X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=blobdiff_plain;f=helm%2Focaml%2Ftactics%2FprimitiveTactics.ml;h=fa696856010431f53bb14546df11163a440c61b0;hb=275727242ccdce9df01af65f3bfb2d65283fa197;hp=a518edaa67193486f259b643bdcc387a90a49798;hpb=feb3c287997f7d35747c12e0db62e6194f5587a3;p=helm.git diff --git a/helm/ocaml/tactics/primitiveTactics.ml b/helm/ocaml/tactics/primitiveTactics.ml index a518edaa6..fa6968560 100644 --- a/helm/ocaml/tactics/primitiveTactics.ml +++ b/helm/ocaml/tactics/primitiveTactics.ml @@ -72,9 +72,13 @@ let eta_expand metasenv context t arg = | C.Var (uri,exp_named_subst) -> let exp_named_subst' = aux_exp_named_subst n exp_named_subst in C.Var (uri,exp_named_subst') - | C.Meta _ + | C.Meta (i,l) -> + let l' = + List.map (function None -> None | Some t -> Some (aux n t)) l + in + C.Meta (i, l') | C.Sort _ - | C.Implicit as t -> t + | C.Implicit _ as t -> t | C.Cast (te,ty) -> C.Cast (aux n te, aux n ty) | C.Prod (nn,s,t) -> C.Prod (nn, aux n s, aux (n+1) t) | C.Lambda (nn,s,t) -> C.Lambda (nn, aux n s, aux (n+1) t) @@ -160,6 +164,24 @@ let new_metasenv_for_apply newmeta proof context ty = let rec aux newmeta = function C.Cast (he,_) -> aux newmeta he +(* CSC: patch to generate ?1 : ?2 : Type in place of ?1 : Type to simulate ?1 :< Type + (* If the expected type is a Type, then also Set is OK ==> + * we accept any term of type Type *) + (*CSC: BUG HERE: in this way it is possible for the term of + * type Type to be different from a Sort!!! *) + | C.Prod (name,(C.Sort (C.Type _) as s),t) -> + (* TASSI: ask CSC if BUG HERE refers to the C.Cast or C.Propd case *) + let irl = + CicMkImplicit.identity_relocation_list_for_metavariable context + in + let newargument = C.Meta (newmeta+1,irl) in + let (res,newmetasenv,arguments,lastmeta) = + aux (newmeta + 2) (S.subst newargument t) + in + res, + (newmeta,[],s)::(newmeta+1,context,C.Meta (newmeta,[]))::newmetasenv, + newargument::arguments,lastmeta +*) | C.Prod (name,s,t) -> let irl = CicMkImplicit.identity_relocation_list_for_metavariable context @@ -202,15 +224,30 @@ let CicSubstitution.subst_vars !exp_named_subst_diff ty | _ -> raise (WrongUriToVariable (UriManager.string_of_uri uri)) in - let irl = - CicMkImplicit.identity_relocation_list_for_metavariable context - in - let subst_item = uri,C.Meta (!next_fresh_meta,irl) in - newmetasenvfragment := - (!next_fresh_meta,context,ty)::!newmetasenvfragment ; - exp_named_subst_diff := !exp_named_subst_diff @ [subst_item] ; - incr next_fresh_meta ; - subst_item::(aux (tl,[])) +(* CSC: patch to generate ?1 : ?2 : Type in place of ?1 : Type to simulate ?1 :< Type + (match ty with + C.Sort (C.Type _) as s -> (* TASSI: ?? *) + let fresh_meta = !next_fresh_meta in + let fresh_meta' = fresh_meta + 1 in + next_fresh_meta := !next_fresh_meta + 2 ; + let subst_item = uri,C.Meta (fresh_meta',[]) in + newmetasenvfragment := + (fresh_meta,[],C.Sort (C.Type (CicUniv.fresh()))) :: + (* TASSI: ?? *) + (fresh_meta',[],C.Meta (fresh_meta,[])) :: !newmetasenvfragment ; + exp_named_subst_diff := !exp_named_subst_diff @ [subst_item] ; + subst_item::(aux (tl,[])) + | _ -> +*) + let irl = + CicMkImplicit.identity_relocation_list_for_metavariable context + in + let subst_item = uri,C.Meta (!next_fresh_meta,irl) in + newmetasenvfragment := + (!next_fresh_meta,context,ty)::!newmetasenvfragment ; + exp_named_subst_diff := !exp_named_subst_diff @ [subst_item] ; + incr next_fresh_meta ; + subst_item::(aux (tl,[]))(*)*) | uri::tl1,((uri',_) as s)::tl2 -> assert (UriManager.eq uri uri') ; s::(aux (tl1,tl2)) @@ -220,11 +257,10 @@ let !exp_named_subst_diff,!next_fresh_meta, List.rev !newmetasenvfragment, exp_named_subst' in -prerr_endline ("@@@ " ^ CicPp.ppterm (Cic.Var (uri,exp_named_subst)) ^ " |--> " ^ CicPp.ppterm (Cic.Var (uri,exp_named_subst'))) ; new_fresh_meta,newmetasenvfragment,exp_named_subst',exp_named_subst_diff ;; -let apply_tac ~term ~status:(proof, goal) = +let apply_tac_verbose ~term (proof, goal) = (* Assumption: The term "term" must be closed in the current context *) let module T = CicTypeChecker in let module R = CicReduction in @@ -265,19 +301,17 @@ let apply_tac ~term ~status:(proof, goal) = | _ -> [],newmeta,[],term in let metasenv' = metasenv@newmetasenvfragment in -prerr_endline ("^^^^^TERM': " ^ CicPp.ppterm term') ; let termty = CicSubstitution.subst_vars exp_named_subst_diff (CicTypeChecker.type_of_aux' metasenv' context term) in -prerr_endline ("^^^^^TERMTY: " ^ CicPp.ppterm termty) ; (* newmeta is the lowest index of the new metas introduced *) let (consthead,newmetas,arguments,_) = new_metasenv_for_apply newmeta' proof context termty in let newmetasenv = metasenv'@newmetas in let subst,newmetasenv' = - CicUnification.fo_unif newmetasenv context consthead ty + CicUnification.fo_unif newmetasenv context consthead ty in let in_subst_domain i = List.exists (function (j,_) -> i=j) subst in let apply_subst = CicMetaSubst.apply_subst subst in @@ -294,242 +328,219 @@ prerr_endline ("^^^^^TERMTY: " ^ CicPp.ppterm termty) ; Cic.Appl (term'::arguments) ) in -prerr_endline ("XXXX " ^ CicPp.ppterm (if List.length newmetas = 0 then term' else Cic.Appl (term'::arguments)) ^ " |>>> " ^ CicPp.ppterm bo') ; - let newmetasenv'' = new_uninstantiatedmetas@old_uninstantiatedmetas in - let (newproof, newmetasenv''') = - let subst_in = CicMetaSubst.apply_subst ((metano,bo')::subst) in - subst_meta_and_metasenv_in_proof - proof metano subst_in newmetasenv'' - in - (newproof, List.map (function (i,_,_) -> i) new_uninstantiatedmetas) + let newmetasenv'' = new_uninstantiatedmetas@old_uninstantiatedmetas in + let subst_in = + (* if we just apply the subtitution, the type is irrelevant: + we may use Implicit, since it will be dropped *) + CicMetaSubst.apply_subst + ((metano,(context, bo', Cic.Implicit None))::subst) + in + let (newproof, newmetasenv''') = + subst_meta_and_metasenv_in_proof + proof metano subst_in newmetasenv'' + in + (subst_in,(newproof, List.map (function (i,_,_) -> i) new_uninstantiatedmetas)) + +let apply_tac ~term status = snd (apply_tac_verbose ~term status) + +let apply_tac_verbose ~term status = + try + apply_tac_verbose ~term status + (* TODO cacciare anche altre eccezioni? *) + with CicUnification.UnificationFailure _ as e -> + raise (Fail (Printexc.to_string e)) (* TODO per implementare i tatticali e' necessario che tutte le tattiche sollevino _solamente_ Fail *) -let apply_tac ~term ~status = +let apply_tac ~term = + let apply_tac ~term status = try - apply_tac ~term ~status + apply_tac ~term status (* TODO cacciare anche altre eccezioni? *) with CicUnification.UnificationFailure _ as e -> raise (Fail (Printexc.to_string e)) + in + mk_tactic (apply_tac ~term) -let intros_tac - ?(mk_fresh_name_callback = FreshNamesGenerator.mk_fresh_name) () - ~status:(proof, goal) -= - let module C = Cic in - let module R = CicReduction in - let (_,metasenv,_,_) = proof in - let metano,context,ty = CicUtil.lookup_meta goal metasenv in - let newmeta = new_meta_of_proof ~proof in - let (context',ty',bo') = - lambda_abstract metasenv context newmeta ty mk_fresh_name_callback - in - let (newproof, _) = - subst_meta_in_proof proof metano bo' [newmeta,context',ty'] - in - (newproof, [newmeta]) - -let cut_tac - ?(mk_fresh_name_callback = FreshNamesGenerator.mk_fresh_name) - term ~status:(proof, goal) -= - let module C = Cic in - let curi,metasenv,pbo,pty = proof in - let metano,context,ty = CicUtil.lookup_meta goal metasenv in - let newmeta1 = new_meta_of_proof ~proof in - let newmeta2 = newmeta1 + 1 in - let fresh_name = - mk_fresh_name_callback metasenv context (Cic.Name "Hcut") ~typ:term in - let context_for_newmeta1 = - (Some (fresh_name,C.Decl term))::context in - let irl1 = - CicMkImplicit.identity_relocation_list_for_metavariable - context_for_newmeta1 - in - let irl2 = - CicMkImplicit.identity_relocation_list_for_metavariable context - in - let newmeta1ty = CicSubstitution.lift 1 ty in - let bo' = - C.Appl - [C.Lambda (fresh_name,term,C.Meta (newmeta1,irl1)) ; - C.Meta (newmeta2,irl2)] - in - let (newproof, _) = - subst_meta_in_proof proof metano bo' - [newmeta2,context,term; newmeta1,context_for_newmeta1,newmeta1ty]; - in - (newproof, [newmeta1 ; newmeta2]) - -let letin_tac - ?(mk_fresh_name_callback = FreshNamesGenerator.mk_fresh_name) - term ~status:(proof, goal) -= - let module C = Cic in - let curi,metasenv,pbo,pty = proof in - let metano,context,ty = CicUtil.lookup_meta goal metasenv in - let _ = CicTypeChecker.type_of_aux' metasenv context term in +let intros_tac ?(mk_fresh_name_callback = FreshNamesGenerator.mk_fresh_name) ()= + let intros_tac + ?(mk_fresh_name_callback = FreshNamesGenerator.mk_fresh_name) () + (proof, goal) + = + let module C = Cic in + let module R = CicReduction in + let (_,metasenv,_,_) = proof in + let metano,context,ty = CicUtil.lookup_meta goal metasenv in let newmeta = new_meta_of_proof ~proof in + let (context',ty',bo') = + lambda_abstract metasenv context newmeta ty mk_fresh_name_callback + in + let (newproof, _) = + subst_meta_in_proof proof metano bo' [newmeta,context',ty'] + in + (newproof, [newmeta]) + in + mk_tactic (intros_tac ~mk_fresh_name_callback ()) + +let cut_tac ?(mk_fresh_name_callback = FreshNamesGenerator.mk_fresh_name) ~term= + let cut_tac + ?(mk_fresh_name_callback = FreshNamesGenerator.mk_fresh_name) + term (proof, goal) + = + let module C = Cic in + let curi,metasenv,pbo,pty = proof in + let metano,context,ty = CicUtil.lookup_meta goal metasenv in + let newmeta1 = new_meta_of_proof ~proof in + let newmeta2 = newmeta1 + 1 in let fresh_name = - mk_fresh_name_callback metasenv context (Cic.Name "Hletin") ~typ:term in - let context_for_newmeta = - (Some (fresh_name,C.Def (term,None)))::context in - let irl = + mk_fresh_name_callback metasenv context (Cic.Name "Hcut") ~typ:term in + let context_for_newmeta1 = + (Some (fresh_name,C.Decl term))::context in + let irl1 = CicMkImplicit.identity_relocation_list_for_metavariable - context_for_newmeta + context_for_newmeta1 in - let newmetaty = CicSubstitution.lift 1 ty in - let bo' = C.LetIn (fresh_name,term,C.Meta (newmeta,irl)) in + let irl2 = + CicMkImplicit.identity_relocation_list_for_metavariable context + in + let newmeta1ty = CicSubstitution.lift 1 ty in + let bo' = + C.Appl + [C.Lambda (fresh_name,term,C.Meta (newmeta1,irl1)) ; + C.Meta (newmeta2,irl2)] + in let (newproof, _) = - subst_meta_in_proof - proof metano bo'[newmeta,context_for_newmeta,newmetaty] + subst_meta_in_proof proof metano bo' + [newmeta2,context,term; newmeta1,context_for_newmeta1,newmeta1ty]; in - (newproof, [newmeta]) + (newproof, [newmeta1 ; newmeta2]) + in + mk_tactic (cut_tac ~mk_fresh_name_callback term) - (** functional part of the "exact" tactic *) -let exact_tac ~term ~status:(proof, goal) = - (* Assumption: the term bo must be closed in the current context *) - let (_,metasenv,_,_) = proof in - let metano,context,ty = CicUtil.lookup_meta goal metasenv in - let module T = CicTypeChecker in - let module R = CicReduction in - if R.are_convertible context (T.type_of_aux' metasenv context term) ty then - begin - let (newproof, metasenv') = - subst_meta_in_proof proof metano term [] in - (newproof, []) - end - else - raise (Fail "The type of the provided term is not the one expected.") +let letin_tac ?(mk_fresh_name_callback=FreshNamesGenerator.mk_fresh_name) ~term= + let letin_tac + ?(mk_fresh_name_callback = FreshNamesGenerator.mk_fresh_name) + term (proof, goal) + = + let module C = Cic in + let curi,metasenv,pbo,pty = proof in + let metano,context,ty = CicUtil.lookup_meta goal metasenv in + let _ = CicTypeChecker.type_of_aux' metasenv context term in + let newmeta = new_meta_of_proof ~proof in + let fresh_name = + mk_fresh_name_callback metasenv context (Cic.Name "Hletin") ~typ:term in + let context_for_newmeta = + (Some (fresh_name,C.Def (term,None)))::context in + let irl = + CicMkImplicit.identity_relocation_list_for_metavariable + context_for_newmeta + in + let newmetaty = CicSubstitution.lift 1 ty in + let bo' = C.LetIn (fresh_name,term,C.Meta (newmeta,irl)) in + let (newproof, _) = + subst_meta_in_proof + proof metano bo'[newmeta,context_for_newmeta,newmetaty] + in + (newproof, [newmeta]) + in + mk_tactic (letin_tac ~mk_fresh_name_callback term) + (** functional part of the "exact" tactic *) +let exact_tac ~term = + let exact_tac ~term (proof, goal) = + (* Assumption: the term bo must be closed in the current context *) + let (_,metasenv,_,_) = proof in + let metano,context,ty = CicUtil.lookup_meta goal metasenv in + let module T = CicTypeChecker in + let module R = CicReduction in + if R.are_convertible context (T.type_of_aux' metasenv context term) ty then + begin + let (newproof, metasenv') = + subst_meta_in_proof proof metano term [] in + (newproof, []) + end + else + raise (Fail "The type of the provided term is not the one expected.") + in + mk_tactic (exact_tac ~term) (* not really "primitive" tactics .... *) - -let elim_tac ~term ~status:(proof, goal) = - let module T = CicTypeChecker in - let module U = UriManager in - let module R = CicReduction in - let module C = Cic in - let (curi,metasenv,_,_) = proof in - let metano,context,ty = CicUtil.lookup_meta goal metasenv in - let termty = T.type_of_aux' metasenv context term in - let uri,exp_named_subst,typeno,args = - match termty with - C.MutInd (uri,typeno,exp_named_subst) -> (uri,exp_named_subst,typeno,[]) - | C.Appl ((C.MutInd (uri,typeno,exp_named_subst))::args) -> - (uri,exp_named_subst,typeno,args) - | _ -> raise NotAnInductiveTypeToEliminate - in - let eliminator_uri = - let buri = U.buri_of_uri uri in - let name = - match CicEnvironment.get_obj uri with - C.InductiveDefinition (tys,_,_) -> - let (name,_,_,_) = List.nth tys typeno in - name - | _ -> assert false - in - let ext = - match T.type_of_aux' metasenv context ty with - C.Sort C.Prop -> "_ind" - | C.Sort C.Set -> "_rec" - | C.Sort C.CProp -> "_rec" - | C.Sort C.Type -> "_rect" - | _ -> assert false - in - U.uri_of_string (buri ^ "/" ^ name ^ ext ^ ".con") +let elim_tac ~term = + let elim_tac ~term (proof, goal) = + let module T = CicTypeChecker in + let module U = UriManager in + let module R = CicReduction in + let module C = Cic in + let (curi,metasenv,proofbo,proofty) = proof in + let metano,context,ty = CicUtil.lookup_meta goal metasenv in + let termty = T.type_of_aux' metasenv context term in + let uri,exp_named_subst,typeno,args = + match termty with + C.MutInd (uri,typeno,exp_named_subst) -> (uri,exp_named_subst,typeno,[]) + | C.Appl ((C.MutInd (uri,typeno,exp_named_subst))::args) -> + (uri,exp_named_subst,typeno,args) + | _ -> raise NotAnInductiveTypeToEliminate in - let eliminator_ref = C.Const (eliminator_uri,exp_named_subst) in - let ety = T.type_of_aux' metasenv context eliminator_ref in - let newmeta = new_meta_of_proof ~proof in - let (econclusion,newmetas,arguments,lastmeta) = - new_metasenv_for_apply newmeta proof context ety - in - (* Here we assume that we have only one inductive hypothesis to *) - (* eliminate and that it is the last hypothesis of the theorem. *) - (* A better approach would be fingering the hypotheses in some *) - (* way. *) - let meta_of_corpse = - let (_,canonical_context,_) = - CicUtil.lookup_meta (lastmeta - 1) newmetas - in - let irl = - CicMkImplicit.identity_relocation_list_for_metavariable - canonical_context - in - Cic.Meta (lastmeta - 1, irl) - in - let newmetasenv = newmetas @ metasenv in - let subst1,newmetasenv' = - CicUnification.fo_unif newmetasenv context term meta_of_corpse + let eliminator_uri = + let buri = U.buri_of_uri uri in + let name = + match CicEnvironment.get_obj uri with + C.InductiveDefinition (tys,_,_) -> + let (name,_,_,_) = List.nth tys typeno in + name + | _ -> assert false + in + let ext = + match T.type_of_aux' metasenv context ty with + C.Sort C.Prop -> "_ind" + | C.Sort C.Set -> "_rec" + | C.Sort C.CProp -> "_rec" + | C.Sort (C.Type _)-> "_rect" (* TASSI *) + | _ -> assert false + in + U.uri_of_string (buri ^ "/" ^ name ^ ext ^ ".con") + in + let eliminator_ref = C.Const (eliminator_uri,exp_named_subst) in + let ety = T.type_of_aux' metasenv context eliminator_ref in + let rec find_args_no = + function + C.Prod (_,_,t) -> 1 + find_args_no t + | C.Cast (s,_) -> find_args_no s + | C.LetIn (_,_,t) -> 0 + find_args_no t + | _ -> 0 in - let ueconclusion = CicMetaSubst.apply_subst subst1 econclusion in - (* The conclusion of our elimination principle is *) - (* (?i farg1 ... fargn) *) - (* The conclusion of our goal is ty. So, we can *) - (* eta-expand ty w.r.t. farg1 .... fargn to get *) - (* a new ty equal to (P farg1 ... fargn). Now *) - (* ?i can be instantiated with P and we are ready *) - (* to refine the term. *) - let emeta, fargs = - match ueconclusion with - C.Appl ((C.Meta (emeta,_))::fargs) -> emeta,fargs - | C.Meta (emeta,_) -> emeta,[] - | _ -> raise NotTheRightEliminatorShape + let args_no = find_args_no ety in + let term_to_refine = + let rec make_tl base_case = + function + 0 -> [base_case] + | n -> (C.Implicit None)::(make_tl base_case (n - 1)) + in + C.Appl (eliminator_ref :: make_tl term (args_no - 1)) + in + let metasenv', term_to_refine' = + CicMkImplicit.expand_implicits metasenv [] context term_to_refine in + let refined_term,_,metasenv'' = + CicRefine.type_of_aux' metasenv' context term_to_refine' in - let ty' = CicMetaSubst.apply_subst subst1 ty in - let eta_expanded_ty = -(*CSC: newmetasenv' era metasenv ??????????? *) - List.fold_left (eta_expand newmetasenv' context) ty' fargs + let new_goals = + ProofEngineHelpers.compare_metasenvs + ~oldmetasenv:metasenv ~newmetasenv:metasenv'' in - let subst2,newmetasenv'' = -(*CSC: passo newmetasenv', ma alcune variabili sono gia' state sostituite -da subst1!!!! Dovrei rimuoverle o sono innocue?*) - CicUnification.fo_unif - newmetasenv' context ueconclusion eta_expanded_ty + let proof' = curi,metasenv'',proofbo,proofty in + let proof'', new_goals' = + apply_tactic (apply_tac ~term:refined_term) (proof',goal) in - let in_subst_domain i = - let eq_to_i = function (j,_) -> i=j in - List.exists eq_to_i subst1 || - List.exists eq_to_i subst2 + (* The apply_tactic can have closed some of the new_goals *) + let patched_new_goals = + let (_,metasenv''',_,_) = proof'' in + List.filter + (function i -> List.exists (function (j,_,_) -> j=i) metasenv''' + ) new_goals @ new_goals' in - (* When unwinding the META that corresponds to the elimination *) - (* predicate (which is emeta), we must also perform one-step *) - (* beta-reduction. apply_subst doesn't need the context. Hence *) - (* the underscore. *) - let apply_subst _ t = - let t' = CicMetaSubst.apply_subst subst1 t in - CicMetaSubst.apply_subst_reducing - (Some (emeta,List.length fargs)) subst2 t' - in - let old_uninstantiatedmetas,new_uninstantiatedmetas = - classify_metas newmeta in_subst_domain apply_subst - newmetasenv'' - in - let arguments' = List.map (apply_subst context) arguments in - let bo' = Cic.Appl (eliminator_ref::arguments') in - let newmetasenv''' = - new_uninstantiatedmetas@old_uninstantiatedmetas - in - let (newproof, newmetasenv'''') = - (* When unwinding the META that corresponds to the *) - (* elimination predicate (which is emeta), we must *) - (* also perform one-step beta-reduction. *) - (* The only difference w.r.t. apply_subst is that *) - (* we also substitute metano with bo'. *) - (*CSC: Nota: sostituire nuovamente subst1 e' superfluo, *) - (*CSC: no? *) - let apply_subst' t = - let t' = CicMetaSubst.apply_subst subst1 t in - CicMetaSubst.apply_subst_reducing - (Some (emeta,List.length fargs)) - ((metano,bo')::subst2) t' - in - subst_meta_and_metasenv_in_proof - proof metano apply_subst' newmetasenv''' - in - (newproof, - List.map (function (i,_,_) -> i) new_uninstantiatedmetas) + proof'', patched_new_goals + in + mk_tactic (elim_tac ~term) ;; (* The simplification is performed only on the conclusion *) @@ -548,35 +559,38 @@ exception NotConvertible (*CSC: while [what] can have a richer context (because of binders) *) (*CSC: So it is _NOT_ possible to use those binders in the [with_what] term. *) (*CSC: Is that evident? Is that right? Or should it be changed? *) -let change_tac ~what ~with_what ~status:(proof, goal) = - let curi,metasenv,pbo,pty = proof in - let metano,context,ty = CicUtil.lookup_meta goal metasenv in - (* are_convertible works only on well-typed terms *) - ignore (CicTypeChecker.type_of_aux' metasenv context with_what) ; - if CicReduction.are_convertible context what with_what then - begin - let replace = - ProofEngineReduction.replace - ~equality:(==) ~what:[what] ~with_what:[with_what] - in - let ty' = replace ty in - let context' = - List.map - (function - Some (name,Cic.Def (t,None)) -> Some (name,Cic.Def ((replace t),None)) - | Some (name,Cic.Decl t) -> Some (name,Cic.Decl (replace t)) - | None -> None - | Some (_,Cic.Def (_,Some _)) -> assert false - ) context - in - let metasenv' = +let change_tac ~what ~with_what = + let change_tac ~what ~with_what (proof, goal) = + let curi,metasenv,pbo,pty = proof in + let metano,context,ty = CicUtil.lookup_meta goal metasenv in + (* are_convertible works only on well-typed terms *) + ignore (CicTypeChecker.type_of_aux' metasenv context with_what) ; + if CicReduction.are_convertible context what with_what then + begin + let replace = + ProofEngineReduction.replace + ~equality:(==) ~what:[what] ~with_what:[with_what] + in + let ty' = replace ty in + let context' = List.map (function - (n,_,_) when n = metano -> (metano,context',ty') - | _ as t -> t - ) metasenv + Some (name,Cic.Def (t,None))->Some (name,Cic.Def ((replace t),None)) + | Some (name,Cic.Decl t) -> Some (name,Cic.Decl (replace t)) + | None -> None + | Some (_,Cic.Def (_,Some _)) -> assert false + ) context in - (curi,metasenv',pbo,pty), [metano] - end - else - raise (ProofEngineTypes.Fail "Not convertible") + let metasenv' = + List.map + (function + (n,_,_) when n = metano -> (metano,context',ty') + | _ as t -> t + ) metasenv + in + (curi,metasenv',pbo,pty), [metano] + end + else + raise (ProofEngineTypes.Fail "Not convertible") + in + mk_tactic (change_tac ~what ~with_what)