Cic.Appl [_Rinv ; int_to_real d]]]))) + ~continuation: + (Tacticals.then_ + ~start:(PrimitiveTactics.apply_tac ~term:_Rlt_not_le) + ~continuation:(tac_zero_inf_pos (-n,d)))) + status + in + mk_tactic (tac_zero_infeq_false gl (n,d)) ;; (* *********** ********** ******** ??????????????? *********** **************) -let apply_type_tac ~cast:t ~applist:al ~status:(proof,goal) = +let apply_type_tac ~cast:t ~applist:al = + let apply_type_tac ~cast:t ~applist:al (proof,goal) = let curi,metasenv,pbo,pty = proof in - let metano,context,ty = List.find (function (m,_,_) -> m=goal) metasenv in - let fresh_meta = ProofEngineHelpers.new_meta proof in + let metano,context,ty = CicUtil.lookup_meta goal metasenv in + let fresh_meta = ProofEngineHelpers.new_meta_of_proof proof in let irl = - ProofEngineHelpers.identity_relocation_list_for_metavariable context in + CicMkImplicit.identity_relocation_list_for_metavariable context in let metasenv' = (fresh_meta,context,t)::metasenv in let proof' = curi,metasenv',pbo,pty in let proof'',goals = - PrimitiveTactics.apply_tac - (*~term:(Cic.Appl ((Cic.Cast (Cic.Meta (fresh_meta,irl),t))::al)) (* ??? *)*) - ~term:(Cic.Appl ((Cic.Meta (fresh_meta,irl))::al)) (* ??? *) - ~status:(proof',goal) + apply_tactic + (PrimitiveTactics.apply_tac + (*~term:(Cic.Appl ((Cic.Cast (Cic.Meta (fresh_meta,irl),t))::al)) *) + ~term:(Cic.Appl ((Cic.Meta (fresh_meta,irl))::al))) (* ??? *) + (proof',goal) in proof'',fresh_meta::goals + in + mk_tactic (apply_type_tac ~cast:t ~applist:al) ;; - - - - -let my_cut ~term:c ~status:(proof,goal)= +let my_cut ~term:c = + let my_cut ~term:c (proof,goal) = let curi,metasenv,pbo,pty = proof in - let metano,context,ty = List.find (function (m,_,_) -> m=goal) metasenv in - -debug("my_cut di "^CicPp.ppterm c^"\n"); - - - let fresh_meta = ProofEngineHelpers.new_meta proof in + let metano,context,ty = CicUtil.lookup_meta goal metasenv in + let fresh_meta = ProofEngineHelpers.new_meta_of_proof proof in let irl = - ProofEngineHelpers.identity_relocation_list_for_metavariable context in + CicMkImplicit.identity_relocation_list_for_metavariable context in let metasenv' = (fresh_meta,context,c)::metasenv in let proof' = curi,metasenv',pbo,pty in let proof'',goals = - apply_type_tac ~cast:(Cic.Prod(Cic.Name "Anonymous",c, - CicSubstitution.lift 1 ty)) ~applist:[Cic.Meta(fresh_meta,irl)] - ~status:(proof',goal) + apply_tactic + (apply_type_tac + ~cast:(Cic.Prod(Cic.Name "Anonymous",c,CicSubstitution.lift 1 ty)) + ~applist:[Cic.Meta(fresh_meta,irl)]) + (proof',goal) in (* We permute the generated goals to be consistent with Coq *) match goals with [] -> assert false | he::tl -> proof'',he::fresh_meta::tl + in + mk_tactic (my_cut ~term:c) ;; - let exact = PrimitiveTactics.exact_tac;; -let tac_use h ~status:(proof,goal as status) = -debug("Inizio TC_USE\n"); -let curi,metasenv,pbo,pty = proof in -let metano,context,ty = List.find (function (m,_,_) -> m=goal) metasenv in -debug ("hname = "^ CicPp.ppterm h.hname ^"\n"); -debug ("ty = "^ CicPp.ppterm ty^"\n"); - -let res = -match h.htype with - "Rlt" -> exact ~term:h.hname ~status - |"Rle" -> exact ~term:h.hname ~status - |"Rgt" -> (Tacticals.then_ ~start:(PrimitiveTactics.apply_tac - ~term:_Rfourier_gt_to_lt) - ~continuation:(exact ~term:h.hname)) ~status - |"Rge" -> (Tacticals.then_ ~start:(PrimitiveTactics.apply_tac - ~term:_Rfourier_ge_to_le) - ~continuation:(exact ~term:h.hname)) ~status - |"eqTLR" -> (Tacticals.then_ ~start:(PrimitiveTactics.apply_tac - ~term:_Rfourier_eqLR_to_le) - ~continuation:(exact ~term:h.hname)) ~status - |"eqTRL" -> (Tacticals.then_ ~start:(PrimitiveTactics.apply_tac - ~term:_Rfourier_eqRL_to_le) - ~continuation:(exact ~term:h.hname)) ~status - |_->assert false -in -debug("Fine TAC_USE\n"); -res +let tac_use h = + let tac_use h status = + let (proof, goal) = status in + debug("Inizio TC_USE\n"); + let curi,metasenv,pbo,pty = proof in + let metano,context,ty = CicUtil.lookup_meta goal metasenv in + debug ("hname = "^ CicPp.ppterm h.hname ^"\n"); + debug ("ty = "^ CicPp.ppterm ty^"\n"); + apply_tactic + (match h.htype with + "Rlt" -> exact ~term:h.hname + | "Rle" -> exact ~term:h.hname + | "Rgt" -> (Tacticals.then_ + ~start:(PrimitiveTactics.apply_tac ~term:_Rfourier_gt_to_lt) + ~continuation:(exact ~term:h.hname)) + | "Rge" -> (Tacticals.then_ + ~start:(PrimitiveTactics.apply_tac ~term:_Rfourier_ge_to_le) + ~continuation:(exact ~term:h.hname)) + | "eqTLR" -> (Tacticals.then_ + ~start:(PrimitiveTactics.apply_tac ~term:_Rfourier_eqLR_to_le) + ~continuation:(exact ~term:h.hname)) + | "eqTRL" -> (Tacticals.then_ + ~start:(PrimitiveTactics.apply_tac ~term:_Rfourier_eqRL_to_le) + ~continuation:(exact ~term:h.hname)) + | _->assert false) + status + in + mk_tactic (tac_use h) ;; - - let is_ineq (h,t) = match t with Cic.Appl ( Cic.Const(u,boh)::next) -> - (match (UriManager.string_of_uri u) with - "cic:/Coq/Reals/Rdefinitions/Rlt.con" -> true - |"cic:/Coq/Reals/Rdefinitions/Rgt.con" -> true - |"cic:/Coq/Reals/Rdefinitions/Rle.con" -> true - |"cic:/Coq/Reals/Rdefinitions/Rge.con" -> true - |"cic:/Coq/Init/Logic_Type/eqT.con" -> + (if UriManager.eq u HelmLibraryObjects.Reals.rlt_URI or + UriManager.eq u HelmLibraryObjects.Reals.rgt_URI or + UriManager.eq u HelmLibraryObjects.Reals.rle_URI or + UriManager.eq u HelmLibraryObjects.Reals.rge_URI then true + else if UriManager.eq u HelmLibraryObjects.Logic.eq_URI then (match (List.hd next) with Cic.Const (uri,_) when - UriManager.string_of_uri uri = - "cic:/Coq/Reals/Rdefinitions/R.con" -> true + UriManager.eq uri HelmLibraryObjects.Reals.r_URI + -> true | _ -> false) - |_->false) + else false) |_->false ;; @@ -844,12 +821,12 @@ let rec strip_outer_cast c = match c with (*let find_in_context id context = let rec find_in_context_aux c n = - match c with - [] -> failwith (id^" not found in context") - | a::next -> (match a with - Some (Cic.Name(name),_) when name = id -> n - (*? magari al posto di _ qualcosaltro?*) - | _ -> find_in_context_aux next (n+1)) + match c with + [] -> failwith (id^" not found in context") + | a::next -> (match a with + Some (Cic.Name(name),_) when name = id -> n + (*? magari al posto di _ qualcosaltro?*) + | _ -> find_in_context_aux next (n+1)) in find_in_context_aux context 1 ;; @@ -859,134 +836,140 @@ let rec filter_real_hyp context cont = match context with [] -> [] | Some(Cic.Name(h),Cic.Decl(t))::next -> ( - let n = find_in_context h cont in - debug("assegno "^string_of_int n^" a "^CicPp.ppterm t^"\n"); - [(Cic.Rel(n),t)] @ filter_real_hyp next cont) + let n = find_in_context h cont in + debug("assegno "^string_of_int n^" a "^CicPp.ppterm t^"\n"); + [(Cic.Rel(n),t)] @ filter_real_hyp next cont) | a::next -> debug(" no\n"); filter_real_hyp next cont ;;*) + let filter_real_hyp context _ = let rec filter_aux context num = match context with - [] -> [] - | Some(Cic.Name(h),Cic.Decl(t))::next -> - ( - (*let n = find_in_context h cont in*) - debug("assegno "^string_of_int num^" a "^h^":"^CicPp.ppterm t^"\n"); - [(Cic.Rel(num),t)] @ filter_aux next (num+1) - ) - | a::next -> filter_aux next (num+1) + [] -> [] + | Some(Cic.Name(h),Cic.Decl(t))::next -> + [(Cic.Rel(num),t)] @ filter_aux next (num+1) + | a::next -> filter_aux next (num+1) in - filter_aux context 1 + filter_aux context 1 ;; -(* lifts everithing at the conclusion level *) +(* lifts everithing at the conclusion level *) let rec superlift c n= match c with - [] -> [] - | Some(name,Cic.Decl(a))::next -> [Some(name,Cic.Decl( - CicSubstitution.lift n a))] @ superlift next (n+1) - | Some(name,Cic.Def(a))::next -> [Some(name,Cic.Def( - CicSubstitution.lift n a))] @ superlift next (n+1) + [] -> [] + | Some(name,Cic.Decl(a))::next -> + [Some(name,Cic.Decl(CicSubstitution.lift n a))]@ superlift next (n+1) + | Some(name,Cic.Def(a,None))::next -> + [Some(name,Cic.Def((CicSubstitution.lift n a),None))]@ superlift next (n+1) + | Some(name,Cic.Def(a,Some ty))::next -> + [Some(name, + Cic.Def((CicSubstitution.lift n a),Some (CicSubstitution.lift n ty))) + ] @ superlift next (n+1) | _::next -> superlift next (n+1) (*?? ??*) ;; -let equality_replace a b ~status = -debug("inizio EQ\n"); - let module C = Cic in - let proof,goal = status in - let curi,metasenv,pbo,pty = proof in - let metano,context,ty = List.find (function (m,_,_) -> m=goal) metasenv in - let a_eq_b = C.Appl [ _eqT ; _R ; a ; b ] in - let fresh_meta = ProofEngineHelpers.new_meta proof in - let irl = - ProofEngineHelpers.identity_relocation_list_for_metavariable context in - let metasenv' = (fresh_meta,context,a_eq_b)::metasenv in -debug("chamo rewrite tac su"^CicPp.ppterm (C.Meta (fresh_meta,irl))); - let (proof,goals) = - EqualityTactics.rewrite_simpl_tac ~term:(C.Meta (fresh_meta,irl)) - ~status:((curi,metasenv',pbo,pty),goal) - in - let new_goals = fresh_meta::goals in -debug("fine EQ -> goals : "^string_of_int( List.length new_goals) ^" = " - ^string_of_int( List.length goals)^"+ meta\n"); - (proof,new_goals) +let equality_replace a b = + let equality_replace a b status = + debug("inizio EQ\n"); + let module C = Cic in + let proof,goal = status in + let curi,metasenv,pbo,pty = proof in + let metano,context,ty = CicUtil.lookup_meta goal metasenv in + let a_eq_b = C.Appl [ _eqT ; _R ; a ; b ] in + let fresh_meta = ProofEngineHelpers.new_meta_of_proof proof in + let irl = + CicMkImplicit.identity_relocation_list_for_metavariable context in + let metasenv' = (fresh_meta,context,a_eq_b)::metasenv in + debug("chamo rewrite tac su"^CicPp.ppterm (C.Meta (fresh_meta,irl))); + let (proof,goals) = apply_tactic + (EqualityTactics.rewrite_simpl_tac + ~direction:`LeftToRight + ~pattern:(ProofEngineTypes.conclusion_pattern None) + (C.Meta (fresh_meta,irl))) + ((curi,metasenv',pbo,pty),goal) + in + let new_goals = fresh_meta::goals in + debug("fine EQ -> goals : "^string_of_int( List.length new_goals) ^" = " + ^string_of_int( List.length goals)^"+ meta\n"); + (proof,new_goals) + in + mk_tactic (equality_replace a b) ;; -let tcl_fail a ~status:(proof,goal) = - match a with - 1 -> raise (ProofEngineTypes.Fail "fail-tactical") - |_-> (proof,[goal]) +let tcl_fail a (proof,goal) = + match a with + 1 -> raise (ProofEngineTypes.Fail (lazy "fail-tactical")) + | _ -> (proof,[goal]) ;; (* Galla: moved in variousTactics.ml -let assumption_tac ~status:(proof,goal)= +let assumption_tac (proof,goal)= let curi,metasenv,pbo,pty = proof in - let metano,context,ty = List.find (function (m,_,_) -> m=goal) metasenv in + let metano,context,ty = CicUtil.lookup_meta goal metasenv in let num = ref 0 in let tac_list = List.map - ( fun x -> num := !num + 1; - match x with - Some(Cic.Name(nm),t) -> (nm,exact ~term:(Cic.Rel(!num))) - | _ -> ("fake",tcl_fail 1) - ) - context + ( fun x -> num := !num + 1; + match x with + Some(Cic.Name(nm),t) -> (nm,exact ~term:(Cic.Rel(!num))) + | _ -> ("fake",tcl_fail 1) + ) + context in - Tacticals.try_tactics ~tactics:tac_list ~status:(proof,goal) + Tacticals.first ~tactics:tac_list (proof,goal) ;; *) (* Galla: moved in negationTactics.ml (* !!!!! fix !!!!!!!!!! *) -let contradiction_tac ~status:(proof,goal)= - Tacticals.then_ +let contradiction_tac (proof,goal)= + Tacticals.then_ (*inutile sia questo che quello prima della chiamata*) - ~start:PrimitiveTactics.intros_tac - ~continuation:(Tacticals.then_ - ~start:(VariousTactics.elim_type_tac ~term:_False) - ~continuation:(assumption_tac)) - ~status:(proof,goal) + ~start:PrimitiveTactics.intros_tac + ~continuation:(Tacticals.then_ + ~start:(VariousTactics.elim_type_tac ~term:_False) + ~continuation:(assumption_tac)) + (proof,goal) ;; *) (* ********************* TATTICA ******************************** *) -let rec fourier ~status:(s_proof,s_goal)= +let rec fourier (s_proof,s_goal)= let s_curi,s_metasenv,s_pbo,s_pty = s_proof in - let s_metano,s_context,s_ty = List.find (function (m,_,_) -> m=s_goal) - s_metasenv in - - debug ("invoco fourier_tac sul goal "^string_of_int(s_goal)^" e contesto :\n"); + let s_metano,s_context,s_ty = CicUtil.lookup_meta s_goal s_metasenv in + debug ("invoco fourier_tac sul goal "^string_of_int(s_goal)^" e contesto:\n"); debug_pcontext s_context; let fhyp = String.copy "new_hyp_for_fourier" in -(* here we need to negate the thesis, but to do this we need to apply the right -theoreme,so let's parse our thesis *) +(* here we need to negate the thesis, but to do this we need to apply the + right theoreme,so let's parse our thesis *) let th_to_appl = ref _Rfourier_not_le_gt in (match s_ty with Cic.Appl ( Cic.Const(u,boh)::args) -> - (match UriManager.string_of_uri u with - "cic:/Coq/Reals/Rdefinitions/Rlt.con" -> th_to_appl := - _Rfourier_not_ge_lt - |"cic:/Coq/Reals/Rdefinitions/Rle.con" -> th_to_appl := + th_to_appl := + (if UriManager.eq u HelmLibraryObjects.Reals.rlt_URI then + _Rfourier_not_ge_lt + else if UriManager.eq u HelmLibraryObjects.Reals.rle_URI then _Rfourier_not_gt_le - |"cic:/Coq/Reals/Rdefinitions/Rgt.con" -> th_to_appl := + else if UriManager.eq u HelmLibraryObjects.Reals.rgt_URI then _Rfourier_not_le_gt - |"cic:/Coq/Reals/Rdefinitions/Rge.con" -> th_to_appl := + else if UriManager.eq u HelmLibraryObjects.Reals.rge_URI then _Rfourier_not_lt_ge - |_-> failwith "fourier can't be applyed") + else failwith "fourier can't be applyed") |_-> failwith "fourier can't be applyed"); (* fix maybe strip_outer_cast goes here?? *) (* now let's change our thesis applying the th and put it with hp *) - let proof,gl = - Tacticals.then_ - ~start:(PrimitiveTactics.apply_tac ~term:!th_to_appl) - ~continuation:(PrimitiveTactics.intros_tac ()) - ~status:(s_proof,s_goal) in + let proof,gl = apply_tactic + (Tacticals.then_ + ~start:(PrimitiveTactics.apply_tac ~term:!th_to_appl) + ~continuation:(PrimitiveTactics.intros_tac ())) + (s_proof,s_goal) + in let goal = if List.length gl = 1 then List.hd gl else failwith "a new goal" in @@ -996,8 +979,7 @@ theoreme,so let's parse our thesis *) (* now we have all the right environment *) let curi,metasenv,pbo,pty = proof in - let metano,context,ty = List.find (function (m,_,_) -> m=goal) metasenv in - + let metano,context,ty = CicUtil.lookup_meta goal metasenv in (* now we want to convert hp to inequations, but first we must lift everyting to thesis level, so that a variable has the save Rel(n) @@ -1016,18 +998,17 @@ theoreme,so let's parse our thesis *) (* transform hyps into inequations *) List.iter (fun h -> try (lineq:=(ineq1_of_term h)@(!lineq)) - with _-> ()) + with _-> ()) hyps; - - + debug ("applico fourier a "^ string_of_int (List.length !lineq)^ " disequazioni\n"); let res=fourier_lineq (!lineq) in let tac=ref Tacticals.id_tac in if res=[] then - (print_string "Tactic Fourier fails.\n";flush stdout; - failwith "fourier_tac fails") + (print_string "Tactic Fourier fails.\n";flush stdout; + failwith "fourier_tac fails") else ( match res with (*match res*) @@ -1042,33 +1023,33 @@ theoreme,so let's parse our thesis *) let lutil=ref [] in List.iter (fun (h,c) -> if c<>r0 then (lutil:=(h,c)::(!lutil); - (* DBG *)Fourier.print_rational(c);print_string " "(* DBG *)) - ) + (* DBG *)Fourier.print_rational(c);print_string " "(* DBG *)) + ) (List.combine (!lineq) lc); - + print_string (" quindi lutil e' lunga "^ - string_of_int (List.length (!lutil))^"\n"); + string_of_int (List.length (!lutil))^"\n"); (* on construit la combinaison linéaire des inéquation *) (match (!lutil) with (*match (!lutil) *) (h1,c1)::lutil -> debug ("elem di lutil ");Fourier.print_rational c1;print_string "\n"; - + let s=ref (h1.hstrict) in - + let t1 = ref (Cic.Appl [_Rmult;rational_to_real c1;h1.hleft] ) in let t2 = ref (Cic.Appl [_Rmult;rational_to_real c1;h1.hright]) in List.iter (fun (h,c) -> - s:=(!s)||(h.hstrict); - t1:=(Cic.Appl [_Rplus;!t1;Cic.Appl - [_Rmult;rational_to_real c;h.hleft ] ]); - t2:=(Cic.Appl [_Rplus;!t2;Cic.Appl - [_Rmult;rational_to_real c;h.hright] ])) + s:=(!s)||(h.hstrict); + t1:=(Cic.Appl [_Rplus;!t1;Cic.Appl + [_Rmult;rational_to_real c;h.hleft ] ]); + t2:=(Cic.Appl [_Rplus;!t2;Cic.Appl + [_Rmult;rational_to_real c;h.hright] ])) lutil; - + let ineq=Cic.Appl [(if (!s) then _Rlt else _Rle);!t1;!t2 ] in let tc=rational_to_real cres in @@ -1077,157 +1058,148 @@ theoreme,so let's parse our thesis *) debug "inizio a costruire tac1\n"; Fourier.print_rational(c1); - - let tac1=ref ( fun ~status -> - if h1.hstrict then - (Tacticals.thens - ~start:( - fun ~status -> - debug ("inizio t1 strict\n"); - let curi,metasenv,pbo,pty = proof in - let metano,context,ty = List.find - (function (m,_,_) -> m=goal) metasenv in - debug ("th = "^ CicPp.ppterm _Rfourier_lt ^"\n"); - debug ("ty = "^ CicPp.ppterm ty^"\n"); - PrimitiveTactics.apply_tac ~term:_Rfourier_lt ~status) - ~continuations:[tac_use h1;tac_zero_inf_pos - (rational_to_fraction c1)] - ~status - ) - else - (Tacticals.thens - ~start:(PrimitiveTactics.apply_tac ~term:_Rfourier_le) + + let tac1=ref ( mk_tactic (fun status -> + apply_tactic + (if h1.hstrict then + (Tacticals.thens + ~start:(mk_tactic (fun status -> + debug ("inizio t1 strict\n"); + let curi,metasenv,pbo,pty = proof in + let metano,context,ty = CicUtil.lookup_meta goal metasenv in + debug ("th = "^ CicPp.ppterm _Rfourier_lt ^"\n"); + debug ("ty = "^ CicPp.ppterm ty^"\n"); + apply_tactic + (PrimitiveTactics.apply_tac ~term:_Rfourier_lt) status)) + ~continuations:[tac_use h1; + tac_zero_inf_pos (rational_to_fraction c1)]) + else + (Tacticals.thens + ~start:(PrimitiveTactics.apply_tac ~term:_Rfourier_le) ~continuations:[tac_use h1;tac_zero_inf_pos - (rational_to_fraction c1)] ~status - ) - ) - + (rational_to_fraction c1)])) + status)) + in s:=h1.hstrict; List.iter (fun (h,c) -> (if (!s) then - (if h.hstrict then - (debug("tac1 1\n"); - tac1:=(Tacticals.thens - ~start:(PrimitiveTactics.apply_tac - ~term:_Rfourier_lt_lt) - ~continuations:[!tac1;tac_use h;tac_zero_inf_pos - (rational_to_fraction c)]) - ) - else - (debug("tac1 2\n"); - Fourier.print_rational(c1); - tac1:=(Tacticals.thens - ~start:( - fun ~status -> - debug("INIZIO TAC 1 2\n"); - let curi,metasenv,pbo,pty = proof in - let metano,context,ty = List.find (function (m,_,_) -> m=goal) - metasenv in - debug ("th = "^ CicPp.ppterm _Rfourier_lt_le ^"\n"); - debug ("ty = "^ CicPp.ppterm ty^"\n"); - PrimitiveTactics.apply_tac ~term:_Rfourier_lt_le ~status) - ~continuations:[!tac1;tac_use h;tac_zero_inf_pos - (rational_to_fraction c)]) - ) - ) - else (if h.hstrict then - (debug("tac1 3\n"); - tac1:=(Tacticals.thens - ~start:(PrimitiveTactics.apply_tac ~term:_Rfourier_le_lt) - ~continuations:[!tac1;tac_use h;tac_zero_inf_pos - (rational_to_fraction c)]) - ) - else - (debug("tac1 4\n"); - tac1:=(Tacticals.thens - ~start:(PrimitiveTactics.apply_tac ~term:_Rfourier_le_le) - ~continuations:[!tac1;tac_use h;tac_zero_inf_pos - (rational_to_fraction c)]) - ) - ) - ); - s:=(!s)||(h.hstrict)) lutil;(*end List.iter*) - + (debug("tac1 1\n"); + tac1:=(Tacticals.thens + ~start:(PrimitiveTactics.apply_tac ~term:_Rfourier_lt_lt) + ~continuations:[!tac1;tac_use h;tac_zero_inf_pos + (rational_to_fraction c)])) + else + (debug("tac1 2\n"); + Fourier.print_rational(c1); + tac1:=(Tacticals.thens + ~start:(mk_tactic (fun status -> + debug("INIZIO TAC 1 2\n"); + let curi,metasenv,pbo,pty = proof in + let metano,context,ty = CicUtil.lookup_meta goal metasenv in + debug ("th = "^ CicPp.ppterm _Rfourier_lt_le ^"\n"); + debug ("ty = "^ CicPp.ppterm ty^"\n"); + apply_tactic + (PrimitiveTactics.apply_tac ~term:_Rfourier_lt_le) + status)) + ~continuations:[!tac1;tac_use h;tac_zero_inf_pos + (rational_to_fraction c)]))) + else + (if h.hstrict then + (debug("tac1 3\n"); + tac1:=(Tacticals.thens + ~start:(PrimitiveTactics.apply_tac ~term:_Rfourier_le_lt) + ~continuations:[!tac1;tac_use h;tac_zero_inf_pos + (rational_to_fraction c)])) + else + (debug("tac1 4\n"); + tac1:=(Tacticals.thens + ~start:(PrimitiveTactics.apply_tac ~term:_Rfourier_le_le) + ~continuations:[!tac1;tac_use h;tac_zero_inf_pos + (rational_to_fraction c)])))); + s:=(!s)||(h.hstrict)) (* end fun -> *) + lutil;(*end List.iter*) + let tac2 = if sres then - tac_zero_inf_false goal (rational_to_fraction cres) + tac_zero_inf_false goal (rational_to_fraction cres) else - tac_zero_infeq_false goal (rational_to_fraction cres) + tac_zero_infeq_false goal (rational_to_fraction cres) in tac:=(Tacticals.thens ~start:(my_cut ~term:ineq) - ~continuations:[(*Tacticals.id_tac;Tacticals.id_tac*)(**)Tacticals.then_ - ~start:(fun ~status:(proof,goal as status) -> + ~continuations:[Tacticals.then_ + ~start:( mk_tactic (fun status -> + let (proof, goal) = status in let curi,metasenv,pbo,pty = proof in - let metano,context,ty = List.find (function (m,_,_) -> m=goal) - metasenv in - PrimitiveTactics.change_tac ~what:ty - ~with_what:(Cic.Appl [ _not; ineq]) ~status) - ~continuation:(Tacticals.then_ + let metano,context,ty = CicUtil.lookup_meta goal metasenv in + apply_tactic + (ReductionTactics.change_tac + ~pattern:(ProofEngineTypes.conclusion_pattern (Some ty)) + (const_lazy_term (Cic.Appl [ _not; ineq]))) + status)) + ~continuation:(Tacticals.then_ ~start:(PrimitiveTactics.apply_tac ~term: - (if sres then _Rnot_lt_lt else _Rnot_le_le)) - ~continuation:(Tacticals.thens - ~start:( - fun ~status -> - debug("t1 ="^CicPp.ppterm !t1 ^"t2 ="^CicPp.ppterm !t2 ^"tc="^ CicPp.ppterm tc^"\n"); - let r = equality_replace (Cic.Appl [_Rminus;!t2;!t1] ) tc - ~status - in - (match r with (p,gl) -> - debug("eq1 ritorna "^string_of_int(List.length gl)^"\n" )); - r) - ~continuations:[(Tacticals.thens - ~start:( - fun ~status -> - let r = equality_replace (Cic.Appl[_Rinv;_R1]) _R1 ~status in - (match r with (p,gl) -> - debug("eq2 ritorna "^string_of_int(List.length gl)^"\n" )); - r) - ~continuations: - [PrimitiveTactics.apply_tac ~term:_Rinv_R1 - ;Tacticals.try_tactics - ~tactics:[ "ring", (fun ~status -> - debug("begin RING\n"); - let r = Ring.ring_tac ~status in - debug ("end RING\n"); - r) - ; "id", Tacticals.id_tac] - ]) - ;(*Tacticals.id_tac*) - Tacticals.then_ - ~start: - ( - fun ~status:(proof,goal as status) -> - let curi,metasenv,pbo,pty = proof in - let metano,context,ty = List.find (function (m,_,_) -> m= - goal) metasenv in - (* check if ty is of type *) - let w1 = - debug("qui c'e' gia' l'or "^CicPp.ppterm ty^"\n"); - (match ty with - Cic.Prod (Cic.Anonymous,a,b) -> (Cic.Appl [_not;a]) - |_ -> assert false) + (if sres then _Rnot_lt_lt else _Rnot_le_le)) + ~continuation:(Tacticals.thens + ~start:(mk_tactic (fun status -> + debug("t1 ="^CicPp.ppterm !t1 ^"t2 ="^ + CicPp.ppterm !t2 ^"tc="^ CicPp.ppterm tc^"\n"); + let r = apply_tactic + (equality_replace (Cic.Appl [_Rminus;!t2;!t1] ) tc) + status + in + (match r with (p,gl) -> + debug("eq1 ritorna "^string_of_int(List.length gl)^"\n" )); + r)) + ~continuations:[(Tacticals.thens + ~start:(mk_tactic (fun status -> + let r = apply_tactic + (equality_replace (Cic.Appl[_Rinv;_R1]) _R1) + status in - let r = PrimitiveTactics.change_tac ~what:ty ~with_what:w1 ~status in - debug("fine MY_CHNGE\n"); - r - - ) - ~continuation:(*PORTINGTacticals.id_tac*)tac2])) - ;(*Tacticals.id_tac*)!tac1]);(*end tac:=*) + (match r with (p,gl) -> + debug("eq2 ritorna "^string_of_int(List.length gl)^"\n" )); + r)) + ~continuations: + [PrimitiveTactics.apply_tac ~term:_Rinv_R1; + Tacticals.first + ~tactics:[ "ring",Ring.ring_tac; "id", Tacticals.id_tac] + ]) + ;(*Tacticals.id_tac*) + Tacticals.then_ + ~start:(mk_tactic (fun status -> + let (proof, goal) = status in + let curi,metasenv,pbo,pty = proof in + let metano,context,ty = CicUtil.lookup_meta goal metasenv in + (* check if ty is of type *) + let w1 = + debug("qui c'e' gia' l'or "^CicPp.ppterm ty^"\n"); + (match ty with + Cic.Prod (Cic.Anonymous,a,b) -> (Cic.Appl [_not;a]) + |_ -> assert false) + in + let r = apply_tactic + (ReductionTactics.change_tac + ~pattern:(ProofEngineTypes.conclusion_pattern (Some ty)) + (const_lazy_term w1)) status + in + debug("fine MY_CHNGE\n"); + r)) + ~continuation:(*PORTINGTacticals.id_tac*)tac2])) + ;(*Tacticals.id_tac*)!tac1]);(*end tac:=*) |_-> assert false)(*match (!lutil) *) |_-> assert false); (*match res*) debug ("finalmente applico tac\n"); ( - let r = !tac ~status:(proof,goal) in + let r = apply_tactic !tac (proof,goal) in debug("\n\n]]]]]]]]]]]]]]]]]) That's all folks ([[[[[[[[[[[[[[[[[[[\n\n");r ) ;; -let fourier_tac ~status:(proof,goal) = fourier ~status:(proof,goal);; +let fourier_tac = mk_tactic fourier